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We consider the three-dimensional Schrödinger operatorsH0 and H where H0

=si ¹ +Ad2−b, A is a magnetic potential generating a constant magnetic field of
strengthb.0, andH=H0+V whereV[L1sR3;Rd satisfies certain regularity con-
ditions. Then the spectral shift functionjsE;H ,H0d for the pair of operatorsH, H0

is well-defined for energiesEÞ2qb, q[Z+. We study the asymptotic behavior
of jsE;H ,H0d as E→`, E[Or, r [ s0,bd, whereOrªhE[s0,`dudistsE,2bZ+d
. rj. We obtain a Weyl-type formula limE→`,E[Or

E−1/2jsE;H ,H0d
=s1/4p2deR3Vsxddx. © 2004 American Institute of Physics.
[DOI: 10.1063/1.1776643]

I. INTRODUCTION

In this note we study the high energy asymptotics of the spectral shift function(SSF) for the
three-dimensional Schrödinger operator with constant magnetic field, perturbed by an electric
potential which decays fast enough at infinity. The note could be regarded as a supplement to the
articles in Ref. 5 where the asymptotic behavior of the SSF in the strong magnetic field regime
was considered, and Ref. 6 where the singularities of the SSF at the Landau levels were investi-
gated.

Let H0ª si ¹ +Ad2−b be the unperturbed three-dimensional magnetic Schrödinger operator,
essentially self-adjoint onC0

`sR3d. Here the magnetic potentialA=s−bx2/2 ,bx1/2 ,0d generates the
constant magnetic fieldB=curl A=s0,0,bd, b.0. It is well-known thatssH0d=sacsH0d=f0,`d
(see Ref. 1), where ssH0d denotes the spectrum ofH0, and sacsH0d its absolutely continuous
spectrum. Moreover, the so-called Landau levels 2bq, q[Z+:=h0,1, . . .j, play the role of thresh-
olds in ssH0d.

For x=sx1,x2,x3d[R3 we denote byX'=sx1,x2d the variables on the plane perpendicular to
the magnetic field. We assume thatV satisfies

V ò 0, V [ CsR3d, uVsxdu ø C0kX'l−m'kx3l−m3, x = sX',x3d [ R3, s1.1d

with C0.0, m'.2, m3.1, and kxlª s1+uxu2d1/2, x[Rd, dù1. By (1.1) and the diamagnetic
inequality (see, e.g., Ref. 1), for eachE0,0 we have

uVu1/2sH0 − E0d−1 [ S2, s1.2d
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uVu1/2sH0 − E0d−1/2 [ S̀ , s1.3d

whereS2 denotes the Hilbert–Schmidt class, whileS̀ denotes the class of linear compact opera-
tors. The resolvent identity combined with(1.2) implies that for eachE0, inf ssHdø inf ssH0d we
have

sH − E0d−1 − sH0 − E0d−1 [ S1, s1.4d

where S1 denotes the trace class. Then there exists a unique functionjs. ;H ,H0d[L1sR ; s1
+E2d−1dEd which vanishes identically ons−` , inf ssHdd, and satisfies the Lifshits–Krein trace
formula

TrsfsHd − fsH0dd =E
R

jsE;H,H0df8sEddE, f [ C0
`sRd

(see Ref. 14, Theorem 8.9.1). The functionjs. ;H ,H0d is called the SSF for the pair of the
operatorsH and H0. For almost everyE.0 the SSFjsE;H ,H0d is related to the scattering
determinant detSsE;H ,H0d for the pairH ,H0 by the Birman–Krein formula

detSsE;H,H0d = e−2pijsE;H,H0d

(see Ref. 3, 4, or 14, Sec. 8.4).
A priori, the SSFjsE;H ,H0d is defined only for almost everyE[R. In Sec. III C below we

introduce a representative of the equivalence class determined byjs. ;H ,H0d, defined onR \2bZ+,
which is bounded on each compact subset of the complement of the Landau levels, and is con-
tinuous onR \ h2bZ+øspsHdj wherespsHd denotes the set of the eigenvalues of the operatorH. In
this note we will identify the SSF with this particular representative of its equivalence class.

The main goal of the paper is the study of the asymptotics ofjsE;H ,H0d asE→`, E[Or,
where

Or ª hE [ s0,`dudist sE,2bZ+d . rj, r [ s0,bd. s1.5d

The paper is organized as follows. In Sec. II we formulate our main result. In Sec. III we obtain
some preliminary estimates, while the proof of our main result can be found in Sec. IV.

II. FORMULATION OF THE MAIN RESULT

Theorem 2.1:Assume that V satisfies (1.1). Then we have

lim
E→`,E[Or

E−1/2jsE;H,H0d =
1

4p2E
R3

Vsxddx, r [ s0,bd. s2.1d

Remarks:(i) It is essential to avoid the Landau levels in(2.1), i.e., to suppose thatE[Or ,
r [ s0,bd, asE→`, since the SSF has singularities at the Landau levels, at least in the case where
V has a fixed sign(see Ref. 6).

(ii ) For E[R set

jclsEd ª E
T*R3

susE − up + Asxdu2d − usE − up + Asxdu2 − Vsxddddxdp

=
4p

3
E

R3
sE+

3/2 − sE − Vsxdd+
3/2ddx

where
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ustd ª H0 if t ø 0,

1 if t . 0
J

is the Heaviside function. Note thatjclsEd is independent of the magnetic fieldbù0. Evidently,
under the assumptions of Theorem 2.1 we have

lim
E→`

E−1/2jclsEd = 2pE
R3

Vsxddx.

Hence, in the caseeR3VsxddxÞ0, relation(2.1) is equivalent to

jsE;H,H0d = s2pd−3jclsEds1 + os1dd, E → `, E [ Or , r [ s0,bd. s2.2d

Asymptotic relations of the type(2.2) are known in the case of decaying magnetic potentialsA
(see, e.g., Ref. 13). However, in the last case the magnetic partiA . ¹ + i div A+ uAu2 of the operator
H0 is a relatively compact perturbation of the Laplacian −D, so that the resemblance with the case
of a constant magnetic field, and, hence, of a linear magnetic potential, considered in the present
note, is only formal. In particular, the methods of Ref. 13 are not directly applicable.

(iii ) As far as the authors are informed, the high energy asymptotics of the SSF for three-
dimensional Schrödinger operators with constant magnetic fields is investigated for the first time
in the present note. However, we would like to mention a result contained in Ref. 9 where an
axisymmetricV=VsuX'u ,x3d is considered. It is well-known(see, e.g., Ref. 1) that in this case the
operatorsH and H0 are unitarily equivalent to the orthogonal sumsom[Z % Hsmd and om[Z
% H0

smd, respectively, where the operators

H0
smd

ª −
1

%

]

]%
%

]

]%
−

]2

]x3
2 + Sb%

2
+

m

%
D2

, Hsmd
ª H0

smd + Vs%,x3d, m[ Z,

are self-adjoint inL2sR+3R ;%d%dx3d. For an arbitrary fixedm[Z the authors of Ref. 9 studied
the asymptotics asE→`, E[Or, of the SSFjsE;Hsmd ,H0

smdd. Note that(2.1) cannot be deduced
from the results of Ref. 9 even in the case of axial symmetry ofV.

III. AUXILIARY RESULTS

A. Classes of compact operators

In this subsection we introduce some basic notations used throughout the paper. As above, we
denote byS̀ the class of linear compact operators acting in a fixed Hilbert space. LetT
=T* [ S̀ . Denote byPIsTd the spectral projection ofT associated with the intervalI ,R. For
s.0 set

n±ss;Td ª rankPss,`ds±Td.

For an arbitrary(not necessarily self-adjoint) operatorT[ S̀ put

n*ss;Td ª n+ss2;T * Td, s. 0. s3.1d

If T=T*, then evidently

n*ss;Td = n+ss,Td + n−ss;Td, s. 0. s3.2d

Further, we denote bySp, p[ f1,`d, the Schatten–von Neumann class of compact operators for
which the normiTipª spe0

`sp−1n*ss;Tddsd1/p is finite. In particular, as already indicated,S1 stands
for the trace class, andS2 for the Hilbert–Schmidt class. IfT[Sp, p[ f1,`d, then the following
elementary inequality,
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n*ss;Td ø s−piTip
p, s3.3d

holds for everys.0. If T=T* PSp, pP f1,`d, then(3.2) and (3.3) imply

n±ss;Td ø s−piTip
p, s. 0. s3.4d

Finally, we define the self-adjoint operators ReT: = 1
2sT+T* d and ImT: = 1

2i sT−T* d.

B. Index for a pair of projections

In this subsection we introduce the concepts of index of a Fredholm pair of orthogonal
projections, and index for a pair of self-adjoint operators, and describe some basic properties
related to these concepts which will be often used in the sequel. More details can be found in Ref.
2.

A pair of orthogonal projectionsP, Q is said to be Fredholm if

h− 1,1j ù sesssP − Qd = x .

In particular, if P−QP S̀ , then the pairP, Q is Fredholm.
Assume that the pair of orthogonal projectionsP, Q is Fredholm. Set

indexsP,Qd ª dim Ker sP − Q − Id − dim KersP − Q + Id.

Let M̃, M, be bounded self-adjoint operators. If the spectral projectionsPs−`,0dsM̃d and
Ps−`,0dsMd form a Fredholm pair, we shall use the short-hand notation

indsM̃,Md ª indexsPs−`,0dsM̃d,Ps−`,0dsMdd.

A sufficient condition that the pairPs−`,0dsM̃d, Ps−`,0dsMd be Fredholm isM̃ =M +A, whereM is a
bounded self-adjoint operator such that 0¹sesssMd, andA=A* P S̀ .

Lemma 3.1 (see Ref. 12, Lemma 5.2): Let M=M*, 0 ¹ssMd, 0øA=A* P S̀ . Then for t
P s0,`d we have

indsM + tA,Md = − lim
«↓0

n−s1 − «;tA1/2M−1A1/2d, s3.5d

indsM − tA,Md = n+s1;tA1/2M−1A1/2d. s3.6d

Lemma 3.2 [see Ref. 5, Sec. 3.2, Property (g)]: Let M be a bounded self-adjoint operator such
that 0¹ssMd. Let A and B be compact self-adjoint operators. Then for sP s0,`d such that
f−s,sgùssMd=x we have

indsM + s+ B,M + sd − n+ss;Ad ø indsM + A + B,Mdø indsM − s+ B,M − sd + n−ss;Ad.

s3.7d

Lemma 3.3 (see Ref. 11, Lemma 2.1, or Ref. 5, Sec. 3.3): Let M be a bounded self-adjoint
operator such that0¹ssMd. Let T1=T1

* P S̀ and T2=T2
* PS1. Then for each s1.0, s2.0 such

that f−s,sgùssMd=x with s=s1+s2 we have

E
R

uindsM + T1 + t T2,Mdudmstd ø n*ss1;T1d +
1

ps2
iT2i1, s3.8d

where dmstd:=s1/pdfdt/ s1+t2dg.
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C. Representation of the SSF

In this subsection we describe a representation of the SSFjsE;H ,H0d which is a special case
of the general representation of the SSF for a pair of lower-bounded self-adjoint operators, ob-
tained by Gesztesy, Makarov, and Pushnitski(see Refs. 11, 8, and 12).

For zPC, Im z.0, setTszd : = uVu1/2sH0−zd−1uVu1/2.
Lemma 3.4 (see Ref. 5, Lemma 3.1): Let (1.1) hold. Then for every EPR \2bZ+, the operator-

norm limit

TsEd ª n − lim
d↓0

TsE + idd s3.9d

exists, and by (1.3) we have TsEdP S̀ . Moreover, Im TsEdPS1.
Lemma 3.4 follows easily from Propositions 3.2 and 3.3 below(see Corollary 3.2).
Denote byJ the multiplier by the function

signVsxd = H1 if Vsxd ù 0,

− 1 if Vsxd , 0.
J

Introduce the function

j̃sE;H,H0d =E
R

indsJ + ReTsEd + t Im TsEd,Jddmstd, E [ R \ 2bZ+, s3.10d

which is well-defined by Lemmas 3.3 and 3.4.

Proposition 3.1 (see Ref. 5, Proposition 2.5): The functionj̃sE;H ,H0d is continuous on
R \ h2bZ+øspsHdj, and is bounded on every compact subset ofR \2bZ+.

Remark:Note that, in contrast to the caseb=0, we cannot rule out the possibility of existence
of embedded eigenvalues, by imposing short-range assumptions of the type of(1.1): Theorem 5.1
of Ref. 1 shows that there are axisymmetric potentialsV of compact support such that below each
Landau level 2bq, qPZ+, there exists an infinite sequence of eigenvalues ofH which converges to
2bq. On the other hand, generically, the only possible accumulation points of the eigenvalues of
the operatorsH are the Landau levels[see Ref. 1, Theorem 4.7, and Ref. 7, Theorem 3.5.3(iii )].
Further information of the location of these eigenvalues can be found in Ref. 5.

Theorem 3.1 (see Refs. 11, 8, 12, or 5, Sec. 3.3):Let (1.1) hold. Then for almost every E
PR we have

jsE;H,H0d = j̃sE;H,H0d. s3.11d

Remark:As explained in the Introduction, we identifyjsE;H ,H0d with j̃sE;H ,H0d. The

identification on the setR \ h2bZ+øspsHdj wherej̃ is continuous, is natural. On the other hand, the
values prescribed to the SSF at the eigenvaluesEPspsHd may seem somewhat arbitrary; in any
case, as Theorem 2.1 shows, these values are consistent with the asymptotics ofjsE;H ,H0d as
E→`, EPOr , r P s0,bd, and E¹spsHd.

D. Preliminary estimates

Introduce the Landau Hamiltonian

hsbd ª Si
]

]x1
−

bx2

2
D2

+ Si
]

]x2
+

bx1

2
D2

− b, s3.12d

i.e., the two-dimensional Schrödinger operator with constant scalar magnetic fieldb.0, essen-
tially self-adjoint onC0

`sR2d. It is well-known thatsshsbdd=øq=0
` h2bqj, and each eigenvalue 2bq,

qPZ+, has infinite multiplicity(see, e.g., Ref. 1).
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For x ,x8PR2 denote byPq,bsx ,x8d the integral kernel of the orthogonal projectionpqsbd onto
the subspace Kershsbd−2bqd, qPZ+. It is well-known that

Pq,bsx,x8d =
b

2p
LqSbux − x8u2

2
DexpS−

b

4
sux − x8u2 + 2isx1x28 − x18x2ddD s3.13d

(see Ref. 10) whereLqstd:=ok=0
q s q

kds−tdk/k!, tPR, qPZ+, are the Laguerre polynomials. Note that

Pq,bsx,xd =
b

2p
s3.14d

for eachqPZ+ andxPR2. Introduce the orthogonal projectionsPq:L2sR3d→L2sR3d, qPZ+, by
Pq:=pq ^ I where I denotes the identity operator inL2sRx3

d. For zPC with Im z.0, define the
operatorRszd:=s−d2/dx3

2−zd−1 bounded inL2sRd, as well as the operators

Tqszd ª uVu1/2PqsH0 − zd−1uVu1/2, q [ Z+,

bounded in L2sR3d. The operatorRszd admits the integral kernelRzsx3−x38d where Rzsxd
= ieiÎzuxu / s2Îzd, xPR, the branch ofÎz being chosen so that ImÎz.0. Moreover, Tqszd
= uVu1/2spqsbd ^ Rsz−2bqdduVu1/2.

For lPR, lÞ0, defineRsld as the operator with integral kernelRlsx3−x38d where

Rlsxd ª lim
d↓0

Rl+idsxd =5
e−Î−luxu

2Î− l
if l , 0,

ieiÎluxu

2Îl
if l . 0,6 x [ R. s3.15d

Evidently, if wPL2sRd andlÞ0, thenwRsldw̄PS2. For EPR, EÞ2bq, qPZ+, set

TqsEd: = uVu1/2spqsbd ^ RsE − 2bqdduVu1/2.

Proposition 3.2 (Ref. 6, Proposition 4.1 and Corollaries 4.1, 4.2):Let EPR, qPZ+, E
Þ2bq. Assume that (1.1) holds.

(i) We have TqsEdPS2, and limd↓0iTqsE+ idd−TqsEdi2=0.
(ii ) We haveIm TqsEdù0, and if E,2bq, then Im TqsEd=0. Moreover, Im TqsEdPS1.

Proposition 3.3 (see Ref. 6, Proposition 4.2): Let b.0, E¹2bZ+. Assume that V satisfies
(1.1). Then the operator series T+sE+ idd : =ol=fE/2bg+1

` TlsE+ idd, d.0, and T+sEd
: =ol=fE/2bg+1

` TlsEd, wherefxg denotes the integer part of the real number x, are convergent in S2.
Moreover,

iT+sEdi2
2 ø

C0b

8p
o

l=fE/2bg+1

`

s2bl − Ed−3/2E
R3

uVsxdudx. s3.16d

Finally, limd↓0iT+sE+ idd−T+sEdi2=0.
Corollary 3.1: Let rP s0,bd. Then we have

iReT+sEdi2
2 = Os1d, E → `, E [ Or . s3.17d

Proof: Estimate(3.17) follows immediately from(3.16) since we have
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o
l=fE/2bg+1

`

s2bl − Ed−3/2 ø o
p=1

`

s2bpd−3/2 + r−3/2.

For sufficiently largeEPOr with r P s0,bd, setT−sEd : =ol=0
fE/2bg TlsEd. Propositions(3.2) and(3.3)

imply the following.
Corollary 3.2: For EPOr with rP s0,bd the operator-norm limit(3.9) exists, and TsEd

=T−sEd+T+sEd. Moreover, ReTsEd=ReT−sEd+T+sEd, and Im TsEd=Im T−sEdPS1.
For n=0,1 andEPOr , r P s0,bd, setwnsEd : =oq=0

fE/2bgsE−2bqd−1+n/2.
Lemma 3.5: Let r.0. Then the asymptotic relations

w0sEd = Osln Ed, s3.18d

w1sEd = E1/21

b
s1 + os1dd, s3.19d

hold as E→`, EPOr.
Proof: Evidently, forE.0 large enough,

wnsEd = E−1+n/2 o
q=0

fE/2bg−1 S1 −
2bq

E
D−1+n/2

+ sE − 2bfE/2bgd−1+n/2, n = 0,1. s3.20d

Since the functionss0,E/2bd{x° s1−2bx/Ed−1+n/2, n=0,1, areincreasing, andEPOr , we have

o
q=0

fE/2bg−1 S1 −
2bq

E
D−1+n/2

ø E
0

fE/2bg S1 −
2bx

E
D−1+n/2

dxø E
0

sE−rd/s2bd S1 −
2bx

E
D−1+n/2

dx

=
E

2b
E

0

1−r/E

s1 − td−1+n/2dt, n = 0,1. s3.21d

Further,

E
0

1−r/E

s1 − td−1+n/2dt = HlnsE/rd if n = 0,

2s1 − sr/Ed1/2d if n = 1.
J s3.22d

Finally, we estimate the second term on the r.h.s. of(3.20):

sE − 2bfE/2bgd−1+n/2 ø r−1+n/2, n = 0,1. s3.23d

Putting together(3.20)–(3.23), we obtain(3.18), as well as lim supE→`,EPOr
E−1/2w1 sEdø1/b. In

order to prove(3.19), it remains to show that lim infE→`,EPOr
E−1/2w1sEdù1/b, which follows

immediately from

w1sEd ù E−1/2E
−1

fE/2bg S1 −
2bx

E
D−1/2

dxù E−1/2E
0

E/2b−1 S1 −
2bx

E
D−1/2

dx=
E1/2

2b
E

0

1−2b/E

s1 − td−1/2dt

=
E1/2

b
S1 −S2b

E
D1/2D .

Corollary 3.3: Let rP s0,bd. Then the asymptotic estimate

iT−sEdi2
2 = Osln Ed s3.24d

holds as E→`, EPOr.
Proof: We have
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iT−sEdi2
2 = IuVu1/2 o

q=0

fE/2bg

spq ^ RsE − 2bqdduVu1/2I
2

2

ø C0
2I o

q=0

fE/2bg

spqkX'l−m'/2d ^ skx3l−m3/2RsE − 2bqdkx3l−m3/2dI
2

2

= C0
2 o

q=0

fE/2bg

ipqkX'l−m'/2i2
2ikx3l−m3/2RsE − 2bqdkx3l−m3/2i2

2

= C0
2 b

8p
E

R2
kX'l−m'dX'SE

R
kx3l−m3dx3D2

w0sEd s3.25d

[see(3.13) for the definition of the integral kernel ofpq, (3.14) for its value on the diagonal, and
(3.15) for the definition of the integral kernel ofRsE−2bqd]. Bearing in mind(3.18), we find that
(3.25) implies (3.24). h

Proposition 3.4: Let rP s0,bd. Then we have

iIm TsEdi = Os1d, E → `, E [ Or . s3.26d

Proof: Estimate(3.26) follows immediately from Ref. 5, Lemma 4.2, according to which we
haveiTsEdiø r−1/2sC0/2deRkx3l−m3dx3. h

IV. PROOF OF THE MAIN RESULT

Fix an arbitrary«[ s0,1d. Applying (3.5)–(3.7), and arguing as in the proof of Ref. 5, Lemma
5.1, we easily get

1

p
Tr arctanssIm TsEdd1/2sJ + «d−1sIm TsEdd1/2d − n+s«;ReTsEdd

ø E
R

indsJ + ReTsEd + t Im TsEd;Jddmstd

ø
1

p
Tr arctanssIm TsEdd1/2sJ − «d−1sIm TsEdd1/2d + n−s«;ReTsEdd. s4.1d

Set

Gs = GssEd: = sIm TsEdd1/2sJ + sd−1sIm TsEdd1/2, s[ s− 1,1d.

Evidently, for eachs[ s−1,1d we have

uTr arctanGssEd − Tr GssEdu ø
1
3iGssEdi3

3 ø
1
3iGssEdi2

2iGssEdi ø
1
3isJ + sd−1i3iIm TsEdi2

2iIm TsEdi

ø
1
3s1 − usud−3iIm TsEdi2

2iIm TsEdi. s4.2d

The operatorsJ+sd−1 ImTsEd admits an explicit kernel

1

2 o
q=0

fE/2bg

sE − 2bqd−1/2PqsX',X'8 dcossÎE − 2bqsx3 − x38dd

3 ssignsVsX',x3dd + sd−1uVsX',x3du1/2uVsX'8 ,x38du
1/2, sX',x3d [ R3, sX'8 ,x38d [ R3

[see(3.13) for the definition ofPq]. Therefore,
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TrGssEd = TrssJ + sd−1Im TsEdd =
b

4p
o
q=0

fE/2bg

sE − 2bqd−1/2E
R3

ssignsVsxdd + sd−1uVsxdudx

=
b

4p
w1sEdE

R3
ssignsVsxdd + sd−1uVsxdudx s4.3d

[see(3.14)]. Finally, we estimate the second terms in the first and third lines in(4.1):

n±s«;ReTsEdd ø «−2iReTsEdi2
2 ø 2«−2siReT−sEdi2

2 + iReT+sEdi2
2d, s4.4d

using(3.4) with p=2. Combining(4.1)–(4.4) with (3.10), making use of(3.19), (3.24), (3.17), and

(3.26), and applying our convention to identifyj̃sE;H ,H0d with jsE;H ,H0d we find that for each
«[ s0,1d we have

lim sup
E→`,E[Or

E−1/2jsE;H,H0d ø
1

4p2E
R3

ssignsVsxdd − «d−1uVsxdudx,

lim inf
E→`,E[Or

E−1/2jsE;H,H0d ù
1

4p2E
R3

ssignsVsxdd + «d−1uVsxdudx.

Letting «↓0, we obtain(2.1).
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