George Giamagas

George Giamagas
Verified
George verified their affiliation via an institutional email.
Verified
George verified their affiliation via an institutional email.
  • Ph.D.
  • PostDoc at Laboratory of Geophysical and Industrial Flows

About

7
Publications
592
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
21
Citations
Introduction
Current institution
Laboratory of Geophysical and Industrial Flows
Current position
  • PostDoc
Additional affiliations
LEGI - CNRS
Position
  • PostDoc

Publications

Publications (7)
Conference Paper
Full-text available
We use pseudo-spectral Direct Numerical Simulation (DNS), coupled with a Phase Field Method (PFM), to investigate the turbulent Poiseuille flow of two immiscible liquid layers inside a channel. The two liquid layers, which have the same thickness (h1 = h2 = h), are characterized by the same density (ρ1 = ρ2 = ρ) but different viscosities (η1 ≠ η2),...
Article
Full-text available
In this work, we develop a dual-grid approach for the direct numerical simulations (DNS) of tur- bulent multiphase flows in the framework of the phase-field method (PFM). With the dual-grid approach, the solution of the Navier-Stokes equations (flow-field) and of the Cahn-Hilliard equa- tion (phase-field) are performed on two different computationa...
Article
Full-text available
We investigate the dynamics of turbulence and interfacial waves in an oil–water channel flow. We consider a stratified configuration, in which a thin layer of oil flows on top of a thick layer of water. The oil–water interface that separates the two layers mutually interacts with the surrounding flow field, and is characterized by the formation and...
Article
Full-text available
We study the dynamics of capillary waves at the interface of a two-layer stratified turbulent channel flow. We use a combined pseudo-spectral/phase field method to solve for the turbulent flow in the two liquid layers and to track the dynamics of the liquid–liquid interface. The two liquid layers have same thickness and same density, but different...

Network

Cited By