
George AlexandropoulosNational and Kapodistrian University of Athens | uoa · Faculty of Informatics and Telecommunications
George Alexandropoulos
Ph.D. in Wireless Communications
About
339
Publications
51,934
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,880
Citations
Citations since 2017
Introduction
I am Assistant Professor of Signal Processing for Communications at the Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece, mainly working in the general areas of algorithmic design, optimization, and performance analysis for wireless communications. I have held R&D positions at the Universities of Patras and of the Peloponnese, Technical University of Crete, National Center for Scientific Research-“Demokritos,” National Observatory of Athens, Athens Information Technology, as well as at the Mathematical and Algorithmic Sciences Lab, Paris Research Center, Huawei Technologies France. In 2018, I received the IEEE Communications Society Best Young Professional in Industry Award. More information is available at www.alexandropoulos.info.
Additional affiliations
November 2014 - January 2019
Huawei Technologies France
Position
- Senior Researcher
Description
- Member of the Communication Sciences Department of the Mathematical and Algorithmic Sciences Lab, Paris Research Center.
Publications
Publications (339)
Time Reversal (TR) has been proposed as a competitive precoding strategy for low-complexity devices, relying on ultra-wideband waveforms. This transmit processing paradigm can address the need for low power and low complexity receivers, which is particularly important for the Internet of Things, since it shifts most of the communications signal pro...
The use of in-band full-duplex (FD) enables nodes to simultaneously transmit and receive on the same frequency band, which challenges the traditional assumption in wireless network design. The full-duplex capability enhances spectral efficiency and decreases latency, which are two key drivers pushing the performance expectations of next-generation...
The capability of nodes to transmit and receive data simultaneously within the same frequency band, referred to as in-band FD, disrupts the conventional assumptions underlying wireless network design. This new feature enhances spectral efficiency and reduces latency, which are essential drivers in advancing next-generation networks. In the past few...
Integrated sensing and communications (ISAC) are envisioned to be an integral part of future wireless networks, especially when operating at the millimeter-wave (mm-wave) and terahertz (THz) frequency bands. However, establishing wireless connections at these high frequencies is quite challenging, mainly due to the penetrating path loss that preven...
The technology of reconfigurable intelligent surfaces (RISs) has been showing promising potential in a variety of applications relying on Beyond-5G networks. RIS can indeed provide fine channel flexibility to improve communication quality of service (QoS) or restore localization capabilities in challenging operating conditions, while conventional a...
A revolutionary technology relying on Stacked Intelligent Metasurfaces (SIM) is capable of carrying out advanced signal processing directly in the native electromagnetic (EM) wave regime. An SIM is fabricated by a sophisticated amalgam of multiple stacked metasurface layers, which may outperform its single-layer metasurface counterparts, such as re...
The recent research in the emerging technology of reconfigurable intelligent surfaces (RISs) has identified its high potential for localization and sensing. However, to accurately localize a user placed in the area of influence of an RIS, the RIS location needs to be known a priori and its phase profile is required to be optimized for localization....
A smart city involves, among other elements, intelligent transportation, crowd monitoring, and digital twins, each of which requires information exchange via wireless communication links and localization of connected devices and passive objects (including people). Although localization and sensing (L&S) are envisioned as core functions of future co...
In the upcoming sixth generation (6G) of wireless communication systems, reconfigurable intelligent surfaces (RISs) are regarded as one of the promising technological enablers, which can provide programmable signal propagation. Therefore, simultaneous radio localization and mapping (SLAM) with RISs appears as an emerging research direction within t...
Reconfigurable Intelligent Surfaces (RISs) constitute a strong candidate physical-layer technology for the $6$-th Generation (6G) of wireless networks, offering new design degrees of freedom for efficiently addressing demanding performance objectives. In this paper, we consider a Multiple-Input Single-Output (MISO) physical-layer security system in...
The full-duplex (FD) technology has the potential to radically evolve wireless systems, facilitating the integration of both communications and radar functionalities into a single device, thus, enabling joint communication and sensing (JCAS). In this paper, we present a novel approach for JCAS that incorporates a reconfigurable intelligent surface...
Reconfigurable intelligent surfaces (RISs) have tremendous potential for both communication and localization. While communication benefits are now well understood, the breakthrough nature of the technology may well lie in its capability to provide and support localization capabilities. We present an overview of RIS-enabled localization scenarios, c...
The envisioned sixth-generation (6G) of wireless networks will involve an intelligent integration of communications and computing to meet the urgent demands of task-oriented applications. To realize the concept of the smart radio environment, reconfigurable intelligent surfaces (RISs) are becoming promising options for offering programmable propaga...
p>Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requir...
This paper presents the development and evaluation of WiThRay, a new wireless three-dimensional ray-tracing (RT) simulator. RT-based simulators are widely used for generating realistic channel data by combining RT methodology to get signal trajectories and electromagnetic (EM) equations, resulting in generalized channel impulse responses (CIRs). Th...
The use of in-band full-duplex (FD) enables nodes to simultaneously transmit and receive on the same frequency band, which challenges the traditional assumption in wireless network design. The full-duplex capability enhances spectral efficiency and decreases latency, which are two key drivers pushing the performance expectations of next-generation...
Recent research and development interests deal with metasurfaces for wireless systems beyond their consideration as intelligent tunable reflectors. Among the latest proposals is the simultaneously transmitting (a.k.a. refracting) and reflecting reconfigurable intelligent surface (STAR‐RIS) which intends to enable bidirectional indoor‐to‐outdoor, an...
Reconfigurable Intelligent Surfaces (RISs) are envisioned to play a key role in future wireless communications, enabling programmable radio propagation environments. They are usually considered as almost passive planar structures that operate as adjustable reflectors, giving rise to a multitude of implementation challenges, including the inherent d...
The research on Reconfigurable Intelligent Surfaces (RISs) has dominantly been focused on physical-layer aspects and analyses of the achievable adaptation of the propagation environment. Compared to that, the questions related to link/MAC protocol and system-level integration of RISs have received much less attention. This paper addresses the probl...
The technology of reconfigurable intelligent surfaces (RIS) has been showing promising potential in a variety of applications relying on Beyond-5G networks. Reconfigurable intelligent surface (RIS) can indeed provide fine channel flexibility to improve communication quality of service (QoS) or restore localization capabilities in challenging operat...
Reconfigurable Intelligent Surfaces (RISs) constitute the key enabler for programmable electromagnetic propagation environments, and are lately being considered as a candidate physical-layer technology for the demanding connectivity, reliability, localization, and sustainability requirements of next generation wireless networks. In this paper, we f...
This paper presents an in-band Full Duplex (FD) integrated sensing and communications system comprising a holographic Multiple-Input Multiple-Output (MIMO) base station, which is capable to simultaneously communicate with multiple users in the downlink direction, while sensing targets being randomly distributed within its coverage area. Considering...
Beamforming with large-scale antenna arrays has been widely used in recent years, which is acknowledged as an important part in 5G and incoming 6G. Thus, various techniques are leveraged to improve its performance, e.g., deep learning, advanced optimization algorithms, etc. Although its performance in many previous research scenarios with deep lear...
The reconfigurable intelligent surface (RIS) has been recognized as an essential enabling technology for sixth-generation (6G) mobile communication networks. An RIS comprises a large number of small and low-cost reflecting elements whose parameters can be dynamically adjusted with a programmable controller. Each of these elements can effectively re...
Indexed modulation (IM) is an evolving technique that has become popular due to its ability of parallel data communication over distinct combinations of transmission entities. In this article, we first provide a comprehensive survey of IM-enabled multiple access (MA) techniques, emphasizing the shortcomings of existing non-indexed MA schemes. Theor...
This paper studies the exploitation of triple polarization (TP) for multi-user (MU) holographic multiple-input multiple-output surface (HMIMOS) wireless communication systems, aiming at capacity boosting without enlarging the antenna array size. We specifically consider that both the transmitter and receiver are equipped with an HMIMOS comprising c...
We analytically derive from first physical principles the functional dependence of wireless channels on the RIS configuration for generic (i.e., potentially complex-scattering) RIS-parametrized radio environments. The wireless channel is a linear input-output relation that depends non-linearly on the RIS configuration because of two independent mec...
Recent research and development interests deal with metasurfaces for wireless systems beyond their consideration as intelligent tunable reflectors. Among the latest proposals is the simultaneously transmitting (a.k.a. refracting) and reflecting reconfigurable intelligent surface (STAR-RIS) which intends to enable bidirectional indoor-to-outdoor, an...
A smart city involves, among other elements, intelligent transportation, crowd monitoring, and digital twins, each of which requires information exchange via wireless communication links and localization of connected devices and passive objects (including people). Although localization and sensing (L&S) are envisioned as core functions of future co...
Reconfigurable Intelligent Surfaces (RISs) have been recently proposed as an enabling technology for programmable wireless environments. In this paper, we present asymptotic closed-form expressions for the mean and variance of the mutual information for a multi-antenna transmitter-receiver pair in the presence of RISs, using statistical physics met...
This paper investigates the utilization of triple polarization (TP) for multi-user (MU) wireless communication systems with holographic multiple-input multi-output surfaces (HMIMOSs), targeting capacity boosting and diversity exploitation without enlarging the antenna array sizes of the transceivers. We specifically consider that both the transmitt...
This paper presents the development and evaluation of WiThRay, a new wireless three-dimensional ray-tracing (RT) simulator. RT-based simulators are widely used for generating realistic channel data by combining RT methodology to get signal trajectories and electromagnetic (EM) equations, resulting in generalized channel impulse responses (CIRs). Th...
The potential of Reconfigurable Intelligent Surfaces (RISs) for energy-efficient and performance-boosted wireless communications is recently gaining remarkable research attention, motivating their consideration for various 5-th Generation (5G) Advanced and beyond applications. In this paper, we consider a Multiple-Input Multiple-Output (MIMO) Physi...
Time reversal (TR) has been proposed as a competitive precoding strategy for low-complexity devices relying on ultra-wideband waveforms, as it shifts the signal processing complexity to the transmitter side. This transmit precoding paradigm can address the need for low-power, low-complexity receivers, which is particularly important for the Interne...
Cyclic-prefix single-carrier transmissions aided by a reconfigurable intelligent surface (RIS) can extract multipath diversity profiting from the cyclic delay diversity technique. However, due to the substantial number of unit elements an RIS can possess, the pilot block size can be extremely large, violating the requirement for low-latency communi...
In the above article
[1]
, the reconfigurable intelligent surface (RIS) response model in (17) needs to be modified as follows:
Indexed modulation (IM) is an evolving technique that has become popular due to its ability of parallel data communication over distinct combinations of transmission entities. In this article, we first provide a comprehensive survey of IM-enabled multiple access (MA) techniques, emphasizing the shortcomings of existing non-indexed MA schemes. Theor...
We propose a framework for monostatic sensing by a user equipment (UE), aided by a reconfigurable intelligent surface (RIS) in environments with single- and double-bounce signal propagation. We design appropriate UE-side precoding and combining, to facilitate signal separation. We derive the adaptive detection probabilities of the resolvable signal...
In the upcoming sixth generation (6G) of wireless communication systems, reconfigurable intelligent surfaces~(RISs) are regarded as one of the promising technological enablers, which can provide programmable signal propagation. Therefore, simultaneous radio localization and mapping(SLAM) with RISs appears as an emerging research direction within th...
p>Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requir...
p>The potential of Reconfigurable Intelligent Surfaces (RISs) for energy-efficient and performance-boosted wireless communications is recently gaining remarkable research attention, motivating their consideration for various $5$-th Generation (5G) Advanced and beyond applications. In this paper, we consider a Multiple-Input Multiple-Output (MIMO) P...
p>The potential of Reconfigurable Intelligent Surfaces (RISs) for energy-efficient and performance-boosted wireless communications is recently gaining remarkable research attention, motivating their consideration for various $5$-th Generation (5G) Advanced and beyond applications. In this paper, we consider a Multiple-Input Multiple-Output (MIMO) P...
p>Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requir...
Hybrid relaying networks (HRNs) combining both a relay and an intelligent reflective surface (IRS) can lead to enhanced rate performance compared to non-hybrid relaying schemes, where only either an IRS or a relay is utilized. However, utilizing both the relay and the IRS simultaneously results in higher power consumption for the HRNs compared to t...
The potential of Reconfigurable Intelligent Surfaces (RISs) for energy-efficient and performance-boosted wireless communications is recently gaining remarkable research attention, motivating their consideration for various $5$-th Generation (5G) Advanced and beyond applications. In this paper, we consider a Multiple-Input Multiple-Output (MIMO) Phy...
In this paper, we introduce the concept of partially-connected Receiving Reconfigurable Intelligent Surfaces (R-RISs), which refers to metasurfaces designed to efficiently sense electromagnetic waveforms impinging on them, and perform localization of the users emitting them. The presented R-RIS hardware architecture comprises subarrays of meta-atom...
Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requirem...
Late visions and trends for the future 6G of wireless communications advocate, among other technologies, the deployment of network nodes with extreme numbers of antennas and up to terahertz frequencies as a means to enable various immersive applications. However, these technologies impose several challenges in the design of radio-frequency (RF) fro...
The increasingly demanding objectives for next-generation wireless communications have spurred recent research activities on multiantenna transceiver hardware architectures and relevant intelligent communication schemes. Among them belong full-duplex (FD) multiple-input, multiple-output (MIMO) architectures, which offer the potential for simultaneo...
This paper investigates the utilization of triple polarization (TP) for multi-user (MU) holographic multiple-input multi-output surface (HMIMOS) wireless communication systems, targeting capacity boosting and diversity exploitation without enlarging the antenna array sizes. We specifically consider that both the transmitter and receiver are both eq...
Integrated sensing and communications (ISAC) are envisioned to be an integral part of future wireless networks, especially when operating at the millimeter-wave (mmWave) and terahertz (THz) frequency bands. However, establishing wireless connections at these high frequencies is quite challenging, mainly due to the penetrating pathloss that prevents...
In this paper, we propose a wideband Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) communication system comprising of an FD MIMO node simultaneously communicating with two multi-antenna UpLink (UL) and DownLink (DL) nodes utilizing the same time and frequency resources. To suppress the strong Self-Interference (SI) signal due to simultaneo...
In this paper, the programmable signal propagation paradigm, enabled by Reconfigurable Intelligent Surfaces (RISs), is exploited for high accuracy $3$-Dimensional (3D) user localization with a single multi-antenna base station. Capitalizing on the tunable reflection capability of passive RISs, we present a two-stage user localization method leverag...
Hybrid Reconfigurable Intelligent Surfaces (HRISs), which are capable of simultaneous programmable reflections and sensing, are expected to play a significant role in future wireless networks, enabling various Integrated Sensing and Communication (ISAC) applications. In this paper, we focus on HRIS-enabled Unmanned Aerial Vehicle (UAV) networks and...
The recent research in the emerging technology of reconfigurable intelligent surfaces (RISs) has identified its high potential for localization and sensing. However, to accurately localize a user placed in the area of influence of an RIS, the RIS location needs to be known a priori and its phase profile is required to be optimized for localization....