George Chikvaidze

George Chikvaidze
Institute of Philosophy and Sociology - University of Latvia | LU · Laboratory of Spectroscopy

About

4
Publications
172
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14
Citations
Citations since 2017
4 Research Items
14 Citations
201720182019202020212022202301234567
201720182019202020212022202301234567
201720182019202020212022202301234567
201720182019202020212022202301234567
Introduction
Skills and Expertise

Publications

Publications (4)
Preprint
Full-text available
Crystalline wurtzite zinc oxide (w-ZnO) can be used as a wide band gap semiconductor for light emitting devices and for transparent or high temperature electronics. The use of amorphous zinc oxide (a-ZnO) can be an advantage in these applications. In this paper we report on X-ray amorphous a-ZnOx thin films (~500 nm) deposited at cryogenic temperat...
Preprint
Full-text available
The synthesis of the photochromic YHO films is based on the oxidation of deposited yttrium hydride in ambient conditions. The actual state of the films during the deposition process, which is influenced by the deposition pressure and the oxidation caused by the residual gases, is not completely known. We report on the YHxOy thin films deposited by...
Article
Nanocrystalline zinc peroxide (nano-ZnO2) was synthesized through a hydrothermal process and comprehensively studied using several experimental techniques. Its crystal structure was characterized by X-ray diffraction, and the average crystallite size of 22 nm was estimated by Rietveld refinement. The temperature-dependent local environment around z...
Article
Full-text available
Crystalline wurtzite zinc oxide (w-ZnO) can be used as a wide bandgap semiconductor for light emitting devices and transparent or high temperature electronics. The use of amorphous zinc oxide (a-ZnO) can be an advantage in these applications. In this paper, we report on x-ray amorphous a-ZnO x thin films (∼500 nm) deposited at cryogenic temperature...

Network

Cited By