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We consider the three-dimensional Schrédinger operdtigrand H where H
=(iV+A)2-b, A is a magnetic potential generating a constant magnetic field of
strengthb>0, andH=Hy+V whereVe LY(R3;R) satisfies certain regularity con-
ditions. Then the spectral shift functi@giiE; H,H,) for the pair of operatorsi, H

is well-defined for energieg& #2qb, g€7,. We study the asymptotic behavior
of &E;H,Hy) asE—x», EEO,, r€(0,b), where Or:={E€ (0,)|dist(E, 2b7Z+)

>r}. We obtain a Weyl-type formula ligl..eco E™V%(E;H,Ho)
=(1/47) [raV(x)dx. © 2004 American Institute of Physics.

[DOI: 10.1063/1.1776643

I. INTRODUCTION

In this note we study the high energy asymptotics of the spectral shift fun@®h for the
three-dimensional Schrédinger operator with constant magnetic field, perturbed by an electric
potential which decays fast enough at infinity. The note could be regarded as a supplement to the
articles in Ref. 5 where the asymptotic behavior of the SSF in the strong magnetic field regime
was considered, and Ref. 6 where the singularities of the SSF at the Landau levels were investi-
gated.

Let Hy:=(iV+A)?—b be the unperturbed three-dimensional magnetic Schrédinger operator,
essentially self-adjoint o685 (R®). Here the magnetic potential=(—-bx,/2,bx,/2,0) generates the
constant magnetic fiel@=curl A=(0,0,b), b>0. It is well-known thato(Hg)=0,{Hg)=[0,%)

(see Ref. 1, where o(Hy) denotes the spectrum éf,, and o,{H,) its absolutely continuous
spectrum. Moreover, the so-called Landau levdlg, 21 7Z,:={0,1, ..}, play the role of thresh-
olds in o(Hg).

For x=(X;,X;,X3) € R® we denote byX, =(x;,%,) the variables on the plane perpendicular to
the magnetic field. We assume thaAsatisfies

V#0, VECRY, [VX)|<CuX, ) M(xg)™s, x=(X,,x3) E R3, (1.1

with Co>0, m, >2, mg>1, and({x):=(1+|x]?*2 x€RY, d=1. By (1.1) and the diamagnetic
inequality (see, e.g., Ref.)Lfor eachEy<0 we have

IV¥(Ho-Epre S, (1.2
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IVIY2(Ho - Ep) Y2 € S, (1.3

whereS, denotes the Hilbert—Schmidt class, whie denotes the class of linear compact opera-
tors. The resolvent identity combined with.2) implies that for eaclE,<inf o(H) <inf o(H) we
have

(H-Ep)*-(Ho-Ep) €S, (1.9

where S; denotes the trace class. Then there exists a unique funétiohl,Hy) €LY(R;(1
+E?)~IdE) which vanishes identically ofi-=,inf o(H)), and satisfies the Lifshits—Krein trace
formula

THG(H) - d(Ho) = | &EiH.H)¢'(E)IE, &€ CH(R)
R
(see Ref. 14, Theorem 8.9.1The function &(.;H,H,) is called the SSF for the pair of the
operatorsH and Hy. For almost everyE>0 the SSF&(E;H,Hy) is related to the scattering
determinant deS(E;H,H,) for the pairH,H, by the Birman—Krein formula

deth, H,HO) - e—277i§(E§H,H0)

(see Ref. 3, 4, or 14, Sec. 8.4

A priori, the SSFEE; H,Hy) is defined only for almost everg € R. In Sec. Il C below we
introduce a representative of the equivalence class determingd;by,H,), defined onR\2bZ,,
which is bounded on each compact subset of the complement of the Landau levels, and is con-
tinuous onR\{2bZ, U o,(H)} wherea,(H) denotes the set of the eigenvalues of the opetdtdn
this note we will identify the SSF with this particular representative of its equivalence class.

The main goal of the paper is the study of the asymptotic§B&fH,H;) asE—«, EEO,,
where

O, ={E € (0,»)|dist (E,2bZ,) >r}, r € (0,b). (1.5

The paper is organized as follows. In Sec. Il we formulate our main result. In Sec. Il we obtain
some preliminary estimates, while the proof of our main result can be found in Sec. IV.

IIl. FORMULATION OF THE MAIN RESULT

Theorem 2.1: Assume that V satisfies (1L.Then we have

lim  EV2(E;H,Ho) =

1
— V(x)dx, re&(0,b). 2.1
a2 VO (0,b) (2.

Remarksi(i) It is essential to avoid the Landau levels(i1), i.e., to suppose th& < O, ,
r&(0,b), asE— o, since the SSF has singularities at the Landau levels, at least in the case where
V has a fixed sigrisee Ref. &

(i) ForEER set

@)= | (0E[p+ AP~ HE= o+ 0O~ Vix)ccp
TR

47
=5 f (2= (E- V()X
R

where
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o(t) = 0 if t<0,
11 if t>0

is the Heaviside function. Note th&f(E) is independent of the magnetic figid= 0. Evidently,
under the assumptions of Theorem 2.1 we have

lim E‘1/2§C|(E):27-rf V(x)dx.
Eooe RS
Hence, in the casépsV(x)dx # 0, relation(2.1) is equivalent to

&E;H,Ho) = (2m)3¢y(E)(1 +0(1)), E—o, EEO;, re(0)b). (2.2

Asymptotic relations of the typ€.2) are known in the case of decaying magnetic potenfals

(see, e.g., Ref. )3However, in the last case the magnetic partv +i div A+ |A|? of the operator

H, is a relatively compact perturbation of the Laplaciak, so that the resemblance with the case

of a constant magnetic field, and, hence, of a linear magnetic potential, considered in the present
note, is only formal. In particular, the methods of Ref. 13 are not directly applicable.

(iii) As far as the authors are informed, the high energy asymptotics of the SSF for three-
dimensional Schrodinger operators with constant magnetic fields is investigated for the first time
in the present note. However, we would like to mention a result contained in Ref. 9 where an
axisymmetricV=V(|X |,x3) is considered. It is well-knowrsee, e.g., Ref.)lthat in this case the
operatorsH and H, are unitarily equivalent to the orthogonal suligc;®H™ and
® Hf)m), respectively, where the operators
19 o0 & (bg m
2,2 _2 (X=,.0

E)m)::——
edodo s \2 ¢

are self-adjoint inL2(R, X R ; ededxs). For an arbitrary fixedn€ 7 the authors of Ref. 9 studied
the asymptotics aE — %, EE O, of the SSFE(E;H™,H™). Note that(2.1) cannot be deduced
from the results of Ref. 9 even in the case of axial symmetry.of

2
) . HM=HY+V(ex), meZ,

IIl. AUXILIARY RESULTS

A. Classes of compact operators

In this subsection we introduce some basic notations used throughout the paper. As above, we
denote byS, the class of linear compact operators acting in a fixed Hilbert spaceTLet
=T* €8S.. Denote bylP,(T) the spectral projection of associated with the intervalC R. For
s>0 set
Ny(S;T) = rank P g, (£T).

For an arbitrarynot necessarily self-adjoinbperatorT€ S, put

n(s;T) :==n,(s;T*T), s>0. (3.
If T=T*, then evidently

n«(s;T)=n.(s,T) +n_(s;T), s>0. (3.2

Further, we denote b$,, pE€[1,), the Schatten—von Neumann class of compact operators for
which the norn1|T||p=:(pfﬁfsp‘ln*(s;T)ds)l/p is finite. In particular, as already indicates|, stands

for the trace class, ang, for the Hilbert-Schmidt class. T€S,, p€[1,*), then the following
elementary inequality,
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n(s;T) < s T, (3.3
holds for everys>0. If T=T* €S, pe[1,»), then(3.2) and(3.3) imply

n(s;T) <sPT|5, s>0. (3.9

Finally, we define the self-adjoint operators Re=3(T+T*) and ImT: =2 (T-T*).

B. Index for a pair of projections

In this subsection we introduce the concepts of index of a Fredholm pair of orthogonal
projections, and index for a pair of self-adjoint operators, and describe some basic properties
related to these concepts which will be often used in the sequel. More details can be found in Ref.
2.

A pair of orthogonal projection®, Q is said to be Fredholm if

{-L1NofP-Q=90.
In particular, ifP-Q e S,, then the paiP, Q is Fredholm.
Assume that the pair of orthogonal projectidsQ is Fredholm. Set
indexP,Q) :=dimKer(P-Q-1)-dimKer(P-Q+1).

Let l\~/l, M, be bounded self-adjoint operators. If the spectral projectiB(lgjp)(lr/l) and
P(—,0(M) form a Fredholm pair, we shall use the short-hand notation

iNd(M,M) := index(P(_.. ¢,(M), (. 0(M)).

A sufficient condition that the pailf’(_wvo)(l\N/I), P(0(M) be Fredholm isM=M+A, whereM is a
bounded self-adjoint operator such that 6..{M), andA=A* € S,.

Lemma 3.1 (see Ref. 12, Lemma 5.2): Let M, 0 ¢ o(M), O<A=A* €S,. Then for t
e (0,%) we have

ind(M +tA,M) = - lim n_(1 - & ;tAY2M1AY?), (3.5
e|0
ind(M —tA,M) = n,(1;tAY2M~2AY?) . (3.6
Lemma 3.2 [see Ref. 5, Sec. 3.2, Property (g)]: Let M be a bounded self-adjoint operator such
that 0¢ o(M). Let A and B be compact self-adjoint operators. Then fer(8,») such that
[-s,s|Na(M)=@ we have
ind(M +s+B,M +5s) —n,(s;A) < indM+A+BM)<indM-s+B,M-5s) +n_(s;A).
(3.7

Lemma 3.3 (see Ref. 11, Lemma 2.1, or Ref. 5, Sec. 3.3): Let M be a bounded self-adjoint
operator such thad & o(M). Let T,=T; € S, and T,=T, e S;. Then for each >0, s,>0 such
that[-s,s]N o(M)=@ with s=s,+s, we have

: 1
J ||nd(M + Tl +t T2,M)|dM(t) = n*(Sl;Tl) + E”Tz”]_, (38)
R

where qu(t):=(1/m)[dt/(1+t?)].
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C. Representation of the SSF

In this subsection we describe a representation of the &5fH,H,) which is a special case
of the general representation of the SSF for a pair of lower-bounded self-adjoint operators, ob-
tained by Gesztesy, Makarov, and Pushnitsiie Refs. 11, 8, and 12

Forze C, Imz>0, setT(2): =|V|¥3(Hy-2)"|V|*2.

Lemma 3.4 (see Ref. 5, Lemma 3.1): Let (1.1) hold. Then for every\2bZ,, the operator-
norm limit

TE):==n—-limT(E+i0) (3.9
5.0
exists, and by (1.3) we haveéH) € S,.. Moreover ImT(E) € S;.

Lemma 3.4 follows easily from Propositions 3.2 and 3.3 be{eee Corollary 3.2
Denote byJ the multiplier by the function

gnVix) = 1 if V(x)=0,
SIMVRI= 1 i v <o,
Introduce the function
E(E;H,HO):J ind(J+ ReT(E) +tIm T(E),J)du(t), E€R\2bZ,, (3.10
R

which is well-defined by Lemmas 3.3 and 3.4.

Proposition 3.1 (see Ref. 5, Proposition 2.5): The functE?le;H,Ho) is continuous on
R\{2bZ, U o,(H)}, and is bounded on every compact subselt t2bZ,.

Remark:Note that, in contrast to the cabe 0, we cannot rule out the possibility of existence
of embedded eigenvalues, by imposing short-range assumptions of the tyip&of heorem 5.1
of Ref. 1 shows that there are axisymmetric potentitsf compact support such that below each
Landau level Bq, q € Z,, there exists an infinite sequence of eigenvaluds which converges to
2bg. On the other hand, generically, the only possible accumulation points of the eigenvalues of
the operator$i are the Landau levelsee Ref. 1, Theorem 4.7, and Ref. 7, Theorem 3Ji8.3.
Further information of the location of these eigenvalues can be found in Ref. 5.

Theorem 3.1 (see Refs. 11, 8, 12, or 5, Sec. 3.Bgt (1.1) hold. Then for almost every E
e R we have

E(E;H,Ho) = €(E;H,Hy). (3.11)

Remark:As explained in the Introduction, we identif E;H,Hg) with E(E;H,HO). The

identification on the set\{2bZ, U ap(H)} whereE is continuous, is natural. On the other hand, the
values prescribed to the SSF at the eigenvakiesr,(H) may seem somewhat arbitrary; in any
case, as Theorem 2.1 shows, these values are consistent with the asymptétiesHaH,) as
E—x,EcO,,re(0,b), and E¢ oy,(H).

D. Preliminary estimates
Introduce the Landau Hamiltonian
0 bx2>2 < d bxl)2
h(b) :=={i—-—7] +|{i—+—| —-b, 3.1
( ) ( 0—'X]_ 2 &Xz 2 ( 2)

i.e., the two-dimensional Schrédinger operator with constant scalar magnetib fiedd essen-
tially self-adjoint onCg(R?). It is well-known thato(h(b)) = U;":O{qu}, and each eigenvaluég,
g € Z, has infinite multiplicity(see, e.g., Ref.)1
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Forx,x’ e R? denote byP, (X, X") the integral kernel of the orthogonal projectipgtb) onto
the subspace Kéi(b)-2bq), g e Z,. It is well-known that

P, (xx’)—£L<
q,b\ _27Tq

bjx = x'[?

5 )exp(— tZ?(|x—x’|2+ 2i(x1x§—x1x2))> (3.13

(see Ref. 1pwhereL(1): =S (H(-t/K, te R, g e Z,, are the Laguerre polynomials. Note that

b
Pap(X,X) = o (3.19

for eachg e Z, andx e R2. Introduce the orthogonal projectiof®y: LA(R%) — L%(R3), q e Z,, by
Py:=pq®! wherel denotes the identity operator lr?(RXs). For ze C with Im z>0, define the
operatorR(z): = (-d?/dx3—-2)* bounded inL%(R), as well as the operators

Ty = V[Y?Py(Ho -2 YVI*2  qe s,

bounded inL%(R3). The operatorR(z) admits the integral kerneR,(x3—x3) where R (X)
=ie"#/(2\2), xe R, the branch of\z being chosen so that Inz>0. Moreover, T4
=|VI3(py(b) @ R(z~2ba)) V| *2.

Forx e R, A#0, defineR(\) as the operator with integral kern®l,(x3—x3) where

e\ .
ZVT)\ if A<O,
Ry(X) = I(isrfg RysisX) = o R x e R. (3.19
2( if A>0,

Evidently, if we L2(R) and\ #0, thenwR\)we S,. ForE € R, E+#2bq, q e Z,, set

To(E): = [V[*(py(b) ® R(E - 2b))|V[*2.
Proposition 3.2 (Ref. 6, Proposition 4.1 and Corollaries 4.1, 4P¢t EcR, qeZ,, E
# 2bg. Assume that (1.1) holds

(i)  We have J(E) € S,, andlim 5o||Tq(E+i8) = T4(E)|,=0.
(i)  We havelm T¢(E) =0, and if E<2bq, thenIm T,(E)=0. Moreover Im Ty(E) € S;.
Proposition 3.3 (see Ref. 6, Proposition 4.2): LetB, E ¢ 2bZ,. Assume that V satisfies
(1.1). Then the operator series (E+id): =2 gy TI(E+iIH), 6>0, and T.(E)
: :Ej”:[E,ZbH T,(E), where[x] denotes the integer part of the real numbeare convergent in S
Moreover
2 C_Ob . _ =3/2
ITBle=<g " 2 (@bI=-B)7 2] [V(oldx. (3.16
R

T |=[E/2b]+1

Finally, lim o T.(E+i8) - T.(E)[|,=0.
Corollary 3.1: Let re (0,b). Then we have

|RETLE)5=0(1), E—», EE€O,. (3.17)

Proof: Estimate(3.17) follows immediately from(3.16) since we have
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E (2b| _ E)—S/Z < E (pr)—3/2+ r—3/2_
I=[E/2b]+1 p=1

For sufficiently largeE € O, with r € (0,b), setT_(E): :ELE()Zb] T,(E). Propositiong3.2) and (3.3
imply the following.

Corollary 3.2: For Ee O, with re (0,b) the operator-norm limit(3.9) exists, and TE)
=T_(E)+T.(E). Moreover ReT(E)=ReT_(E)+T,(E), andImT(E)=ImT_(E) € S;.

Forn=0,1andEe O, , r € (0,b), sete,(E): :zgi’gb](E—qu)-“"’Z.

Lemma 3.5: Let 0. Then the asymptotic relations

¢o(E) =0O(In E), (3.18

e1(E) = E“Z%(l +o(1), (3.19

hold as E—», E€ O,.
Proof: Evidently, forE>0 large enough,

[E/2b]-1 b 12
en(E)=E 12 > (1 - ?> +(E-2b[E/2b])"**"2, n=0,1. (3.20
=0

Since the function$0,E/2b) > x— (1-2bx/E)"**"2 n=0, 1, arencreasing, an € O, , we have

[E/2b]-1 ~1+n/2 [E/2b] ~1+n/2 (E-)/(2b) ~1+n/2
2b 2b 2b
> (1——q> sf (1——X> dx£f (1——X> dx

q=0 E 0 E 0 E
E 1-r/E
=0 (1-tH*2dt, n=0,1. (3.20)
0
Further,
1-i/E In(E/r) if n=0

1-t) gt = ’ 3.2

fo (2= {2(1—(r/E)1’2) if n=1. (3.22

Finally, we estimate the second term on the r.h.g3a20):

(E-2b[E/2b]) 12 < p~1*V2 =01, (3.23

Putting togethe(3.20—~3.23, we obtain(3.18), as well as lim sup_..eco, E2p, (E)<1/b. In
order to prove(3.19, it remains to show that limigf...e.o. E~12¢,(E)=1/b, which follows
immediately from

[E/2b] 2\ 12 E/2b-1 2bx\ ~1/2 El2 [1-2/E
@:(E) = E‘”zf (1 - —) dx= E-lfzf (1 - —) dx=—— (1-t)"Ydt
E1/2 2b 1/2
=2
b E
Corollary 3.3: Let re (0,b). Then the asymptotic estimate
IT-(E)[3=0(n E) (3.24

holds as E~«, E€ O,.
Proof: We have
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[E/2b] 2
IT-B®)3=||[VI*2 X (pg® R(E - 2bg))|V|*2
g=0 2
[E/2b] 2
=Gl 2 (P(X.)™™%) @ ((xg) ™R(E - 2b0)(x5) ™)
q=0 2
[E/2b]
=C3 2 [Ipg(X, )™ 23|(xa) ™ 2R(E — 2ba)(xg) ™13
g=0
b 2
=Ci— f (X, ) medX, f (X3) " ™sdXg | @o(E) (3.25
81 J 2 R

[see(3.13 for the definition of the integral kernel ¢, (3.14) for its value on the diagonal, and
(3.15 for the definition of the integral kernel &(E-2bq)]. Bearing in mind(3.18), we find that
(3.25 implies (3.24). O
Proposition 3.4: Let = (0,b). Then we have
[ImT(E)|=0(1), E—», E€O,. (3.2

Proof: Estimate(3.26) follows immediately from Ref. 5, Lemma 4.2, according to which we
have|T(E)||<r YACy/2) [ (Xs) Mdxs. O

IV. PROOF OF THE MAIN RESULT

Fix an arbitrarys € (0, 1). Applying (3.5—3.7), and arguing as in the proof of Ref. 5, Lemma
5.1, we easily get

1Tr arctari(Im T(E))Y2(J + &) X(Im T(E))"? - n,(¢;ReT(E))
< J ind(J+ ReT(E) +tIm T(E);J)dpu(t)
R

< 1Tr arctar{(Im T(E))Y2(J - &) X(Im T(E))¥? + n_(e;Re T(E)). (4.1)
Set

Gs=G4E): =(ImT(E)*?(J+9) X Im T(E))*?, se(-1,1).

Evidently, for eachks€(-1,1) we have

[ TrarctanGy(E) - Tr Gy(E)| < 3[GJ(E)[3 < 3[G(B)ZIGSE)] < 313+ Fim TE)[FIm TE)]
< (@ =1s)3Im TE)[F|Im T(E)]. (4.2

The operatofJ+s)~* ImT(E) admits an explicit kernel

[E/2b]
> > (E-2bg)™H2Py(X X )codVE — 2bg(xz — X3))
a=0

X (sign(V(X |, X)) +8) IV(X |, xa) [YIV(X] ,xH)[Y2, (X, ,xg) E RS, (X ,x5) € R®
[see(3.13 for the definition ofP,]. Therefore,
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[E/2b]
TIGJ(E) = Tr(J+9) UM T(E)) = — >, (E-2bg)™?| (signV(x)) +s)~V(x)|dx
AT 4o B3
= 4£<P1(E)f (sign(V(x)) + ) V(x)|dx (4.3
s ]RS

[see(3.149)]. Finally, we estimate the second terms in the first and third lingd.):

n.(e;ReT(E)) < e JReT(E)|f < 2¢"4(|ReT_(E)[5+ [Re TL(E)|3), (4.4)

using(3.4) with p=2. Combining(4.1)—(4.4) with (3.10, making use 0f3.19), (3.24), (3.17), and

(3.26), and applying our convention to identi&E;H,Ho) with &E;H,H) we find that for each
¢€(0,1) we have

lim sup EY2¢(E;H,Hy) < 1 (signV(x)) — &) YV(x)|dx,
E—x,EE0; 47? R3

1
lim inf E"Y24(E;H,Hg) = —— [ _(sign(V(x)) + &) V(x)|dx.
E—%,EE0, Am° ) g3

Letting € | 0, we obtain(2.1).
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