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Abstract. We consider the discrete spectrum of the self adjoint Schrδdinger
operator Ah = -h2Δ + V defined in L2(Rm) with potential V which steadies at
infinity, i.e. V(x) = g + \x\~"f(l+o(\)) as |x|->oo for α>0 and some homo-
geneous functions g and / of order zero. Let 9lh(/l), Λ^O, be the total
multiplicity of the eigenvalues of Ah smaller than M—λ, M being the minimum
value of g over the unit sphere Sm~l (hence, M coincides with the lower bound
of the essential spectrum ofAJ. We study the asymptotic behaviour of ϊl^λ) as
/I JO, or of 91Λ(A) as /z|0, the number A^O being fixed. We find that these
asymptotics depend essentially on the structure of the submanifold of S1""1,
where the function g takes the value M, and generically are nonclassical, i. e. even
as a first approximation (2π)m9lh(λ) differs from the volume of the set
{(x,ξ)eJR.2m:h2\ξ\2+V(x)<M-λ}.

1. Introduction

Let Slfc = - h2 A + Fbe the Schrόdinger operator with domain C*(Rm), m ̂  3. Here
h > 0 is a constant parameter, Δ is the Laplacian, and V is a real-valued potential
which is supposed to possess the following properties :

ii) V steadies at infinity, i.e. there exist two continuous real-valued functions/and
g over the unit sphere Sm~1 and a positive number α such the asymptotic relation

lim \
|x|^oo

holds uniformly with respect to xeS"1'1

Then 91Λ is symmetric and semibounded from below in L2(IRm). Denote by Ah the
self adjoint Friedrichs extension of 21Λ.
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Set M= min g(ω). It is easy to verify that the essential spectrum of the

operator Ah coincides with the semiaxis [M, oo) for each h > 0.
Denote by 9lh(λ), 1^0, the total multiplicity of the eigenvalues of Ah which lie to

the left of the point M—λ. We shall deal with the asymptotic behaviour of ̂ (A) as
/IjO, or of 9lh(λ) as /z|0, the number A^O being fixed. There exists extensive
literature concerning analogous asymptotics for the case g = Q, i.e. for a potential
which vanishes at infinity (cf. e. g. [10, Theorems XIII. 80 and XIII. 82] see also the
more recent works [6, 15, 16] which contain more precise asymptotics formulas).
The essentially new point in the present paper is that the function g is not supposed
to be equal identically to its minimum value M.

Various aspects of the spectral theory of some quantum-mechanics operators
which have much in common with the operator Ah considered here, are discussed in
[1, 3, 5, 12]. The interest in such operators has arisen, in particular, in connection
with the famous Klein paradox (see [7]) related to the Dirac-type ordinary
differential operator with scalar potential V(x) such that V(x)^a± as x-+ ± oo with
a+ φ#_ . However, most of the works on the spectral theory of the Schrodinger
operator with asymptotically steady potential deal with the continuous spectrum,
usually aiming at some scattering-theory results, while the discrete spectrum has not
been investigated in detail yet.

2. Statement of Main Results

2.1. The results of the paper are valid under some complementary natural
assumptions about the structure of the set Φ = {ωeSm~1:g(ω) = M} and the
behaviour of the function g near this set. In this subsection we formulate these
assumptions.

In the sequel we suppose that the following condition is fulfilled:

iii) Φ is either a closed connected C2-submanifold of S™"1 of dimension d such that
1 ̂ d^m — 2, or a one-point set {z0} (in the latter case we set d=0);

Denote by © the standard covariant metric tensor over 5m-1 x S™"1. Let d^ 1.
For a given z e Φ set Jfz = ZΓZS

m~1 θ yzΦ, where 3~zS
m~l and FzΦ are the tangent

spaces at z respectively to Sm~1 and Φ, and the orthogonal completion is taken with
respect to the inner product generated by ®(z). If Φ = {z0}, then jVZQ = 3~ZQSm~l.

For brevity's sake put t=m — 1 — d=codimΦ. Fix zeΦ. Denote by 9Jl(z) the
restriction of ©(z) onto Jfz x J f z . We consider Jfz as a ί-dimensional linear space
with a norm | |2 generated by 501 (z). Put ¥z = {y e J f z : \y\z = 1} (note that if t = 0,
then £fz = {v_, v+} is just a two-point set). We introduce a trivial Riemannian
structure on J f z , identifying for each y e Jfz the tangent space 2Γy Jfz with Jiz itself.
The canonical measures on Φ (for d^ 1) and £fz (for / > 1) are denoted respectively
by dφ and dσz.

Next, we describe our assumptions about the asymptotic behaviour of g near Φ.
For a sufficiently small number ρ>0 and given zeΦ and v e £ f z define the unique
point ω(ρ, v; z) which is connected with z by a geodesic curve of length ρ such that
the tangent vector to this curve at z coincides with v.



Spectral Asymptotics for the Schrόdinger Operator 667

Henceforth we suppose that the following assumption holds :

iv) For some β > 0 there exists a finite, positive and uniform with respect to z e Φ
and v e ίf limit

QiO

For a fixed zeΦ and any y e Jfz set i^z(y) = \y\β

z Jf(y/\y\z z) and introduce the
selfadjoint in L2 (ΛQ operator «c/(z) = — Az + yz, where Jz is the Laplace-Beltrami
operator. Obviously, for each ze Φ the operator «a/(z) is positively definite and its
resolvent is compact. Denote by {Λk(z)}k^l the nondecreasing sequence of the
eigenvalues of stf(z) counted with the multiplicities.

Example. Assume gιeC2(5m~1). Let ζ be some local coordinates on Φ. On a
sufficiently small vicinity of Φ on Sm~i introduce the geodesic coordinates (ζ,y)
such that y e Jfz(^

 and Φ is defined by y = Q. For any given z = z(ζ)e Φ define the
"partial" Hesse matrix §(z) = {ί)0 } J=ι, where t)0 (C) = d2g(ζ, y)/dyidyjly=0. Suppose

that the Hermitian in Jiz matrix §(z) = 99l~1(z)§(z) is positively definite for each
ί

zeΦ. Then condition iv) is fulfilled for β = 2 and Jf (v;z)=j £ Γ)ί7 (z)vV.
U = l

Denote by {O?(z)}J=1 the eigenvalues of the matrix §(z); it is clear that they
are independent of the choice of the local coordinates ζ. The operator «s/(z) is

t
unitarily equivalent to the harmonic oscillator —A+\ ]Γ β?(z);xf, J being

i = l

here the Laplacian in L2(JRΓ). Hence, in this case the eigenvalues Λk(z) of jtf(z) can

be computed explicitly and have the form 2~^ £ |Ωί(z)|(2A;ί-|-l) with
nonnegative integer fcf.

 ί=1

2.2. Introduce the numbers γ=-+— — andθ= — ray + (d +!)//? which will be met
2 p α

often in the formulation of our main results.
Our first theorem concerns the behaviour of 9lι(λ) as /I JO.

Theorem 2.1. Let i)-iv) hold. Assume l^
a) Let y < 0 (hence θ > 0). JΆew we

j dφ(z) f Jσz(v)(/(z))^αjΓ-^(v;z) , (2.1)
φ yz

+ra/α).
b) Lei y = 0 (hence θ is positive again) . Then we have

lim λ'NΛλ)^ Σ ί rfψω(/(z) + Λk(z)yϋ+1>/β , (2.2)
λ|0 fc^i φ

c) I f y > Q , we have

(2.3)

/.e. /Ae isolated eigenvalues of the operator Av do not accumulate to its essential-
spectrum lower bound.
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2.3. In the remaining two theorems we deal with the asymptotics of the quantity
yih(λ) as h [0 for a fixed /ί^O.

Theorem 2.2. Let i)-iv) hold. Assume that either θ<0 (hence y>0) and A = 0, or
λ>0. Then we have

(2.4)
MO Rm

where %3 = l/(4π)m/2Γ(l +m/2).

Theorem 2.3. Let i)-iv) hold. Assume l^d<m-2.

a) Lei 0 = 0 (hence y > Oj . 77ze« we toe

lim AΊlogAΓ1SR f c(0) = «'4 J </ψ(z) J dστ(v)(f(z))«**-*ι*(vrf , (2.5)
Φ

where ̂  = Γ(t/β)/φ(4π)m'2Γ(l +m/α).

b) Let Θ>Q but still y>0. Seί μ = m + θ/y and κ = 2β/(β + 2). Then we have

lim A*SRΛ(0) = <ίf5 X J rfφ(z)ΛJΓ^-ίI-1>/*(z)(/(z))?ίβ , (2.6)

Remark 2.1. The hypotheses of Theorem 2.3b) imply that the series at the right-
hand side of (2.6) is absolutely convergent uniformly with respect to zeΦ.

2.4. Now we pass to some brief comments of our results.

Remark 2.2. Theorems 2.1 and 2.3 are valid also in the case Φ = {z0} (i.e. d=0) but
the integration over Φ in (2.1)-(2.2) and (2.5)-(2.6) must be omitted and the
integrands have to be evaluated for z = z0. Similarly, if t = 1 so that % coincides with
the two-point set {v_ , v+}, Theorems 2.1 and 2.3 remain valid if we replace in (2.1)
and (2.5) the integration over £ζ by summation of the values of the integrands for v_
and v+ .

Remarks 2.3. Analogues of Theorems 2.1-2.3 are valid also if the manifold
Φ consists of several disjoint connected components Φ(ί) of dimension d{

(0 ̂  4 = m ~~ 2), provided that on each Φ(ί) condition iv) is fulfilled for β — βt > 0 and
a strictly positive function Jf = Jf f . We do not describe in detail these quite obvious
generalizations in order to avoid bulky formulations.

Remark 2.4. For Λ > 0 and λ^O denote by Ih(λ) the volume of that part of the
cotangent bundle ^*Rm = lR2m, where the value of the complete symbol of the
operator Ah is smaller than M— λ, i.e.

We say that a given asymptotic formula describing the behaviour of 9lh(A) is
classical, if it can be written as lim (2π)m9lί(λ)/Iί(λ) = 1, or as lim (2π)myih(λ)/Ih(λ)

= 1, the number λ^Q being fixed.
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From this point of view, the formulas (2.1) and (2.4) are classical and the
formulas (2.2), (2.5) and (2.6) are nonclassical. Analogously, the asymptotic
estimate (2.3) for the case θ<0 (when the phase volume ^(0) is finite) can be
regarded as classical, while the same estimate for θ ̂  0 but γ > 0 is nonclassical since
now ^(0) is infinite, provided that the set {ωeSm"l:f(ω)<0} is not empty.

2.5. The proof of Theorem 2.1 can be found in Sect. 4 and the proofs of Theorems
2.2-2.3 - in Sect. 5, while Sect. 3 contains some necessary auxiliary concepts and
results.

Remark 2.5. In the proofs of Theorems 2.1-2.3 we assume M=0 without any loss
of generality.

The validity of Theorems 2.1-2.3 is established by means of variational methods
of Weyl-Courant type (see [10], ch. XIII, and [2]). Besides, we employ the scheme of
the Schrodinger operator with operator-valued potential. Such a scheme has been
applied recently by many authors (see [4,8,11,13,14]) in their studies of the spectral
asymptotics for Schrodinger operators with "degenerate" potentials, i.e. potentials
which grow unboundedly at infinity everywhere except some conic set.

The results of the paper were announced at the Conference on Partial
Differential Equations held in Holzhau, GDR, in 1988 and will appear in its
proceedings as the short communication [9].

3. Some Auxiliary Concepts and Results

3.1. Let δ s Rk, k ̂  1, be an open set if k > 1 and the boundary d$ is not empty, we
suppose that 3<ί is of Lipschitz class and the number of its connected components is
finite. Then we say that δ is a regular domain.

Let $ be a regular domain. The standard Lebesgue spaces over S are denoted by
Lp(δ\ pe [1, oo]. If /^O is a measurable function over δ, then Lp(£;/) is the
corresponding ^-weighted Lebesgue space. The usual Sobolev spaces of functions
which are in L2 (δ) together with all their derivatives of order / are denoted by
Hl(δ\ /eZ, /^l ; besides, H^(δ) is the closure of C?(δ) in the //'-norm. Let
BR c= Rk, k > 1, be the ball of radius R, centred at the origin. If $ is unbounded, then
C°° (δ) is the class of functions C°° (δ) which vanish outside δπBR for some R > 0
if δ is bounded, then C°°((f ) = C°°(<f).

3.2. Let A = A* be a linear operator in some Hubert space ffl. Denote by P<? (A) its
spectral projection corresponding to the set «/ g R. For η e 1R put

JVn(A) = dimP (_β > t I f )(A)jr . (3.1)

Let q be a semibounded closed quadratic form (QF) in ffl. Then q generates by
the Lax-Milgram theorem a unique selfadjoint operator A. We shall discuss the
spectral properties of the QF q meaning the corresponding properties of A and shall
write q instead of A in the notations of the type of (3.1).

The domain of the semibounded closed QF q is denoted by D[q\. The value of
the QF q for a given ueD[q] is denoted by q[u]\ if q depends on some additional
parameters ;?, we write q[u;p]. When we need to indicate only the dependence of q
on the parameters /?, we use the notation q(p).
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3.3. Let (iglR*, &^1, be a regular domain. Suppose that for each xεδ the
Hermitian k x k matrix if(x) is positively definite and Wis a real-valued function
over <f. Introduce the notation

€t>[u\g,ir,W] = l {(WVu,Vuy + W\u\2}dx , (3.2)
<?

where <,.,> is the usual inner product in <Cfc.
Let the potential V possess the properties i)-ii). Define the closed lower-

bounded in L2(Rm) QF

a\μ\h,V\ = a>{u\ Rw, A2£, V\ D [a] = H1 (Rm) , (3.3)

where E is the unit m x m matrix. Evidently, the operator generated by the QF
#(A, V) coincides with Ah. Then according to our notations we have

Kh(X) = N.λ(a(h9V)),λ*0 . (3.4)

3.4. This subsection contains estimates and asymptotic results concerning the
eigenvalues of selfadjoint second-order differential operators.

Let keZ, k^ί. Set \ = kβ if fc^3, *2>1 and ^ = 1.

Lemma 3.1. Let $ ^IRfe, k^\,be a regular domain (ifk<39 we suppose that $ is
bounded). Let the matrix-valued function d21=d21*>0 satisfy Φ^eL\QQ(δ\
(H^1ELCO(S>1 and the scalar function QV = Q^ satisfy (Qί)+ eLjoc(^), (ρx)_ eL*(δ\
t = tk. Define the QF q1 (A, Q1,Q1) = u>(β, h2 Ql , βj, h>Q,on Q0 (rf ) α« J c/o^ zϊ in
L\$\

a) 77ze estimate

w/ίA constant c1 which is independent of A, βj_ , Q1 .

b) Moreover, we have

limA^oί^ (A, $!,&))

(3.5)

Lemma 3.2. Let <ί glRfe, k^\,be a regular domain. Assume that the scalar function
Q2 = Q2 satisfies (Q2)+eLi(£nBR\ V*>0, (β2).eLV)ί * = *», md
^ = supp(β2)_ is bounded. Let the matrix-valued function &2 = Φ2' = Q satisfy
a2GLao(δ)9 Q2leL°(9). Define the QF q2(h,@2,Q2) = w(£,h2@2,Q2), A>0, on
C°°(^) and close it in L2(£}.

a) The estimate

^θfe(M2,β2))^~fc C2||^ ^^ ,

w valid for a constant c2 which is independent on h and Φ2 and may depend on Q2 only
through <?.
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b) Moreover, the asymptotic formula (3.5) remains valid if we replace in it q^ , (Ωi and
Q! respectively by q2 , $2

 and 0,2 -

Lemmas 3.1-3.2 follow quite easily from Theorems 4.1, 4.6, 4.14, and 4.15 in [2].
Let ,/<iIR+ be an arbitrary interval and $ = $ (r), re,/, be a regular domain.

Assume that for each re,/ Ί^(r)>0 is a Hermitian matrix-valued function and
p(r)>0 and W(r) are real- valued functions over <ί(r). Let seR. Put

\ W(r)]}r*dr , (3.6)

where || . || is the norm in L2(S(r)\p(r)\
Introduce the QFs

with J = (Q,R) where jR<;#0<oo, δ coincides either with JR'x0 (ί^l) or just
with 0, where (9 a IRd (d^ 1) is an independent of r regular bounded domain. Set
k= 1 + dim<ί. Further, the number / and the matrix $3 are supposed to be con-
stant and, moreover, s Φ 1 . Finally, we assume (g3) + e L1 ((</ x <?)n jBΛ r), VjR > 0,
and (g3)_eLk / 2(j^x^;r f c-1) if /c>2, and (Q3(r,Q)_ ^ρ3(r)^cr~α, VCe^, for
some αe[0,2) and c^O, if fc = 2. Define the OF (f+ on functions i/eί00^ x<f)
which vanish near dJ>x$ and then close it in L2(J^xS';rs). Respectively,

Lemma 3.3. Let || . || denote the norm in Lkβ($}.

a) The estimates

00 oo / \ l / 2

1 X-1'2 Σ I ^2(Xr-2-Q3(r))_rdr) dX, k = 2 ,
0 1=0 \Sι /

where τ>l and ./0 = (Rexp(-l),Λ), ^^(Rexpί-τ1), Rexpί-τ1'1)), /^l, hold
with c3=max{/~ fc/2, ||(S3||~

k/2}c3, c4 = max{/~1,6'3"
1}c4, and some numbers c[,

ί = 3, 4, independent ofh, R, fa @3 and Q3.

b) Moreover, we have

lim hkN0(q*(h))
Λ|0

= (/det^3)-1/2 f ||(ρ3)_||'I/V-1

ί/r/(4π)'"2Γ(l+A:/2), A:k2 .
0

In order to prove Lemma 3.3, shift the trial function w-»rα ~s)/2 u in the QFs ̂  ,
change the variable r = Rexp ( — ρ), ρ e R+ , and apply a variational technique which
is quite similar to the methods developed in Chap. 4 of [2].

Next, we discuss the spectral asymptotics for operators which generalize the
operator s/(z) defined in Subsect. 2.1.

Let ίΞΞCθdimΦ>l. Fix some zeΦ. Let Λ = Λ(z) be a positive homogeneous
function of order zero which is continuous over ^Γz\{0}. Define the selfadjoint in



672 G. D. Raikov

operator

) , β>Q . (3.7)

Let {Λk}k^ί be the nondecreasing eigenvalue sequence for the operator Ά(z).

Lemma 3.4. a) Let λ ̂  λ0 > 0. Then there exists a number cs independent ofλ, such that
we have

\).\^ , (3.8)

where K is introduced in the hypotheses of Theorem 2.3b) and || . || denotes the norm in

b) Moreover, the asymptotics

lim λ~tlκNλ(j/} = <ί(K) (3.9)
λ-> oo

hold with

f dσz&-t/β/β(4π)tl2Γ(l + tlκ) . (3.10)

^z

Hence the eigenvalues Λk satisfy the relation

lim k-κ/tΛk = <ί($tΓκ/t - (3.H)

Lemma 3.4 follows quite easily from Lemma 3.2.

Remark 3.1. Lemmas 3.3-3.4 do not concern the ordinary differential operators
which are analogous respectively to the operators generated by the QFs qξ or to the
operator j/ since we shall use these lemmas for the proof of Theorems 2. 1-2.3 where
such versions of the lemmas will not be needed. However, if we want to handle the
cases d=0 or d=m — 2 (see Remark 2.2), we have to use the obvious analogues of
Lemmas 3.3 and 3.4 for ordinary differential operators.

4. Proof of Theorem 2.1

4.1. In the present and the following three subsections we assume that the
hypotheses of Theorem 2.1 a)-b) hold and verify the corresponding assertions.

For R > 0 put J^ = Wn\BR . Choose some RQ and denote by χ0 the characteristic
function of the set J*Ro. Define the potential

)-εl x=x/\x\9

Let φ £ Rm be a regular domain. For εx e R and ε2 < 1 define the lower bounded
in L2(Φ) QFs α1

±((P,ε1,ε2) = ̂ ((9,(l -ε2)E, ̂ (ej) (see (3.2)) on the domains
D[αf ] = //2(0), /)K] = //1(^) If # = Rm, then D[α1

+]=^KL so that we put
fl1=fl1

+(Rm)ΞΞfl-(R"').

Lemma 4.1. For each εl>Q and ε2 e (0, 1) we have

±N-λ(a)£ ±N_λ(aί(±sί,

where the QF a = a(l, V) is defined in (3.3).
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Proof. Let 0gIRm be a regular domain. Set a±=*>(β,E9V), D[a±] = D [ a f ] ;
a + (Rm) = a ~ (Rm) = a. Clearly, the QFs a ± are closed and lower-bounded in L2 (Θ).

Applying the Dirichlet-Neumann bracketing procedure, we find that the
estimates

+ (BJ) , (4.2) +

, (4.2).

hold for each ^>0 and R>Q.
Fix εί > 0 and choose R great enough so that the inequality

\\x\~ *(V(x)-g(x))-f(x)\<ε1 is valid for each xeΛR. Thus, ±a±[u;@R]
^ ±βf [n;#R, ±ε1?0], VweZ) [0*0^)], and hence we have

9±εl9Q)) , V £ l >0 , V A > 0 . (4.3)±

Next, we show that the asymptotic estimates

(a?(ΛR9 ±ε1? ±ε2)) + 0(l), A j O , (4.4)±

hold for each εί > 0 and ε2 e (0, 1). For this purpose we shall use a simple method
("the truncation trick") whose various versions will be applied in the sequel. Fix any

. Denote by χt the characteristic function of 0SRί. For εelR and c^O set

For ε^R, ε2e(0, 1) and c^O introduce the QFs

, K l f 2(ε l 5c)] ,

on the domains D[«ι;fc(Λ)] = -D[flι:(ΛΛ)], fc = l,2. Obviously, we have

,̂ ±ε1?0))^ ±7V_Λ«1(^, ±ε l 5 ±ε2,c))

9 ±ε1?ε2,c)), VA>0, V£ l>0, Vε2e(0,l), Vc^O . (4.5)±

Since the support of K1>2 is compact, Lemmas 3.1-3.2 imply A^0(α1

±

2(^))< oo, so
that (4.5)± entails the asymptotic estimates

, ± f i l, ±ε2,c)) + O(l), A ^ O , (4.6)

which hold for each 8{ >0, ε2 e(0, 1) and c^O.
Now, choose a "cutting" function ΘeC^OR™) such that 6>(x;) = 0

if xeBR, Θ(x) = \ if xeJ*R l, and <9(X)e[0, 1] otherwise. Then we have

where || . | is the norm in L2(έ%R), c = max |6>zlΘ|, the numbers λ>Q, ε1

s2 < 1 are arbitrary. Hence, we have xeJRW

(4.7)
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By analogy with (4.6)+, one easily finds that the estimates

(4.8) +

(4.8).

hold as λ|0 for each ε1>0, ε2e(0,1) and ε2e(ε2,l). The combination of
(4.5)±-(4.8)± yields (4.4)±.

Further, it is clear that the inequalities

)) , (4.9) +

-εl9 -ε2))

(**,-eι,-β2)) , (4.9).

are valid for each εi > 0 and ε2 e (0,1). To complete the demonstration of (4.1)±, we
have just to put together (4.2)+-(4.4) + and (4.9)+ and to notice that Lemma 3.2
entails NQ (af (BR, — εΐ, — ε2)) < oo for each ε^ ε R and ε2 > — 1. D

4.2. For 77>0 put Φτ = {ωeSm~ί: dist (ω, Φ) < T} and Sτ = Sm~1\Φτ. Obviously,
if T> 0 is small enough, then Φτ and Sτ are (m — l)-dimensional submanifolds of
S"1*1 with C2-boundaries.

Let & be a (m — l)-dimensional submanifold of 5"1"1. Denote by Θ* the conic set
eΊR.m:xe(9}.
Applying Dirichlet-Neumann bracketing, we get

(4.10) +

, -%, -β2)) . (4.10).

Here the numbers Λ>0, s1 >0 and ε2 e(0,l) are arbitrary and Γ>0 is sufficiently
small. Since the function g is strictly positive on SΓ, the set suppίK^.n^ is
compact. Hence, Lemma 3.2 implies

AΓ0(α1

+(ίS?,ε1,ε2))<α) , V£ leIR , Vε 2 <l . (4.11)

Next, introduce a finite covering of Φ by open coordinate charts {Φj such that
ΦίΠΦ—0 for /Φy, VjΦj = Φ, and the boundaries δΦy are of Lipschitz class. Set
φ. τ = {ωe S"1'1: dist (ω, Φ; ) < Γ}, T> 0. Evidently, the estimates

±N_λ(a±(Φ$,εί,ε2))^±ΣN_λ(af(Φ?τ,εί,ε2)) (4.12)+
j

hold for each εt 6IR and ε2 < 1.
Further, on every Φj introduce local coordinates ζ so that Φ,. is parametrized by ζ

varying over some bounded regular domain 3F^ a Rd. In the sequel if ζ e ̂  and
z = z ( ζ ) e Φ j , we shall write ^Γζ instead of «yΓz, |.|ζ instead of |.|z, etc.

Assume 77>0 small enough and introduce on each Φjτ nondegenerate
coordinates (£, ̂ ) such that Φ^ τ is parametrized by the values of the variables (ζ, y)
over the domain ^jiT = {ζe&r

j,ye<Λ^ζ: \y\ζ<T}; the coordinates (ζ,y) coincide
with the ones mentioned in the example in Subsect. 2.1. Then the covariant metric
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tensor © can be written in the local coordinates (£, y) as

y) o
0

where £(ζ,y) is the restriction of ©(ζ,.y) onto &~ζΦj x
Next, for each ̂  choose a point Cj6^, set NH l

where ε = (ε1?ε2,ε3)elR3, ε 2<l and 0<ε3< Jf, 0= min Jf/OO For A ^ O and

ε e IR as above, introduce the QFs a} (λ, &jtT*
 ε) which coincide with the QF w (see

(3.6)) for y = R+, J = w-l, P = l-ε2, > = #}τ, τT = (l -ε2)r"2©r1 where
©js <&(£,, 0), and JF= K2(fij) + (l -^R At first define the QF fl2

+(^,τ^) on
functions we C°°(IR+ x ^jjT) which vanish near the origin of the r-semiaxis and
then close it in L2 (]R + x &j τ rm ~ 1). The domain D [a^ ] is the restriction of D [a£ ]
onto the set of functions which vanish on IR+ x d^jίT.

Let

ε!>0, ε2e(0,l) and ε'eIR3, ε[ >εl9 ε2e(ε2, 1), ε^O, Jtrjt0) . (4.13)

In the QFs a? (Φ*r, fii , £3) Pass to tne spherical coordinates (r, ω) and then change
the variables ω ->(£,;>). Choose the numbers Γ>0 and ® =
small enough so that the inequalities J

. Γ, [υ 9Φχτ, ±el9 ±

hold for each veD[aι(Φ*τ)] and u(r,ζ, y) = v(x(r,ζ9y)). Hence for every Φj we
have

(a*(ΦftT, ±ε l 9 ±e2))^±Λ0(fl2

±α,^ir, ±e')X Vλ>0 , (4.14)

where the arbitrary ε^ (z = l,2) and ε'eR3 are as in (4.13).
Combining (4.10)+-(4.12)± and (4.14)+, we get the following

Lemma 4.2. For sufficiently small T> 0 we have

εf (z = 1,2) α«rf ε'eIR3 as /« (4.13).

4.3. For a given integer 7 set ^}f00 = {ζ6^},^6^Γζ} and introduce the QFs
a$ (λ, ε) = a} (λ, εj) which coincide with the QFs a} (λ, J^ j T,ε) but 3F^T is
substituted for J^ >00 the domains of the QFs a} are analogous with Dfα*].

Lemma 4.3. For £flc/z ε, ε'eR3

ε!=εί>0, 626(0,1), εi6(ε2,l), ε3-ε^e(0, jf^ 0) , (4.15)

integer j and sufficiently small T>Q we have

(4.16)±
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Proof. Fix some R>Q. Introduce the QFs df =άf(λ,^jT,R,ε) (respectively
d}=ά}(λ^jfT,R9£)) which coincide with the QFs a}(λ9^jtT9ε)9 0<Γgoo,
but the interval (0, oo) of integration with respect to r is substituted for (0, R)
(respectively (R, oo)). The domain of the QF df (respectively £2

+ ) is defined as the set
of restrictions of functions u^D\a^ C^/.r)] onto (05^)χ^/,τ (respectively onto
(R, oo) x yjtT\ The domains of the QFs d^ (/= 1,2) consist of functions we £>[#+]
which vanish for r = R. Clearly, we have

N0(a+ (λ, JV> ε))£N0(aϊ (0, PjtT9 ε)) + 7V0(α2

+ μ, ̂ ,Γ, ε)) , (4.17) +

Nofa&Fj.T, -B))^N0(cζ(λ9^jtT9 -«)) (4 17>-

Note that Lemma 3.2 implies (̂5^ (0, J^ r, ε)) < oo.
Now, set δ3rj,τ = {(ζ,y):ζe&r

j,\y\ζ = T}, T<oo. Define the QFs d^=a£
(λ, J^ τ , R, ε) which are the same as the QFs a} but have different domains : D [d$ ]
= {ueD[a2]:u\(Rta0)X&pJT=Q} and D[d^] consists of functions which meet all
requirements of D [d^ ] except that they do not vanish on (R, oo) x δ^jt τ . Applying
the truncation trick with respect to y [cf. the derivation of (4.4) + ], we get

±NQ(a}&PJtT9R9 ±sy)£±NQ(aϊ(λ,&JtT,R, ±εO) + O(l), A|0 , (4.1 8)±

where ε, ε' e R3 are the same in (4.15). Note that if we have not gone away from the
origin of the r-semiaxis, we could not apply the truncation trick because of the factor
r ~2 in front of the term containing the derivatives with respect to y in the QF d£ .

Next, introduce the QF ό3 which is analogous with the QF a% (0, J^ ^ , R, ε) but
^}>QO is replaced by &jfT

 = ̂ j,v\^rj,τ> T<co. The domain of ά3 consists of
restrictions of functions ueDffi^] onto &T. Then we have

9&jtT9R9 -ε)) . (4.19)_

Note that set ̂ rnsupp(F2)_ is bounded. Hence, by Lemma 3.2, the second term
at the right-hand side of (4.19)_ is finite.

Finally, employing the truncation trick with respect to r and bearing in mind
Lemmas 3.1-3.2, we get

. (4.20) +

The combination of (4. 17) +-(4.20)+ yields (4.16)+ . D

4.4. Introduce the potential F3(ε) which is the same as F2(ε), except that the factor
χ0r~α is replaced by r~α. The hypotheses of Theorem 2.1a)-b) imply θ>0 and,
hence, we have

x^,00;r-1) . (4.21)

Define the QFs a± which are just the same as the QFs aξ but V2 is substituted for F3 .

Lemma 4.4. For any j we have

±N0(a±(λ, ±εj))^ ±N0(a}(λ9 ±s'J)

where ε, ε'eR3 are the same as in (4.15).
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The lemma follows easily from (4.21), Lemma 3.3 and a simple variational
argument so that we omit the details of the proof.

4.5. In order to complete the proof of Theorem 2. 1 a)-b) we need one more lemma
which is proved in this subsection.

Denote by aξ (A, </, ε) = a^ (A, J, εj) the QF w (see (3.6)) with

-2o-l

Here we use the notations £,. = £(£,-, 0) and 2R, = Wl(ζj, 0). Besides, λ > 0, and ε e R3

satisfies ε 2 <l and ε3<jΓ j o. Define D[a$ (J>)} as the set of restrictions of
functions ueD[a£] onto ,/x^^ and D[0^(</)] as the set of functions
ueD[a^ (./)] which vanish for r = ̂  (if ̂  >0) and for r = R2 (if R2 < oo).

Changing the variables y -> A ~ 1/βy in the QFs α5

± (A, (0, .R), ε), applying a suitable
version of the truncation trick with respect to r, and making use of Lemmas 3.1-3.3,
one finds without difficulty that for 7 ̂  0 and sufficiently small λ we have

ΛΓ0(α5- (A, (0, Λ), ε)) ̂  #0(α5

+ (A, (0, R\ ε))

o

R ~)
+ J rw(w-1)/2||(F3(ε))_||m/2ί/rV , (4.22)

Ri )

where ||.|| is the norm in Lm/2(J^ >00), εeR3, ε^O, ε2e(0,l), ε3e(0, Jfjj0),
0 < RI < R < oo, and the quantity c6 does not depend on A, ε, /^ and /£, provided that
R and l//^ are uniformly bounded.

Set ± gf = lim sup lim sup ± λθNQ (a} (A, ± ε,y))

Lemma 4.5. Assume that the hypotheses of Theorem 2. la) (respectively 2.1b) ) hold.
Then we have

ifίv ζj) (4.23)±

(or, respectively,
. (4.24)±

Here Ξj = (det £y)
1/2 mes J^ , ί/ze quantities c^ϊ (i = 1 , 2) are defined in (2. l)-(2.2) am/

A{ are the eigenvalues of the operator which coincides with <S?(ζj)for $t = jfj (see
(3.7)).

Proof. In the QFs a£ change the variables r->A~1/αr and y-+λ1/βy. Hence, we
have flί[w;λ, ±ε] = λ1" ( θ + r o / 2 )α5

±[ϋ;λ,R+ J±ε] for each A>0, u
and υ(r9ζ,y) = u(λ-llar,ζ,λllβy). Therefore, the identity

N0(a}(λ,Vi+, ±ε)) (4.25)

is valid for each A > 0 and ε e R3 such that ε2 < 1 and ε3 < Jf^ 0 .
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Choose R>0 great enough so that r>R implies r~*(fj — ε^ + 1 — ε2>0 for
sufficiently small ε^R, ε2e(0,l), and, hence, N0(a^(λ9 (R, oo), ε)) = 0 for every
A > 0 and appropriate ε. Bearing in mind Lemma 4.4 and the identity (4.25) ± , we
obtain the estimates

±Λ0(fl3

±α ±ej))^ ±#0(^(0,*), ±ε'j)) , (4.26) ±

where ε, ε'eR3 are the same as in (4.15).
Fix a positive integer K and a sequence {rk}f=0 such that 0<r0< ... <rκ = R.

Set S0 = (Q,r0), Sk = (rk-l9rJ, k = l,...,K, and aftk(λ,ε) = aϊ(λ,Sk,ε),
k = Q,...9K. Then we have

^0(fl5

+(λ,(0,Λ),e))^ Σ 7V0«fc(A,ε)) , (4.27)+
fc = 0

#0(<i5~α(0,Λ), -β))£ Σ ΛfoKktf, -ε)) . (4.27).
k = l

Further, introduce the QFs Jί ± which coincide with the QF ̂  (see (3.2)) with
^ = ̂ ^ = $01-1 and W~ 0. Set D [Jt + ] = Hl (^\ D\M~\ = Hl (^ Clearly the
QFs J^± are closed and nonnegative in L2(^j). Note that Lemmas 3.1-3.2 entail
the estimates

N^Jf^ηW^ + l , η>0 , (4.28)±

where c7 is independent of η, and the asymptotics

lim η-d'2Nη(Jt±} = Ξj/(4π)dl2Γ(l+dl2) . (4.29) ±
17-* oo

Denote by {ηq}q^ι the nondecreasing sequence of the eigenvalues of the QFs Jί*-
counted with the multiplicities.

Next, put 1T ± = \y\] (tfj(y) + ε3), ε3 e (0, JΓj>0), and denote by d ± = tf ± (£,- ε3)
the operator which coincides with j&(ζj) in (3.7) for i^ζ. = i^±. Moreover, {Λf }i^ί

are the eigenvalues of jtf ± .
Now, fix the integer fc, I ̂ k^K. Set r_ =r k _ l 5 r+ =rk, and

min
re(r_,r+)

Besides, we put g : l :(^yl;λ) = ̂ /1

±+yl/2

±+/3±, ι/^0, yl^O, A>0, and
bqti = b^ti^9 k, ±ε) = 51 (^q

± 5 ^i± 5 ̂ ) Consider the eigenvalue problem

-A-^+2^ιιί'(r) + 6±ίtιί(r) = {ϊ

±ttI(r) , reΛ , (4.30) ±

with boundary conditions ul(r_) = ul(r+) = Q in (4.30)_ and u'l(r_) = u'l(r+) = ΰ
in (4.30)+. Set
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Expanding the trial function uεD[a^k] in a series with respect to the
eigenfunctions of the QF Ji± and the operator j/±, we obtain the estimates

"s,k(Λ» ±β))^ ±n*(λ9k, ±ε) . (4.31)±

Computing the eigenvalues ξf in (4.30)+ explicitly and bearing in mind the
estimates (3.8) and (4.28)+, we easily get

0 0

0(λ-9-v+1/β) , λlO . (4.32)±

Set ± I,* = lim sup lim sup ± λθn ± (λ, k, ±ε).
ε-»0 λ|0

In order to verify (4.23) ± , change the variables Jfη-+η, j£ Λ-+Λ in the integral
at the right-hand side of (4.32) ± and employ the asymptotics (3.9) and (4.29) ± . Thus
we obtain

(4.33)±

K o o

where (£,. coincides with the quantity (£(5V) (see (3.10)) for ft = JΓy and
<#ϊ=(r+-r_)2dΞjr

nΓ1/(4πyf2 + 1Γ(l+d/2). Similarly, under the hypotheses of
Theorem 2.1b) (which imply α = κ) we have

] (η + λfl'+JΪφ^ifV-idη . (4.34)±

Deriving (4.33) +-(4.34) + , we have used also the estimates (3.8) and (4.28) + in order
to take the limit Λ, JO under the sign of the Stieltjes integral at the right-hand side of
(4.32)+.

Now, notice that the estimate (4.22) entails

lim lim sup lim sup λθN0(a^0(λ,ε)) = Q . (4.35)
r o l O ε->0 λ l O

Combine (4.25) +-(4.27) ±, (4.31)+ and (4.33) +-(4.34)+ and then let #->oo
bearing in mind (4.35). After some simple calculations we come to
(4.23)±-(4.24)+. D

The proof of the assertions a)-b) of Theorem 2.1 is completed if we take into
account (3.4), put together the results of Lemmas 4.1-4.3 and 4.5, and let ^->0.

4.6. In this subsection we prove Theorem 2.1c). Note that under its hypotheses
Lemmas 4.1-4.2 are valid again.

If θ < 0, then the asymptotic estimate (2.3) follows directly from Lemma 3.1 (see
also Remark 2.4). For this reason we restrict our attention to the case Θ^O.

Lemma 4.6. Ify>0, then for sufficiently small T>0 we have

Λf0(α2

+(A,J^.τ,ε)) = 0(l) , A|0 , (4.36)

where ε is the same as in (4.15).
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Proof. Fix some R>RQ. Set ^=(.#,00), </2 = (0,jR). Introduce the QFs
02~fi(^ε) = α2" i f(λ,ε,Λ, Γ), * = 1 > 2 > which are the same as the QFs #2

+(/l, J^τ,ε),
except that the domain of integration R+ x^jyT is replaced by o^x J^ Γ. The
domains Dfrz^J are defined as the sets of restrictions of functions ueD^] onto

r- Then we have

7V0(fl2

+ (A, JV> ε))£ JVo«ι& ε))4-7V0(α2

+

j2(0, ε)) . (4.37)

Besides, we have N0(a2

+

>2(0, ε))< oo.
Further, denote by aϊ^(λ, έ) the restriction of the QF 02tί(λ, ε) onto functions

which vanish on ̂  x δ^jtT. Applying the truncation trick with respect to y and
using Lemma 3.2, we get

NQ(aϊΛ(λ^}}^NQ(aϊΛ(λ^')) + 0(l} , A J O , (4.38)

where ε, ε'eR3 are the same as in (4.15).
For re(R,oo) set ψjιT(r) = {(ζ,x):ζe&j,xe^O£[x\ζ<Tτκlβ}, 77<oo,

Ψj.«>=&j.«» and ΨjtTtR = {(r,ζ,x):re(R9co), (ζ,x)e^ r(r)}, Γ^oo. Denote by
a6(λ,ε)=Ξa6(λ,ε9R,TJ) the QF u> (see (3.6)) with J^ = J^^ s = m = m-l-κt/β,

); here εeR3 and ε 2<l, ε3<JfM). At first
define the QF a6 on functions C^^jγp) which vanish on the set

{(r,ζ,x)eΨj>τ>R:\x\ζ = Ύγκ/β} (if Γ<oo) and close it in L2(ΨjfT>R;r^.
In the QF aϊΛ change the variables r = ρ, y = ρ~κ/βx, thus mapping j^ x J^ Γ

onto ̂  Γ R . Fix ε, εx e IR3 as the ones in (4. 1 5). For a given R > ̂ 0 choose T> 0 small
enough so that the estimate ύ£~ f l[ι/;λ,fi,Λ, T]^a6[v; λ,ε',R, T] holds for each
u(r,ζ,y)eD[a2tl] and v(ρ,ζ,x) = u(ρ,ζ,ρ~κ/βx). Therefore, the inequality

tf0(*2~,ι(λ,e, Λ, Γ))^7V0(α6(0,ε',Λ, c»)) (4.39)

is valid for each λ > 0 and R>R0.
Expand the trial function z;eD[06(0, ε, ,R, oo)] into a series with respect to the

eigenfunctions of the operator s4 ± (ζj ε3). Thus we obtain

7V0(tf6(0,ε',tf, α)))= X #„(<%>, Λ)) , (4.40)
i^l

where the QFs α6 f (ίeZ, z^l) coincide with the QF π) with > = J^, j = /w,
/; = (! -ε2), Λ = FJ9 ir = (\ -β2)r-

2£ri and γ= ̂  .Ξ r-(/._ %)
+ (1 -ε2)r"κ/lί

+ (ζj ε3). The QFs α6 j ί are defined at first on C00^ x ̂ }) and then
are closed in L2(^ x ̂  rm).

Now, notice the crucial circumstance that y > 0 implies K < α. Hence, we can
choose ̂  > 0 great enough so that r > R entails V4ί { (r) ̂  0. Since the sequence {At} is
nondecreasing, we have

. (4.41)

Putting together (4.37)-(4.41), we come to (4.36). D

Now Lemmas 4.1, 4.2 and 4.6 entail immediately (2.3).
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5. Proof of Theorems 2.2-2.3

5.7. Theorem 2.2 follows directly from Lemma 3.1 since the hypotheses of this
theorem imply (F-/l)_ eLw/2(Rm) and (V-λ)+ eLjoc(]Rm) (see also Remark 2.4).

5.2. Now we pass to the proof of Theorem 2.3. Introduce the QF
άη (h) = a^ (h, R, εj) which is the same as the QF a6(R, ε, 00,7) introduced in the
proof of Lemma 4.6 but the factor (1 — ε2) is replaced by h2 (1 — ε2), h > 0, everywhere
except in V4. Set D [af ] = (u e D [a6] : u\r=R = 0} and denote by flf (R) the restriction
of the QF a^ (R) onto the set of functions which vanish on (R, oo) x d^jt ^ .

Lemma 5.1. Let the hypotheses of Theorem 2.3 hold. Then the asymptotic estimates

±N0(a(h, V))£ ±Σ N0(af(h,R, ±£,y)) + 0(/rm) , h\,0 ,
j

are valid for each εe R3 such that ε1 > 0, ε2 e (0, 1) and ε3 e (0, Jfj>0)

The demonstration of the lemma consists of several steps which are quite similar
to the proofs of Lemmas 4.1-4.3 and 4.6, so that we omit the details.

5.3. Next, let the QFs a^(h^) = a^(hyΐ/,εj) coincide with the QF to
for some interval </gR+, s = m, p = H2/βy(l-ε2\ S' = ̂ j>ao, ιT = (l-ε2)

/L2/βy -2ςm7\ Q \
3 - K - 1 ) and W= V^ ' here ε e R3 and ε2 < 1 , ε3 < tf ̂  . Define

the QF α8

+ (,/) on functions w e C°° (̂  x J^ 00) and then close it in L2 (,/ x J^ ^ r1").
Respectively, D [a^ ] = {ueD [a£ ] : u^ x d^. ω = 0} .

In the QFs aj(h,s,RJ) change the variable r->/rK/(a~K)r = /r1/ayr, ^-^Aκ/^,
and set R* = R*(h} = Rhί/ctγ. Thus we find that the identity af[u;h,R,sJ]
= htκ/β+(1-"i/«^a£[v ,h,(R*,ao\8j] holds for each weZ)^1] and ι>(r,ζ,)>)
= u(h~llayr,ζ,hκ/βy]. Hence, we have

JVoί^ (A, Λ,ε,7» = ̂ 0(^(^(11*, oo), εj)) . (5.1)±

Next, denote by αg(/z, «/) (respectively by α8(A, ./)) the QF α8

+ (A, «/) with domain
consisting of functions which meet all the requirements for D[a% (J>}\ except that
they do not vanish on the right end of,/, provided that it is finite (respectively on the
left end of </, provided that it lies strictly to the right of the origin).

Since the operator (1 — ε2)j/+ is positively definite in L2(^ζj) and α>κ,
there exists R = R(ε) such that ^>^ implies the nonnegativeness of the
QF άs(h,(R,co),εJ). Moreover, if ε varies over a compact subset of the set
{ε e 1R3 : ε2 < 1, ε3 < Jf^oK then ^(ε) ^s uniformly bounded. Assume that h is small
enough so that R* <R. Let R>R. Evidently, we have

NQ(a+ (h, (R*9 oo), εJ))^NQ(as(h, (R*9 R)9 εj))

+ N0(ά8(h9(R9 oo),ε,7)) = Λo(fl8(A,(Λ*,^),ε,7)) . (5.2)

Applying a suitable version of the truncation trick with respect to r, we easily find
that for sufficiently small h we have

N0(a8(h, (R*9 R\ εJ))^N0(a£ (h, (R*9 R), ε'J)) , (5.3)
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where ε, ε'eR3 are as in (4.15). Moreover, an elementary variational argument
yields

NQ(as(h,(R*, oo), -ε,j)^NQ(as(h,(R*,R), -εj)) - (5.4)

Combining (5.1)-(5.4), we get the following

Lemma 5.2. Assume that the hypotheses of Theorem 2.3 hold. Then the inequalities

±N0(af(h,R, ±ε,y))^ ±N0(a£(h,(R*,R)9 ±ε'j))

hold for any ε, ε' e 1RW as in (4. 1 5) and each R and j provided that h is sufficiently small
and R is great enough.

5.4. Assume that either ρ is a monotonously increasing function of h ̂  0 such that
ρ(0) = 0, or ρ is a nonnegative constant. Let the QFs a} (h, (ρ, R), η, I, ε,y) coincide
with the QF ID with J^ = (ρ,R) where ^ = const. < oo, s = m, p = (l-ε2)hl, />0,
δ = &j9 i^ = (l-£2)r-2hl<m]-1, and »r=K5(ιy,fi1) = ι?r"IC + (/J-61)r"β, η^Q.
Define the QF a£ on the set {weC°°C/x J^ ): ulr=Q = ul=£=Q} and close it in
L2 G/ x &j r). Respectively, D [α9~ ] = {u e D [α9

+ ] : uld^. = 0} .

Lemma 5.3. Let the hypotheses of Theorem 2.3 hold. Assume that h is sufficiently
small, ρ is a monotonously increasing function ofh such that ρ(0) = 0,η^.η0>() andR
is great enough so that r>R implies V^r η.ε^^Ofor each η^η0.

a) The estimates

^-^1^ (5.5)±

hold with μ = m + 0/y, 0^0 (cf. Theorem 2.3) ,R>0 and c8 which is independent ofh.
Besides, cs does not depend on η ifd^. 2, andcs = Cg rffor δ > 0 and some c§ (δ) which is
independent ofη if d= 1 .

b) Moreover, we have

lim sup lim sup ±hl(d+1}/2N0(a^ (h, (ρ, R), η, /, ε j))
ε-»0 JUG

Ξj is defined in Lemma 4.5, and ̂ 5 - in (2.6).

Proof. Obviously, we have

N0(aj (h, (ρ, R), η, I, s,j))£N0(aj (h, (0, R), η, I, εj)) .

Then (5.5)+ (and, hence, (5.5)_) as well as (5.6)+ follow easily from Lemma 3.3.
Fix some ρ± and assume that h is small enough so that ρ (h) ̂  ρx for each h ̂  0. An

elementary variational argument implies

7V0(α9- (h, (ρ, R), η, I, εJ))^N0(a^ (h, (Qί , R), η, I, εj)) . (5.7)
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Applying Lemma 3.1 and taking account of (5.7), we get

liminf liminf hl(d+ί)/2N0(a^ (A, (ρ, R\ η, /, εj))

Letting ρί |0, we come to (5.6) _ . D

5.5 In this subsection we complete the proof of Theorem 2.3a). Expanding the trial
function u e D [a% ] into a series with respect to the eigenfunctions of the operator
s t f ± , we get

= Σ NQ(a*(h,(R*,R)9 (l+ε2)Λk

±,2//ίy,βj)) - (5.8)

Note that the hypotheses of Theorem 2.3a) imply (d+l)/βγ = m, so that, by
Lemma 5.3, we find that the sum of any finite number of terms at the right-hand side
of (5.8) ± has order O(h~m). Making use of the asymptotics (3.11) and bearing in
mind (5.8)+, we obtain

± Σ NQ(a±(h,(R^R\(k/<ί±&)Y^2/βy,s\f)) + 0(h-™) , (5.9)±
fc^l

where ε, ε'e!Rm are as in (4.15) and ε±Ξ(£±(ε) coincides with the quantity
(1 + ε2)

ί/κ£(ft) (see (3.10)) for ft = tf{ + ε3 . Applying a simple variational argument
and bearing in mind Lemma 5.3, we easily check the asymptotic estimate

") , (5.10)
fc^i

where

±(h)=-
K

Now, note the crucial circumstance that the integrand in /±(h) vanishes for
X>XQh~κ and any Z0>max {0, -(fj-εJR-wφ*)*1'}. Change the variable
X=(X0h-«)Y, 76(0,1), in the integral /±(h). Next, in the QFs

,εj) change the variable r-+hγ/^r. Set

,

where ^**-^/z(1'Y)/αy. Thus we get

/±(h) = - log(X0h-«) f (X0h-«)Y«*N0(a}(h, Y,ε))dY . (5.1 1)±
7C o

Assume that ^ is sufficiently great so that r>R — ί entails r~KXQ^g±)Klt

+ r~α(/j-%)^° for each 7e [0,1]. Let the QF ά£(h, Y,ε) be just the same as
dg (A, 7, ε) except that Rh ~ Y/aγ is substituted for R. The truncation trick with respect
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to r yields

£(h,Y9e)) , V7e(0,l) , (5.12)±

provided that ε, sf e IR3 are as in (4. 1 5) and h is sufficiently small. Note that Lemma

5.3 with / = 2((l-7)//ty+y)) and £ = ̂ ** is applicable in respect to the QFs
ά}(h, F,ε). Thus, putting together (5.9)+-(5.12)+, we get

lim sup lim sup ± hm |log h \~ 1 N0 (a% (h, (£*,£), εj))
ε-*0 hlO

^±V4(fjΓ-l*Ξj f J*7</^σζj. , (5.13)±

where ^4 is defined in (2.5).
Combining the results of Lemmas 5.1-5.2 with (5.13)+ and then letting ^->0,

we easily come to (2.5).

5.6. At last, we prove Theorem 2.3b). As a matter of fact, the asymptotics (2.6)
follow quite straightforwardly from Lemmas 5.1-5.2, the identities (5.8)±, and
Lemma 5.3 with l = 2/βγ and ρ = R* since (d-\- \)/βγ = μ. We only point out that the
series £ [(1 + ε2)Λf]δ'~(μ~d'1)/κ with δ = 0 if d^2 and δ > 0 small enough if d= 1, is

/c^l

convergent (see also Remark 2.1). Thus the identities (5.8)+ together with
Lemma 5.3a) for l = 2/βy and η = (l + ε2)Λ^ entail the estimate

where c9 is independent of h. Consequently, if we multiply both sides of (5.8) ± by hμ,
we can take the limit h[0 under the summation sign at the right-hand side of (5 . 8) + ,
and use (5.6)+.
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