Georg Schusteritsch

Georg Schusteritsch
University College London | UCL · Department of Physics and Astronomy

About

16
Publications
1,964
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
496
Citations

Publications

Publications (16)
Article
Full-text available
The formation of nanoscale phases at grain boundaries in polycrystalline materials has attracted much attention, since it offers a route toward targeted and controlled design of interface properties. However, understanding structure–property relationships at these complex interfacial defects is hampered by the great challenge of accurately determin...
Article
In spite of their importance for understanding phonon transport phenomena in thin films and polycrystalline solids, the effects of boundary roughness scattering on phonon specularity and coherence are poorly understood because there is no general method for predicting their dependence on phonon momentum, frequency, branch, and boundary morphology....
Preprint
Full-text available
In spite of their importance for understanding phonon transport phenomena in thin films and polycrystalline solids, the effects of boundary roughness scattering on phonon specularity and coherence are poorly understood because there is no general method for predicting their dependence on phonon momentum, frequency, branch and boundary morphology. U...
Article
Full-text available
MgO makes up about 20% of the Earth’s lower mantle; hence, its rheological behaviour is important for the dynamics and evolution of the Earth. Here, we investigate the strength of twin boundaries from 0 to 120 GPa using DFT calculations together with structure prediction methods. As expected, we find that the energy barrier and critical stress for...
Article
Full-text available
Vertically aligned nanocomposite (VAN) films have self-assembled pillar-matrix nanostructures. Owing to their large area-to-volume ratios, interfaces in VAN films are expected to play key roles in inducing functional properties, but our understanding is hindered by limited knowledge about their structures. Motivated by the lack of definitive explan...
Article
The formation of monolayer and multilayer ice with a square lattice structure has recently been reported on the basis of transmission electron microscopy experiments, renewing interest in confined two-dimensional ice. Here we report a systematic density functional theory study of double-layer ice in nanoconfinement. A phase diagram as a function of...
Article
The formation of monolayer and multilayer ice with a square lattice structure has recently been reported on the basis of transmission electron microscopy experiments, renewing interest in confined two dimensional ice. Here we report a systematic density functional theory study of double-layer ice in nano-confinement. A phase diagram as a function o...
Article
Full-text available
We investigate the changes in grain boundary sliding (GBS) and intergranular decohesion in copper (Cu), due to the inclusion of bismuth (Bi), lead (Pb) and silver (Ag) substitutional impu- rity atoms at a Σ5(012) symmetric tilt grain boundary (GB), using a first-principles concurrent multiscale approach. We first study the segregation behavior of t...
Article
Full-text available
We propose here a two-dimensional material based on a single layer of violet or Hittorf's phosphorus. Using first-principles density functional theory, we find it to be energetically very stable, comparable to other previously proposed single-layered phosphorus structures. It requires only a small energetic cost of approximately 0.04 eV/atom to be...
Article
Full-text available
Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structur...
Article
Full-text available
We present here a first-principles study of the ternary compounds formed by Ni, In, and As, a material of great importance for self-aligned metallic contacts in next-generation InAs-based MOS transistors. The approach we outline is general and can be applied to study the crystal structure and properties of a host of other new interface compounds. U...
Article
Full-text available
We present here a fully first-principles method for predicting the atomic structure of interfaces. Our method is based on the {\it ab initio} random structure searching (AIRSS) approach, applied here to treat two dimensional defects. The method relies on repeatedly generating random structures in the vicinity of the interface and relaxing them with...
Article
Full-text available
We report Time-Domain ThermoReflectance experiments measuring the Thermal Boundary Conductance (TBC) of interfaces between diamond and metal surfaces, based on samples consisting of [111]-oriented diamond substrates with hydrogen or with sp2 carbon surface terminations created using plasma treatments. In a concurrent theoretical study, we calculate...
Article
We study the embrittlement of Ni due to the presence of S impurities, considering their effect in the bulk and at grain boundaries (GBs). For bulk Ni, we employ Rice's theory based on generalized-stacking-fault energetics and the unstable stacking energy criterion. We use first-principles density-functional-theory calculations to determine the duct...

Network

Cited By

Projects