
George A StanciuUniversity of Science and Technology Politehnica of Bucharest
George A Stanciu
Professor
About
223
Publications
21,756
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,771
Citations
Introduction
Additional affiliations
October 1974 - present
Education
October 1977 - June 1981
Polytechnique Institute of Bucharest
Field of study
- Electronic Faculty, Phycs Engineer
Publications
Publications (223)
Coronavirus-infected cells contain double-membrane vesicles (DMVs) that are key for viral RNA replication and transcription, perforated by hexameric pores connecting the vesicular lumen to the cytoplasm. How pores form and traverse two membranes, and how DMVs organize RNA synthesis, is unknown. Using structure prediction and functional assays, we s...
Infectious diseases are acknowledged as one of the leading causes of death worldwide. Statistics show that the annual death toll caused by bacterial infections has reached 14 million, most of which are caused by drug-resistant strains. Bacterial antibiotic resistance is currently regarded as a compelling problem with dire consequences, which motiva...
Coronavirus-infected cells contain double-membrane vesicles (DMVs) that are key for viral RNA replication and transcription, perforated by hexameric pores connecting the vesicular lumen to the cytoplasm. How pores form and traverse two membranes, and how DMVs organize RNA synthesis, is unknown. Using structure prediction and functional assays, we s...
Introduction
Although the incidence and mortality rates of colorectal cancer exhibit significant variability, it remains one of the most prevalent cancers worldwide. Endeavors to prevent colorectal cancer development focus on detecting precursor lesions during colonoscopy. The diagnosis of endoscopically resected polyps relies on hematoxylin and eo...
We introduce a novel approach in optical engineering by combining Dammann gratings with binary Fresnel zone plates to create a unique hybrid optical element with enhanced energetic efficiency of its focal spots. Traditionally, binary Fresnel zone plates focus light at multiple points with varying intensities, while Dammann gratings are renowned for...
A wide palette of nanoscale imaging techniques operating in the near-field regime has been reported to date, enabling an important number of scientific breakthroughs. While the tuning and benchmarking of near-field microscopes represent a very important step for optimizing the outputs of the imaging sessions, no generally acknowledged standards exi...
This study explores the mechanical and optical properties of nanoporous copper (NPC) films dealloyed in acid and base using qualitative and quantitative measurements. Two types of NPC films (NPC 1 and NPC 2) were prepared by dealloying precursor films in different corrosive solutions. The films were characterized using atomic force microscopy (AFM)...
Second Harmonic Generation Microscopy (SHG) is widely acknowledged as a valuable non-linear optical imaging tool, its contrast mechanism providing the premises to non-invasively identify, characterize, and monitor changes in the collagen architecture of tissues. However, the interpretation of SHG data can pose difficulties even for experts histopat...
Objective: The study subject approaches a topic of cerebral pathology, namely the development of a pathological diagnosis that is as accurate as possible for the cerebral tumors and the metastases, using a new method that complements the optical microscopic examination and immunohistochemistry to correctly diagnose cerebral malignancies. Methods: T...
The fast and global spread of bacterial resistance to currently available antibiotics results in a great and urgent need for alternative antibacterial agents and therapeutic strategies. Recent studies on the application of nanomaterials as antimicrobial agents have demonstrated their potential for the management of infectious diseases. Among the di...
Purpose
Even though the incidence and mortality rates of colorectal cancer varies widely, it remains one of the most frequently diagnosed cancers in the world. Efforts are made to prevent the development of colorectal cancer by detecting precursor lesions during colonoscopy. The diagnosis of endoscopically resected polyps is based on hematoxylin an...
A thorough understanding of biological species and emerging nanomaterials requires, among other efforts, their in-depth characterization through optical techniques capable of nano-resolution. Nanoscopy techniques based on tip-enhanced optical effects have gained tremendous interest over the past years, given their potential to obtain optical inform...
Chromium nitride thin films are known for their good mechanical properties. We present the characteristics of ultrathin chromium nitride films under 400 nm thickness deposited on silicon substrates by direct current and high-power impulse magnetron sputtering techniques. The methods of investigation of the CrN films were scanning electron microscop...
Microscopic evaluation of tissue sections stained with hematoxylin and eosin is the current gold standard for diagnosing thyroid pathology. Digital pathology is gaining momentum providing the pathologist with additional cues to traditional routes when placing a diagnosis, therefore it is extremely important to develop new image analysis methods tha...
Second harmonic generation microscopy (SHG) is generally acknowledged as a powerful tool for the label-free three-dimensional visualization of tissues and advanced materials, with one of its most popular applications being collagen imaging. Despite the great need, progress in super-resolved SHG imaging lags behind the developments reported over the...
Investigation techniques based on tip-enhanced optical effects, capable to yield spatial resolutions down to nanometers level, have enabled a wide palette of important discoveries over the past twenty years. Recently, their underlying optical setups are beginning to emerge as useful tools to modify and manipulate matter with nanoscale spatial resol...
Chromium Nitride thin films are known for their good mechanical properties. We present the characteristics of ultrathin Chromium Nitride films under 400 nm thickness deposited on silicon substrates by direct current and high-power impulse magnetron sputtering techniques. The methods of investigation of the CrN films were scanning electron microscop...
When the cornea becomes hydrated above its physiologic level it begins to significantly scatter light, loosing transparency and thus impairing eyesight. This condition, known as corneal edema, can be associated with different causes, such as corneal scarring, corneal infection, corneal inflammation, and others, making it difficult to diagnose and q...
In the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, (Ca10−xMgx(PO4)6(OH)2; xMg = 0, 0.08 and 0.3; HApCh, 8MgHApCh and 30MgHApCh). The MgHApCh composite layers were investigated using scanning electron microscopy (SEM), energy-dispers...
A thorough understanding of biological species and of emerging nanomaterials requires, among others, their in-depth characterization with optical techniques capable of nano-resolution. Nanoscopy techniques based on tip-enhanced optical effects have gained over the past years tremendous interest given their potential to probe various optical propert...
Second Harmonic Generation Microscopy (SHG) is generally acknowledged as a powerful tool for the label-free 3D visualization of tissues and advanced materials, with one of its most popular applications being collagen imaging. Although the great need, progress in super-resolved SHG imaging lags behind the developments reported over the past years in...
Second harmonic generation (SHG) microscopy is acknowledged as an established imaging technique capable to provide information on the collagen architecture in tissues that is highly valuable for the diagnostics of various pathologies. The polarization-resolved extension of SHG (PSHG) microscopy, together with associated image processing methods, re...
Scattering-type scanning near-field optical microscopy (s-SNOM) has emerged over the past years as a powerful characterization tool that can probe important properties of advanced materials and biological samples in a label-free manner, with spatial resolutions lying in the nanoscale realm. In this work, we explore such usefulness in relationship w...
Objective: The purpose of this study is to compare the capsular structure appearing in follicular adenoma and papillary thyroid carcinoma to differentiate the benign and malignant thyroid nodules. Methods: Second Harmonic Generation (SHG) Microscopy was used to image collagen distribution in the capsules of several types of nodules. The tissue frag...
Two-photon microscopy techniques are non-linear optical imaging methods which are gaining momentum in the investigation of fixed tissue sections, fresh tissue or even for in vivo experiments. Two-photon excited fluorescence and second harmonic generation are two non-linear optical contrast mechanisms which can be simultaneously used for offering co...
The local refractive index of polymethyl methacrylate is modified due to low power femtosecond laser exposure in the proximity of a sharp metallic tip. Such modified nanoscale-sized regions can be used for photonic crystals creation.
The spread of
Acinetobacter baumannii
in clinical settings is a great concern at the time being, given the epidemic potential and the capacity to elude the effects of drugs of this bacterial species. How
A. baumannii
achieves its resistance determinants is not yet exactly understood, hence the need for new studies aimed at resolving its structu...
Second harmonic generation (SHG) microscopy has emerged over the past two decades as a powerful tool for tissue characterization and diagnostics. Its main applications in medicine are related to mapping the collagen architecture of in-vivo, ex-vivo and fixed tissues based on endogenous contrast. In this work we present how H&E staining of excised a...
Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is an important bioactive material for bone tissue reconstruction, due to its highly thermodynamic stability at a physiological pH without bio-resorption. In the present study, the Ag:HAp and the corresponding Ag:HAp + D3 thin films (~200 nm) coating were obtained by vacuum deposition method on Ti substrate. The...
This work demonstrates the fabrication of chemical vapour sensors using Langmuir–Blodgett (LB) thin films, describing the thin film properties of a tetra-undecyl calix[4]resorcinarene molecule along with a discussion of their sensing performance. Atomic Force Microscopy and Surface Plasma Resonance (SPR) methods were used for the characterization o...
Background
In recent years, a variety of imaging techniques operating at nanoscale resolution have been reported. These techniques have the potential to enrich our understanding of bacterial species relevant to human health, such as antibiotic-resistant pathogens. However, owing to the novelty of these techniques, their use is still confined to add...
Polarization-resolved second harmonic generation microscopy is used to provide pixel-level angular distribution of collagen in thyroid nodule capsules. The pixel-level angular distribution is combined with textural analysis to quantify the collagen distribution in follicular adenoma (benign) and papillary thyroid carcinoma (malignant). Three second...
Papillary carcinoma is the most prevalent type of thyroid cancer. Its diagnosis requires accurate and subjective analyses from expert pathologists. Here we propose a method based on the Hough transform (HT) to detect and objectively quantify local structural differences in collagen thyroid nodule capsules. Second harmonic generation (SHG) microscop...
Super‐resolution microscopy techniques can provide answers to still pending questions on prokaryotic organisms but are yet to be employed at their full potential for this purpose. To address this, we evaluate the ability of the rhodamine‐like KK114 dye to label various types of bacteria, to enable imaging of fine structural details with Stimulated...
Placed at the junction of laser-scanning and probe-scanning techniques, scattering scanning near-field optical microscopy (s-SNOM) is a promising tool for the optical investigation of surfaces at nanoscale resolution. In this work we expand the current possibilities of representing s-SNOM data by coupling typical s-SNOM results (amplitude and phase...
Scattering-type Scanning Near Field Optical Microscopy (s-SNOM) is currently regarded as a powerful tool for exploring important optical properties at nanoscale resolutions depending only on the size of a sharp tip that is scanned across the sample surface while being excited with a focused laser beam. Recently, it was shown that, among others, s-S...
In this study, the results about the influence of the surface morphology of layers based on montmorillonite (MMT) and silver (Ag) on antimicrobial properties are reported. The coating depositions were performed in the plasma of a radio frequency (RF) magnetron sputtering discharge. The studied layers were single montmorillonite layers (MMT) and sil...
To determine their inherent properties, thin films of calix[4]resorcinarene (C11AMINE) were deposited using the Langmuir–Blodgett (LB) technique onto a suitable substrate. Prior to the LB thin film preparation, this molecule was first studied at the air–water interface. For the characterization of the deposited film, UV–visible absorption spectrosc...
Despite intense research on high entropy films, the mechanism of film growth and the influence of key factors remain incompletely understood. In this study, high entropy films consisting of five elements (FeCoNiCrAl) with columnar and nanometer-scale grains were prepared by magnetron sputtering. The high entropy film growth mechanism, including the...
Quantitative second harmonic generation microscopy methods that provide an estimate for the molecular structure of collagen in tissues by fitting theoretical models with experimental data at pixellevel are gaining increasing momentum. Such methods offer reliable diagnostic-relevant information that complement traditional histology procedures. We pr...
This paper provides a new method to compare and then reveal the vacancy sink efficiencies quantitively between different hetero-interfaces with a shared Cu layer in one sample, in contrast to previous studies, which have compared the vacancy sink efficiencies of interfaces in different samples. Cu-Nb-Cu-V nanoscale metallic multilayer composites (N...
Thin films of CBAMINE were deposited at air-water interface by the method of Langmuir-Blodgett (LB) technique onto a suitable substrate. Atomic force microscopy technique was used to characterize its thin film properties. The results indicate that a uniform LB film monolayer from the water surface to a glass or quartz crystal substrates deposited w...
Quantitative second harmonic generation microscopy was used to investigate collagen organization in the fibrillar capsules of human benign and malignant thyroid nodules. We demonstrate that the combination of texture analysis and second harmonic generation images of collagen can be used to differentiate between capsules surrounding the thyroid foll...
We discuss an imaging approach that allows a better understanding of nanoscale datasets collected with Apertureless Scanning Near-Field Optical Microscopy, based on a multimodal system that incorporates multiple ASNOM and far-field Laser Scanning Microscopy variants.
In our work we present some investigations on biological and biomedical samples acquired by using a new multimodal microscopy system which integrates more techniques based on far field and near field having hundred nanometers or few nanometers resolutions. The system allows simultaneous image acquisition by using multiple optical imaging modalities...
Apertureless scanning near-field optical microscopy (ASNOM) has attracted considerable interest over the past years as a result of its valuable contrast mechanisms and capabilities for optical resolutions in the nanoscale range. However, at this moment the intersections between ASNOM and the realm of bioimaging are scarce, mainly due to data interp...
We present a novel method for nanoscale reconstruction of complex refractive index by using scattering-type Scanning Near-field Optical Microscopy (s-SNOM). Our method relies on correlating s-SNOM experimental image data with computational data obtained through simulation of the classical oscillating point-dipole model. This results in assigning a...
Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detect silicon carbide defects which are detrimental to...