University of Minnesota Supercomputer Institute Research Report UMSI 95/4

UMSI 95/4 January 1995

MODELING MOTOR CORTICAL OPERATIONS BY AN ATTRACTOR NETWORK OF STOCHASTIC NEURONS

A.V. Lukashin, B.R. Amirikian, V.L. Mozhaev, G.L. Wilcox, and A.P. Georgopoulos

1200 Washington Avenue South □ Minneapolis, Minnesota 55415

Contains a minimum 10% postconsumer waste.
Modeling motor cortical operations by an attractor network
of stochastic neurons

(population vector / tuning curve / complex dynamics / neural trajectory / motor skill)

A.V. Lukashin*†, B.R. Amirikian*†, V.L. Mozhaev*†, G.L. Wilcox‡,
and A.P. Georgopoulos*†

*Brain Sciences Center, Department of Veterans Affairs Medical Center, Minneapolis, MN
55417; †Department of Physiology and Neurology, University of Minnesota Medical School,
Minneapolis, MN 55455; and ‡Department of Pharmacology, University of Minnesota
Medical School, and Minnesota Supercomputer Institute, University of Minnesota,
Minneapolis, MN 55455
ABSTRACT Understanding the neural computations performed by the motor
cortex requires biologically plausible models that account for cell discharge patterns
revealed by neurophysiological recordings. In the present study the motor cortical
activity underlying movement generation is modeled as the dynamic evolution of large
fully recurrent network of stochastic spiking neurons with noise superimposed on the
synaptic transmission. We show that neural representations of the learned movement
trajectories can be stored in the connectivity matrix in such a way that, when activated,
a particular trajectory evolves in time as a dynamic attractor of the system while
individual neurons fire irregularly with large variability interspike intervals. Moreover,
the encoding of trajectories as attractors ensures high stability of the ensemble dynamics
in the presence of synaptic noise. In agreement with neurophysiological findings, the
suggested model can provide a wide repertoire of specific motor behaviors, whereas the
number of specialized cells and specific connections may be negligibly small, if
compared with the whole population engaged in a trajectory retrieving. To examine the
applicability of the model we study quantitatively the relationship between local
geometrical and kinematic characteristics of the trajectories generated by the network.
The relationship obtained as a result of simulations is close to the "2/3 power law"
established by psychophysical and neurophysiological studies.
The data obtained with the recording of the activity of motor cortical cells in the brain of behaving animals can be often interpreted using the population vector analysis [see (1,2) for a review]. Although individual cells possess a preferred direction, their activities are broadly tuned with respect to the direction of arm movement and, therefore, the generation of movement depends upon the activity of the whole ensemble. The population coding hypothesis (3,4) suggests that contributions from individual neurons add vectorially to produce the neuronal population vector and that this is an appropriate measure of the ensemble's directional tendency. Indeed, it was found that the population vector accurately predicts the direction of limb movement in space under a variety of conditions (1,2). As a motor action evolves in time, neuronal population vectors can be calculated over short successive time intervals. Attaching these vectors tip-to-tail yields a neural-vector trajectory that is thought to be a motor cortical representation of the movement to be made (5-7).

In general, any computational algorithm, including directional operations in the motor cortex, can be reproduced by many sets of network architectures, models of individual neurons and learning rules. A critical test of any biologically plausible model of motor cortical processing is how well it accounts for discharge patterns observed in neurophysiological recordings. In the present paper an ensemble of motor cortical cells performing directional operations is modeled by a fully recurrent neural network consisting of stochastic spiking neurons. The model shows how irregular series of spikes can be combined together to produce an accurate representation of the ongoing movement in terms of neural-vector trajectories. We concentrate on a particular type of movement control: the generation and performance from memory of learned movement trajectories such as drawing
simple curves. The key idea is that the cortical representation of a specific motor skill can be stored in the set of connections between neurons so that, after activation, it unfolds in time as a dynamic attractor of the system. We demonstrate that this approach guarantees high robustness of the dynamic behavior with respect to superimposed noise. The properties of individual neurons as well as the spatial and temporal characteristics of the trajectories generated by the network are in close quantitative agreement with the corresponding experimental data.

Neural network model

Like in other cortical areas (8), the firing of the motor cortical cells is nearly consistent with a stochastic process: that is, for a given mean firing rate, highly variable interspike intervals are observed (9). Therefore, the basic element of an adequate model should be a neuron with similar characteristics of the firing. To describe a spiking neuron, we use a phenomenological model much like that suggested in (10). The spike generation process obeys a stochastic dynamics in discrete time: for the \(i\)th neuron, the firing probability during one time step between \(t\) and \(t+\tau_s\) (\(\tau_s=1\) ms), given the membrane potential \(u_i(t)\) at the time \(t\), is defined as follows:

\[
p[t+\tau_s \mid u_i(t)] = \tau_s V_{\text{max}} \frac{1}{2} \{1 + \tanh[u_i(t)]\}. \tag{1}
\]
This expression provides a nonlinear sigmoidal dependence of the firing probability on the instantaneous value of the membrane potential. The probability ranges between zero and some maximal value, which is given by the parameter $V_{\text{max}} = 65$ impulses per second (imp/s). We used two different ways to incorporate refractoriness into the model: (i) by adding an absolute refractory period after each spike (10) and (ii) by allowing an exponential dependence of the firing probability on the time since the previous spike. The results are scarcely affected by the method of incorporation of refractoriness; in fact the data presented below use (ii).

Neurons modeled as described above are combined into a large fully recurrent network consisting of M units. The probability of firing (Eq. 1) is determined by the membrane potential, which is the sum of two terms: $u_i(t) = u_i^{\text{ext}}(t) + u_i^{\text{syn}}(t)$. The external input $u_i^{\text{ext}}(t)$ is enabled for only a short period of time (25 ms) and serves to activate network dynamics. The activation period is followed by a self-sustained network dynamics. After the external signal is disabled, the probability of firing is driven strictly by the synaptic input $u_i^{\text{syn}}(t)$ from all other neurons in the network. To calculate the synaptic signal entering the ith neuron during one time step τ_s we use the following expression:

$$u_i^{\text{syn}}(t) = \tau_s \sum_j w_{ij} [1 + \xi_j(t;\sigma)] \epsilon(t - t^{\text{last}}_j), \quad [2]$$

where w_{ij} is a weight of the synaptic connection from the jth to the ith neuron (positive for an excitatory and negative for an inhibitory synapse), and $\xi_j(t;\sigma)$ is the gaussian noise of zero mean and standard deviation σ. The instantaneous values of the noise for different ij-pairs are uncorrelated. The response function ϵ in Eq. 2 describes the time course of the
signal received by neuron \(i \) from neuron \(j \). We assume that, if a second presynaptic spike arrives during the residual effect of a previous spike at the same synapse, the postsynaptic signal does not increase above the level assigned for a single spike. Therefore, the response function depends only upon the difference \(\Delta t = t - t_{j}^{\text{last}} \), where \(t_{j}^{\text{last}} \) is the time when the very last spike appeared in the \(j \)th neuron. The specific expression for the \(\epsilon \) function is the same as suggested in (10): \(\epsilon(\Delta t) = (\Delta t/\tau_{\epsilon}^{2})\exp(-\Delta t/\tau_{\epsilon}) \), where \(\tau_{\epsilon} \) is the response time constant (\(\tau_{\epsilon} \sim 2-3 \text{ ms} \) in routine calculations).

Thus, the output of the network is a set of \(M \) spike trains fired by \(M \) neurons. By analogy with the experimental approach (1-7), the dynamic evolution of the network's outcome is interpreted as the generation of the neural-vector trajectory in the following manner. Each neuron is assigned a preferred direction \(C_{i} \) (\(i = 1, \ldots, M \)) in 2D space: \(C_{i} = (\cos \alpha_{i}, \sin \alpha_{i}) \), where \(\alpha_{i} \) is the preferred direction angle. The assignment of the preferred direction implies that the \(i \)th unit should fire maximally for movements making in the direction \(C_{i} \). The whole dynamics is divided into time bins of equal length \(T \) (25 ms), and the combined activity of the ensemble at the \(k \)th time bin is represented by the neuronal population vector:

\[
P(k) = \frac{1}{MT} \sum_{i}^{M} V_{i}(k) C_{i}, \quad [3]
\]

where \(V_{i}(k) \) is the activity of the \(i \)th neuron at the \(k \)th time bin, i.e., the number of spikes fired by this neuron during the time interval \((k-1)T < t < kT \). Adding the population vectors tip-to-tail yields the radius vector \(R(k) = P(1) + \ldots + P(k-1) + P(k) \) that defines the \(k \)th point at the neural-vector trajectory.
It was suggested in our previous paper (11) that neural-vector trajectories of different shapes can be stored in, and generated by, largely overlapping networks with fixed connection strengths. The idea is that each memorized trajectory (or class of trajectories) is generated by a neural subset consisting of two parts: (i) a large "core" part that is shared by, and engaged with, all kind of trajectories and (ii) a relatively small part that is specific for, and engaged with, only a particular class of trajectories. The activation of the core part together with one of specialized parts (while other specialized parts are inhibited) results in the generation of trajectory that corresponds to the activated specialized part. The weights of connections between the core units do not carry information about specific trajectories. All information about specific trajectories is stored in the weights of connections between specialized units, and in feedforward and feedback connections between the specialized units and the core part. Due to these connections the core part reveals specific dynamic behavior and, therefore, distinguishes different tasks. In other words, the output of the whole network is provided by the activity of the large core part, whereas the small part serves to specify a particular dynamic behavior of the whole system. In the present paper we use the same overlapping network architecture.

Neural-vector trajectories as attractors

In this section we demonstrate that the network of stochastic spiking neurons can store and retrieve neural-vector trajectories of different shapes as dynamic attractors of the system. We dwell on the consideration of simple attractors such as fixed points and limit cycles. In terms
of trajectory generation, fixed points correspond to straight lines of different directions and limit cycles may correspond, for example, to clockwise or counterclockwise circular trajectories.

It is important to emphasize the following fact with respect to the construction of the connectivity matrix ensuring a desired dynamic behavior of the network. Since the network's dynamics is driven entirely by intra-network connections, the relevant information about preferred directions of individual neurons must also be encoded in the connectivity matrix. This means that the weight of a particular connection, \(w_{ij} \), must be correlated with the presumed preferred directions, \(\alpha_i \) and \(\alpha_j \), of the involved neurons. Experimental findings (2) and results of previous modeling (12) suggest that the strength of connection of a neuron pair tends to be negatively correlated with the difference between their preferred directions. Based on this fact, together with the desired tuning properties of the neurons (see below), we choose the following form of the connectivity matrix:

\[
 w_{ij}^{xy} = a^{xy} \cos(\alpha_i - \alpha_j + \varphi^{xy}),
\]

where the coefficients \(a^{xy} \) and phase shifts \(\varphi^{xy} \) are the parameters to be adjusted in order to obtain the trajectory of a desired shape. The superscript \(x \) indicates which part of the network, core \((x=c) \) or specific \((x=s) \), the \(i \)th neuron belongs to. The superscript \(y \) indicates the same for the \(j \)th neuron. The preferred directions \(\alpha_i \) \((i=1,\ldots,M) \) are assigned as follows. In the core part of the network, as well as in the specialized parts, the neurons are grouped in clones (columns) of 1000 units each. All neurons belonging to the same clone are assigned the same preferred direction. The preferred directions of the clones within the core part of the network are uniformly distributed. The preferred directions of the clones within a
specialized part are also uniformly distributed. This form of the connectivity matrix makes it possible to store and retrieve a wide spectrum of trajectories of different shapes.

Examples of dynamic behavior of the network, underlying three different attractors (straight lines, clockwise, and counterclockwise circles), are depicted in Fig. 1. In each case the dynamics is induced by the short-lasting (25 ms) activation of one of the specialized parts of the network together with the common core part of the network. The number of neurons in the core part of the network \(N = 200 \cdot 10^3 \) (200 clones of 1000 neurons each). The weights of connections within this part are given by Eq. 4 with \(a^{cc} = 0.35 \), \(\varphi^{cc} = 0 \). The core part of the network is engaged during generation of any kind of trajectory. The specificity of the ensemble dynamics is encoded in the weights of connections within the specialized parts (parameters \(a^{ss} \) and \(\varphi^{ss} \) in Eq. 4) and in the weights of connections between specialized parts and the core part of the network (parameters \(a^{cs}, a^{sc} \) and \(\varphi^{cs}, \varphi^{sc} \) in Eq. 4).

The dynamics shown in Fig. 1A corresponds to the following choice of the specialized connections (Eq. 4): \(a^{ss} = 0.35, \varphi^{ss} = 0; a^{cs} = a^{sc} = 1.05, \varphi^{cs} = \varphi^{sc} = 0 \). The number of neurons in the specialized part \(n = 12 \cdot 10^3 \) (12 clones of 1000 neurons each). This neural subset (the core part plus the specialized part) can store and retrieve 12 straight-line trajectories, and retrieving a particular direction of the trajectory depends on the initial direction given by the short-lasting external input. The cluster of trajectories shown in Fig. 1A was activated by 72 uniformly distributed initial directions. Correspondingly, a stable clockwise circular trajectory (Fig. 1B) can be obtained if, in addition to the core part, another specialized part of the network is engaged, and the specialized connections are given by parameters (Eq. 4) \(a^{ss} = 6.75, \varphi^{ss} = -\pi/2; a^{cs} = a^{sc} = 1.05, \varphi^{cs} = \varphi^{sc} = 0 \). Finally, the generation of counterclockwise
circular trajectory (Fig. 1C) can be provided by the specialized part with the same set of parameters, except for the phase shift φ^{ss} should be positive: $\varphi^{ss} = \pi/2$. Regularly repeated excitation of individual neurons followed by an inhibition is clearly seen for the circular movement (Fig. 1B and 1C).

The spike trains presented in Fig. 1 demonstrate a large variability of interspike intervals for the firing of individual neurons. Indeed, our calculations show that even for the straight-line trajectories, the coefficient of variation, which is the ratio of the standard deviation to the mean of the interspike interval, ranges between 0.5 and 1. This high level of variability is consistent with the common situation observed for real cortical cells (8). It is important to note that, while individual units fire irregularly, the dynamic behavior of the network as a whole is highly stable. Both features of the model, the variability of interspike intervals and the stability of the ensemble’s behavior, are in agreement with experimental observations in the motor cortex (3-5,9).

The attractor dynamics depicted in Fig. 1 is ensured by the intra-network connections, and it may last until a new external signal comes. For example, a short-lasting signal can inhibit currently engaged specialized part and activate another one. Then the whole network will be switched to the generation of another trajectory. The property of the model that is noteworthy is the robustness of the self-sustained dynamics with respect to the presence of noise in the synaptic transmission (see Eq. 2). This is illustrated in Fig. 2 by the example of progressive degradation of an attractor by increasing noise. To quantify the influence of noise, we calculated the mean radius of curvature for a trajectory generated at different noise levels and plotted this value versus the standard deviation of noise σ (Fig. 2). Typical
trajectories generated at several noise levels are also shown in Fig. 2. Both representations indicate that the ability of the network to perform a memorized task is only weakly affected by the noise until the standard deviation σ approaches the value $\sigma \approx 1$, when the "noise" becomes comparable to the "signal" (see Eq.2).

"Inhomogeneity" of the network and tuning curves

In this section we show that the suggested model fits two important properties of real ensemble of motor cortical cells performing directional operations. First, only a small number of cells is very specific to a particular trajectory, whereas a large number of cells is engaged during performance of many different tasks (13-15). Second, the dependence of the mean firing rate of a cell on the direction of movement (the tuning curve) is coarse and can be approximated by a smooth cosine-like function (1-4). Obviously, the network without specialized connections cannot generate a specific trajectory from memory. The larger the relative contribution of specific connections to the whole connectivity matrix, the easier it is to store and retrieve specific set of trajectories. We refer this contribution of specialized parts as the "inhomogeneity" of the network and quantify it introducing a parameter $\gamma = \frac{W^{\text{specific}}}{W^{\text{total}}}$, where W^{total} is the sum of absolute values of the connection strengths (Eq. 4) taken over the whole ensemble and W^{specific} is the same for the specialized connections. Hence, the problem we tried to solve is to construct an optimal network with inhomogeneity reduced to a minimum while retaining the desired dynamic behavior of the network as well as an appropriate shape of tuning curves.
We have analyzed this problem for the case of straight-line attractors (Fig. 3). The three clusters of trajectories at the top of Fig. 3 demonstrate how the retrieving ability of the network depends on the inhomogeneity γ if the number of neurons in the specialized part, n, and in the core part of the network, N, are fixed ($n=12\cdot10^3$ and $N=200\cdot10^3$). The network retrieves memorized trajectories (12 straight lines) only if the parameter γ exceeds a critical value ($\gamma=0.17$ in the present case). This is an optimal inhomogeneity of the network. Evaluated as described above the resulting optimal values of inhomogeneity γ are plotted in Fig. 3A as a function of N for two sizes of the specialized part: $n=12\cdot10^3$ and $n=8\cdot10^3$. In both cases, the optimal inhomogeneity is seen to decrease as N increases obeying a dependence N^{-1}, and the smaller n is, the lower is the optimal inhomogeneity. In particular, these results indicate that, in the real motor cortex, the relative number of specialized cells and specific connections may be negligibly small, if compared with the whole neuronal ensemble engaged in generation of a memorized movement. The tuning properties of the neurons in the optimal network are shown in Fig. 3B. Like for the real motor cortical cells, each neuron's output varies approximately as the cosine of the difference between direction of movement and its own preferred direction. The range of variability of the firing rate (5-65 imp/s) is the same as observed in experiments (9). It is important to note, that this tuning function is not imposed externally, but emerges as a result of intra-network interactions during the dynamics. The curves drawn in Fig. 3A represent only lower bounds of the inhomogeneity that is needed to provide the performance of the network. The retrieving properties of the network together with the desired shape of the tuning curves are guaranteed everywhere over the bound.
The "2/3 power law"

The neural-vector trajectory is thought to be a motor cortical representation of the trajectory of the hand (5-7). Up to this point we have dealt with the shapes of trajectories. The kinematic characteristics can also be considered in the framework of the suggested model. With respect to the applicability of the model to the real motor cortex, it is of special interest to examine quantitatively the geometrical and kinematic characteristics of curved neural-vector trajectories and to compare them with experimental data.

By definition, the ratio of the instantaneous angular velocity, \(A \), to the tangential velocity, \(V \), is equal to the curvature, \(C \), at each point on a trajectory: \(A/V = C \). Therefore, tracing trajectories with variable curvature can be accomplished only if \(A \) and \(V \) co-vary with curvature. In general, this covariation could be arbitrary within the relation \(A/V = C \).

Nevertheless, psychophysical studies of curved hand movements indicate that the velocities \(A \) and \(V \) obey invariant rules: \(A = kC^\beta \), \(V = kC^{\beta-1} \), where \(k \) and \(\beta \) are constants, and \(\beta \approx 2/3 \) (16-18). This relationship has been termed the "2/3 power law". It has been hypothesized (18) that this law reflects a neural constraint: the tighter the curvature of a trajectory, the longer is the time needed to rotate the neuronal population vector. Indeed, the "2/3 power law" has recently been well documented for experimentally measured neural-vector trajectories (7). Below we demonstrate that our model shows the same relation between geometrical and kinematic characteristics.

Since a neural-vector trajectory is constructed by attaching the time sequence of the neuronal population vectors tip-to-tail, the length of the neuronal population vector is a
measure of the tangential velocity of movement, \(V \), averaged over the duration of the time bin. Correspondingly, the angle between the directions of two adjacent vectors is a measure of the angular velocity, \(\dot{A} \). To find a correlation between the geometrical and kinematic characteristics of the neural-vector trajectories generated by the network we used the following procedure. As usual, the weights of connections inside the core part were fixed, whereas the remaining connections were adjusted to obtain circles of different radius or complex figures with variable curvature. Some of these figures are drawn at the top of Fig. 4. For each trajectory generated, the angular velocity \(\dot{A} \) was calculated step-by-step along a trajectory as the angle between two adjacent neuronal population vectors divided by the time bin \(T \). Corresponding values of the curvature \(C \) were calculated as the same angles divided by the lengths of the neuronal population vector. Finally, the length of the neuronal population vector was used as the tangential velocity \(V \) at corresponding points on a trajectory. Since the neuronal population vector has dimensionality "imp/s" rather than "length/s", the latter correspondence is valid only within each class of trajectories (circles, ellipses, spirals and so on). Therefore, for each class of trajectories the unit length, \(\lambda \), may be chosen arbitrarily. We chose the values of \(\lambda \) in such a way that all curved trajectories fall within the same range of curvature variability. The angular and tangential velocities are plotted as functions of the curvature in Fig. 4A and 4B, respectively. It is seen that the results can be approximated by the power law \(\dot{A}=kC^\beta \), \(V=kC^{\beta-1} \) with the exponent \(\beta=0.62 \); this is close to the experimentally measured value \(\beta \approx 2/3 \).

The data presented in Fig. 4 were obtained for a particular set of the basic parameters of the model. Of course, a variation of the parameters may result in a change of the exponent
\(\beta\). Nevertheless, it is important that the suggested model is able to reproduce an experimentally observed relationship between geometrical and kinematic characteristics of trajectories; this was not apparent \textit{a priori}. We believe these results support the neural-constraint hypothesis (18) concerning the origin of the "2/3 power law".

Conclusions

The hypothesis that multiple motor skills may be stored in, and generated by, overlapping neural networks has been entertained in our previous paper (11). In the present study we use this idea concerning the network architecture and show that motor cortical representation of learned movements may be stored and generated as dynamic attractors of the network. The model provides high stability of the ensemble dynamics, in spite of the fact that both the firing of individual neurons and the synaptic transmission are stochastic processes. The model considered in the present paper possesses the following characteristics that are biologically relevant. First, the basic properties of discharge patterns for individual neurons are closely parallel those of motor cortical cells: large variability of interspike intervals and the cosine-like tuning curves (2,9). Second, all properties of the network emerge as a result of the correlated intra-network interactions; this is in accord with an experimental observation that the intra-cortical connections provide the major signal arriving at any neuron (19,20). Third, although each particular trajectory is generated by a large ensemble of neurons only a small number of neurons and connections is specific to a particular trajectory; this feature of the model is consistent with neurophysiological findings (13-15). Fourth, the
model can generate curved trajectories obeying the "2/3 power law"; this relationship has been well documented in psychophysical and neurophysiological studies. Finally, the interplay of modeling approach and recording experiments reported in the present paper suggests an experimentally testable hypothesis concerning an attractor nature of the motor cortical representation of memorized movement.

This research was supported by United States Public Health Service Grant PSMH48185 to A.P.G., a contract from the Office of Naval Research to A.P.G. and A.V.L., grants of supercomputer resources from Minnesota Supercomputer Institute to A.P.G. and G.L.W., and Minnesota Supercomputer Institute Research Scholar to B.R.A.
References

Legends to figures

Fig. 1. Spike trains and trajectories generated by the network. Rasters show spike trains for 19 core neurons selected from the ensemble of 2·10^5 units. Each horizontal row of bars represents the spike train for one neuron. The bars mark the spiking time. The neurons are ordered along the vertical axis in accordance to their preferred direction angles. Corresponding neural-vector trajectories are shown to the right of each raster. Raster A illustrates the representative activity of the network during generation of a straight-line trajectory (one of 72 trajectories drawn to the right of the raster). For this raster the preferred direction angles are calculated relative to the direction of movement. Rasters B and C demonstrate the representative activity of the network generating the clockwise (B) and counterclockwise (C) circular trajectories. In both cases the angle of value zero corresponds to the horizontal direction from left to right.

Fig. 2. Performance of the network in the presence of the gaussian noise superimposed on the synaptic transmission. The ratio of the mean radius of curvature of the trajectory, R(σ), to the corresponding value of the zero noise, R(σ=0), is plotted as a function of the standard deviation of noise σ (connected points). Note the logarithmic scale of the abscissa. Each point corresponds to the average of the mean radius over 10 trajectories generated with the same σ. The error bars are hidden within the size of the points. Curves represent typical trajectories generated by the network with the indicated values of σ. The curve drawn in the upper left corner is a trajectory generated with zero noise.

Fig. 3. Optimal inhomogeneity of the network and tuning properties of individual
neurons. The three clusters of curves at the top are the trajectories generated by the network with different values of the parameter of inhomogeneity γ (see text) as indicated over each cluster. There are 72 trajectories in each cluster that correspond to 72 uniformly distributed initial directions. The number of neurons n in the specialized part is $12 \cdot 10^3$ (12 clones of 10^3 units each). This specialized part provides the capability of generating 12 different straight-line attractors. The number of units in the core part N is $200 \cdot 10^3$. The connectivity matrix for the right cluster, corresponding to the optimum performance of the network, is the same as for the dynamic behavior shown in Fig. 1A (see the previous section). A. The optimal value of γ is plotted versus the number of the core units, N, for the number of specialized units $n=12 \cdot 10^3$ (points) and $n=8 \cdot 10^3$ (triangles). The solid curves are fits by regressions using the law N^{-1}. The data were obtained by averaging over 10 trails. B. The dependence of the mean firing rate of the core units on the difference between the preferred direction and the direction of movement represented by the direction of the neuronal population vector (NPV). The data were obtained for the optimal network generating the right cluster of trajectories shown on the top. Points are the firing rates of 200 units (one unit from each clone) calculated for 12 directions of movement. The solid curve is an approximation by the cosine function $a + b \cos(x)$, where $a=35.0$ imp/s, $b=34.5$ imp/s.

Fig. 4. Power law for angular (A) and tangential (B) velocities. Four examples of the trajectories analyzed are shown at the top of the figure. The method of calculation is described in the text. The angular and the tangential velocities are plotted versus the curvature on a log-log scale. The points represent the data for 20 circles of different radius and for trajectories with the variable curvature shown on the top. The values A, V and C for
the circles were obtained by averaging over each trajectory. The solid lines are the best fit approximated by the power law $A = kC^{\beta}$, $V = kC^{\beta-1}$. The best fitting values are $k = 20$, $\beta = 0.62$.

21
Fig. 3

A

inhomogeneity (γ)

g=0.02 g=0.12 g=0.18

number of core units (N)

\bullet $n=12\times10^3$
\triangle $n=8\times10^3$

B

firing frequency, imp/s

angle between preferred direction and NPV, deg
Fig. 4

A

Angular velocity (A, rad/s)

$A = 20 \cdot C^{0.62}$

B

Tangential velocity (V, λ/s)

$V = 20 \cdot C^{-0.38}$