George Rosenberger

George Rosenberger
Columbia University | CU · Department of Systems Biology

About

80
Publications
14,560
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,647
Citations

Publications

Publications (80)
Article
Consistent detection and quantification of protein post-translational modifications (PTMs) across sample cohorts is a prerequisite for functional analysis of biological processes. Data-independent acquisition (DIA) is a bottom-up mass spectrometry approach that provides complete information on precursor and fragment ions. However, owing to the conv...
Article
Full-text available
Mass spectrometry is the method of choice for deep and reliable exploration of the (human) proteome. Targeted mass spectrometry reliably detects and quantifies pre-determined sets of proteins in a complex biological matrix and is used in studies that rely on the quantitatively accurate and reproducible measurement of proteins across multiple sample...
Article
Full-text available
The determination of absolute quantities of proteins in biological samples is necessary for multiple types of scientific inquiry. While relative quantification has been commonly used in proteomics, few proteomic datasets measuring absolute protein quantities have been reported to date. Various technologies have been applied using different types of...
Article
Full-text available
The dia-PASEF technology uses ion mobility separation to reduce signal interferences and increase sensitivity in proteomic experiments. Here we present a two-dimensional peak-picking algorithm and generation of optimized spectral libraries, as well as take advantage of neural network-based processing of dia-PASEF data. Our computational platform bo...
Preprint
The biguanide drug metformin is a safe and widely prescribed drug for type 2 diabetes. Interestingly, hundreds of clinical trials were set to evaluate the potential role of metformin in the prevention and treatment of cancer including colorectal cancer (CRC). To interrogate cell signaling events and networks in CRC and explore the druggability of t...
Article
Full-text available
To a large extent functional diversity in cells is achieved by the expansion of molecular complexity beyond that of the coding genome. Various processes create multiple distinct but related proteins per coding gene – so-called proteoforms – that expand the functional capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics dat...
Article
Full-text available
Data-independent acquisition (DIA) is becoming a leading analysis method in biomedical mass spectrometry. The main advantages include greater reproducibility and sensitivity and a greater dynamic range compared with data-dependent acquisition (DDA). However, the data analysis is complex and often requires expert knowledge when dealing with large-sc...
Preprint
Full-text available
The cellular proteome, the ensemble of proteins derived from a genome, catalyzes and controls thousands of biochemical functions that are the basis of living cells. Whereas the protein coding regions of the genome of the human and many other species are well known, the complexity and composition of proteomes largely remains to be explored. This tas...
Preprint
Full-text available
Data-independent acquisition (DIA) is becoming a leading analysis method in biomedical mass spectrometry. Main advantages include greater reproducibility, sensitivity and dynamic range compared to data-dependent acquisition (DDA). However, data analysis is complex and often requires expert knowledge when dealing with large-scale data sets. Here we...
Article
Protein-protein interactions (PPIs) play critical functional and regulatory roles in cellular processes. They are essential for macromolecular complex formation, which in turn constitutes the basis for protein interaction networks that determine the functional state of a cell. We and others have previously shown that chromatographic fractionation o...
Article
To date, the effects of specific modification types and sites on protein lifetime have not been systematically illustrated. Here, we describe a proteomic method, DeltaSILAC, to quantitatively assess the impact of site-specific phosphorylation on the turnover of thousands of proteins in live cells. Based on the accurate and reproducible mass spectro...
Article
Proteoforms containing post-translational modifications (PTMs) represent a degree of functional diversity only harnessed through analytically precise simultaneous quantification of multiple PTMs. Here we present a method to accurately differentiate an unmodified peptide from its PTM-containing counterpart through data-independent acquisition-mass s...
Article
Most catalytic, structural and regulatory functions of the cell are carried out by functional modules, typically complexes containing or consisting of proteins. The composition and abundance of these complexes and the quantitative distribution of specific proteins across different modules are therefore of major significance in basic and translation...
Article
Full-text available
Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Her...
Preprint
Full-text available
Post-translational modifications such as phosphorylation can have profound effects on the physicochemical and biological properties of proteins. However, high-throughput and systematic approaches have not yet been developed to assess the effects of specific modification types and sites on protein lifetime, which represents a key parameter for under...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Profiling of biological relationships between different molecular layers dissects regulatory mechanisms that ultimately determine cellular function. To thoroughly assess the role of protein post-translational turnover, we devised a strategy combining pulse stable isotope-labeled amino acids in cells (pSILAC), data-independent acquisition mass spect...
Article
Full-text available
Living systems integrate biochemical reactions that determine the functional state of each cell. Reactions are primarily mediated by proteins. In proteomic studies, these have been treated as independent entities, disregarding their higher-level organization into complexes that affects their activity and/or function and is thus of great interest fo...
Preprint
Full-text available
Protein-protein interactions (PPIs) play a critical role in virtually all cellular processes. Their context-dependent characterization is thus a key objective of proteomic research. We and others have previously shown that chromatographic fractionation of native protein complexes (e.g. through size-exclusion chromatography, SEC) can be effectively...
Preprint
Most catalytic, structural and regulatory functions of the cell are carried out by functional modules, typically complexes containing or consisting of proteins. The composition and abundance of these complexes and the quantitative distribution of specific proteins across different modules is therefore of major significance in basic and translationa...
Article
Full-text available
Due to the technical advances of mass spectrometers, particularly increased scanning speed and higher MS/MS resolution, the use of data-independent acquisition mass spectrometry (DIA-MS) became more popular, which enables high reproducibility in both proteomic identification and quantification. The current DIA-MS methods normally cover a wide mass...
Preprint
Full-text available
Living systems integrate biochemical reactions that determine the functional state of each cell. Reactions are primarily mediated by proteins that have in systematic studies been treated as independent entities, disregarding their higher level organization into complexes which affects their activity and/or function and is thus of great interest for...
Article
Full-text available
Living systems integrate biochemical reactions that determine the functional state of each cell. Reactions are primarily mediated by proteins that have in systematic studies been treated as independent entities, disregarding their higher-level organization into complexes which affects their activity and/or function and is thus of great interest for...
Article
Full-text available
We developed a method to measure proteomes including their contextual state, i.e. arrangement into complexes as functional units. From accurate proteome elution in size exclusion chromatography monitored by DIA/SWATH mass spectrometry, we infer the composition and abundance of protein-protein complexes by protein correlation profiling in a targeted...
Article
Full-text available
Many research questions in fields such as personalized medicine, drug screens or systems biology depend on obtaining consistent and quantitatively accurate proteomics data from many samples. SWATH-MS is a specific variant of data-independent acquisition (DIA) methods and is emerging as a technology that combines deep proteome coverage capabilities...
Preprint
Full-text available
Proteins are major effectors and regulators of biological processes that can elicit multiple functions depending on their interaction with other proteins. The organization of proteins into macromolecular complexes and their quantitative distribution across these complexes is, therefore, of great biological and clinical significance. In this paper w...
Article
Full-text available
Quantitative proteomics employing mass spectrometry is an indispensable tool in life science research. Targeted proteomics has emerged as a powerful approach for reproducible quantification but is limited in the number of proteins quantified. SWATH-mass spectrometry consists of data-independent acquisition and a targeted data analysis strategy that...
Article
Full-text available
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the main method for high-throughput identification and quantification of peptides and inferred proteins. Within this field, data-independent acquisition (DIA) combined with peptide-centric scoring, as exemplified by the technique SWATH-MS, has emerged as a scalable method to ac...
Article
In this Perspective, we discuss developments in mass-spectrometry-based proteomic technology over the past decade from the viewpoint of our laboratory. We also reflect on existing challenges and limitations, and explore the current and future roles of quantitative proteomics in molecular systems biology, clinical research and personalized medicine....
Article
Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods...
Preprint
Full-text available
Quantitative proteomics employing mass spectrometry has become an indispensable tool in basic and applied life science research. Methods based on data-dependent acquisition have proved extremely valuable for qualitative proteome analysis but historically have struggled to achieve reproducible quantitative data if large sample cohorts are comparativ...
Article
Full-text available
High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and...
Article
Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis, but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography-tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To prod...
Article
Chemical cross-linking in combination with mass spectrometry generates distance restraints of amino acid pairs in close proximity on the surface of native proteins and protein complexes. In this study we used quantitative mass spectrometry and chemical cross-linking to quantify differences in cross-linked peptides obtained from complexes in spatial...
Article
Full-text available
Accurate knowledge of retention time (RT) in liquid chromatography-based mass spectrometry data facilitates peptide identification, quantification, and multiplexing in targeted and discovery-based workflows. Retention time prediction is particularly important for peptide analysis in emerging data-independent acquisition (DIA) experiments such as SW...
Article
Full-text available
Mycobacterium tuberculosis remains a health concern due to its ability to enter a non-replicative dormant state linked to drug resistance. Understanding transitions into and out of dormancy will inform therapeutic strategies. We implemented a universally applicable, label-free approach to estimate absolute cellular protein concentrations on a prote...
Article
Full-text available
Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software f...
Article
Full-text available
Clinical specimens are each inherently unique, limited and nonrenewable. Small samples such as tissue biopsies are often completely consumed after a limited number of analyses. Here we present a method that enables fast and reproducible conversion of a small amount of tissue (approximating the quantity obtained by a biopsy) into a single, permanent...
Article
Full-text available
Targeted proteomics by selected/multiple reaction monitoring (S/MRM) or, on a larger scale, by SWATH (sequential window acquisition of all theoretical spectra) MS (mass spectrometry) typically relies on spectral reference libraries for peptide identification. Quality and coverage of these libraries are therefore of crucial importance for the perfor...
Article
Full-text available
Motivation: Data independent acquisition mass spectrometry has emerged as a reproducible and sensitive alternative in quantitative proteomics, where parsing the highly complex tandem mass spectra requires dedicated algorithms. Recently, targeted data extraction was proposed as a novel analysis strategy for this type of data, but it is important to...