Geoffry N. De Iuliis

Geoffry N. De Iuliis
  • PhD
  • Professor (Associate) at University of Newcastle Australia

About

105
Publications
15,334
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,708
Citations
Current institution
University of Newcastle Australia
Current position
  • Professor (Associate)
Additional affiliations
February 2014 - February 2015
University of Newcastle Australia
Position
  • PostDoc Position
March 2005 - January 2014
University of Newcastle Australia
Position
  • PostDoc Position

Publications

Publications (105)
Article
Full-text available
Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the speci...
Article
Full-text available
Our previous studies have shown that p53 isoform expression is altered in breast cancer and related to prognosis. In particular, a high ∆40p53:p53α ratio is associated with worse disease-free survival. In this manuscript, the influence of altered Δ40p53 and p53α levels on the response to standard of care DNA-damaging agents used in breast cancer tr...
Preprint
Full-text available
FLT3-mutations are diagnosed in 25-30% of patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is associated with the overproduction of reactive oxygen species (ROS), which drives genomic instability through the oxidation of DNA bases, promoting clonal evolution, treatment resistance and poor outcomes. ROS are al...
Article
Full-text available
Per-fluoroalkyl and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic fluorinated chemicals used widely in industry and consumer products. Due to their extensive use and chemical stability, PFAS are ubiquitous environmental contaminants and as such, form an emerging risk factor for male reproductive health. The long half-lives of P...
Article
Full-text available
This article reports the proteomic legacy of in vivo exposure to the xenobiotic, acrylamide on the epithelial cell population of the proximal segments of the mouse epididymis. Specifically, adult male mice were administered acrylamide (25 mg/kg bw/day) or vehicle control for five consecutive days before dissection of the epididymis. Epididymal epit...
Article
Background Pediatric diffuse midline gliomas (DMGs) are incurable childhood cancers. The imipridone ONC201 has shown early clinical efficacy in a subset of DMGs. However, the anticancer mechanisms of ONC201 and its derivative ONC206 have not been fully described in DMGs. Methods DMG models including primary human in vitro (n=18), and in vivo (muri...
Article
Full-text available
Background Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem tumor for which radiation is the only treatment. Case studies report a clinical response to ONC201 for patients with H3K27M-mutant gliomas. Oncoceutics (ONC201) is only available in the United States and Japan; however, in Germany, DIPG patients can be prescribed and...
Article
Full-text available
Diffuse midline glioma (DMG) is a deadly pediatric and adolescent central nervous system (CNS) tumor localized along the midline structures of the brain atop the spinal cord. With a median overall survival (OS) of just 9–11-months, DMG is characterized by global hypomethylation of histone H3 at lysine 27 (H3K27me3), driven by recurring somatic muta...
Article
Full-text available
Paternal exposure to environmental stressors elicits distinct changes to the sperm sncRNA profile, modifications that have significant post-fertilization consequences. Despite this knowledge, there remains limited mechanistic understanding of how paternal exposures modify the sperm sncRNA landscape. Here, we report the acute sensitivity of the sper...
Article
Full-text available
Stallion sperm membranes comprise a high proportion of polyunsaturated fatty acids, making stallion spermatozoa especially vulnerable to peroxidative damage from reactive oxygen species generated as a by-product of cell metabolism. Membrane lipid replacement therapy with glycerophospholipid (GPL) mixtures has been shown to reduce oxidative damage i...
Article
Full-text available
The aims of this study were to investigate the proteome of koala spermatozoa and that of the prostatic bodies with which they interact during ejaculation. For this purpose, spermatozoa and prostatic bodies were fractionated from the semen of four male koalas and analysed by HPLC MS/MS. This strategy identified 744 sperm and 1297 prostatic body prot...
Chapter
Selecting good-quality sperm for use in in-vitro fertilization is a key step in assisted reproduction. For many years purely morphological attributes have been used to assess suitability, but increasingly biochemical and molecular biological techniques are now identifying sperm with the best chances of producing viable and healthy embryos. Focusing...
Article
Full-text available
Spermatozoa transition to functional maturity as they are conveyed through the epididymis, a highly specialized region of the male excurrent duct system. Owing to their transcriptionally and translationally inert state, this transformation into fertilization competent cells is driven by complex mechanisms of intercellular communication with the sec...
Article
Full-text available
Information on the morphology and histology of the male reproductive system of the Crocodylia species is necessary to determine the role of these tissues in the production of functional spermatozoa. Accordingly, in this study we examined the gross morphology and microanatomy of the testis and the male excurrent duct system through which spermatozoa...
Article
Full-text available
Conservation efforts to secure the long-term survival of crocodilian species would benefit from the establishment of a frozen sperm bank in concert with artificial breeding technologies to maintain genetic diversity among captive assurance populations. Working towards this goal, our research has focused on the saltwater crocodile Crocodylus porosus...
Article
Full-text available
A prevalent cause of sperm dysfunction in male infertility patients is the overproduction of reactive oxygen species, an attendant increase in lipid peroxidation and the production of cytotoxic reactive carbonyl species such as 4-hydroxynonenal. Our previous studies have implicated arachidonate 15-lipoxygenase (ALOX15) in the production of 4-hydrox...
Article
Spermatogonial stem cells (SSCs) are generally characterized by excellent DNA surveillance and repair, resulting in one of the lowest spontaneous mutation rates in the body. However, the barriers to mutagenesis can be overwhelmed under two sets of circumstances. First, replication errors may generate age-dependent mutations that provide the mutant...
Article
Full-text available
We report that the naphthalimide analogue 2-(2-aminophenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NAP-6) is a highly potent and selective breast cancer targeting molecule. These effects are mediated via the aryl hydrocarbon receptor (AHR) pathway and the subsequent induction of CYP1 metabolising monooxygenases in breast cancer cell line models. I...
Article
Competition to achieve paternity has coerced the development of a multitude of male reproductive strategies. In one of the most well-studied examples, the spermatozoa of all mammalian species must undergo a series of physiological changes as they transit the male (epididymal maturation) and female (capacitation) reproductive tracts prior to realizi...
Article
Full-text available
The tumour suppressor p53 is essential for maintaining DNA integrity, and plays a major role in cellular senescence and aging. Understanding the mechanisms that contribute to p53 dysfunction can uncover novel possibilities for improving cancer therapies and diagnosis, as well as cognitive decline associated with aging. In recent years, the complexi...
Article
Reactive oxygen species (ROS) are implicated in all aspects of cellular functions. While the importance of as ROS signalling molecules is well described, ROS are also associated with stress pathologies. Within the reproduction field, there are associations with reduced fertility as a result of lipid peroxidation, protein dysfunction, premature cell...
Article
Full-text available
Oxidative stress is a leading causative agent in the defective sperm function associated with male infertility. Such stress commonly manifests via the accumulation of pathological levels of the electrophilic aldehyde, 4-hydroxynonenal (4HNE), generated as a result of lipid peroxidation. This highly reactive lipid aldehyde elicits a spectrum of cyto...
Article
Full-text available
Artificially generated radiofrequency-electromagnetic energy (RF-EME) is now ubiquitous in our environment owing to the utilization of mobile phone and Wi-Fi based communication devices. While several studies have revealed that RF-EME is capable of eliciting biological stress, particularly in the context of the male reproductive system, the mechani...
Article
Background Our understanding of epididymal physiology and function has been transformed over the three decades in which the International Meeting Series on the Epididymis has been hosted. This transformation has occurred along many fronts, but among the most significant advances has been the unexpected discovery of the diversity of small non‐protei...
Article
Full-text available
Background The mammalian epididymis is responsible for the provision of a highly specialized environment in which spermatozoa acquire functional maturity and are subsequently stored in preparation for ejaculation. Making important contributions to both processes are epididymosomes, small extracellular vesicles released from the epididymal soma via...
Article
Full-text available
An increase in oxidative protein damage is a leading contributor to age-associated decline in oocyte quality. By removing such damaged proteins, the proteasome plays an essential role in maintaining the fidelity of oocyte meiosis. In this study, we established that decreased proteasome activity in naturally aged, germinal vesicle (GV) mouse oocytes...
Article
Full-text available
Germline oxidative stress is intimately linked to several reproductive pathologies including a failure of sperm-egg recognition. The lipid aldehyde 4-hydroxynonenal (4HNE) is particularly damaging to the process of sperm-egg recognition as it compromises the function and the stability of several germline proteins. Considering mature spermatozoa do...
Article
Full-text available
As the use of mobile phone devices is now highly prevalent, many studies have sought to evaluate the effects of the radiofrequency-electromagnetic radiation (RF-EMR) on both human health and biology. While several such studies have shown RF-EMR is capable of inducing cellular stress, the physicobiological origin of this stress remains largely unres...
Data
Cell viability under RF-EMR exposure. Associated viability counts were performed for all cell types exposed to RF-EMR treatment. (A) GC1, (B) GC2, (C) spermatogonia, (D) HEK293, (E) COV434, and (F) McCoy cells exposed to 0.15 W/kg RF-EMR (top box). (G) GC1, (H) GC2, and (I) spermatozoa exposed to 1.5 W/kg RF-EMR (bottom box).
Data
Examination of the effect of exposing male germ cells and spermatozoa to an elevated dose of RF-EMR. The studies reported in Figure 1 of this manuscript were replicated on (A) GC1 (B) GC2 cell lines and (C) spermatozoa exposed to an elevated intensity of RF-EMR (1.5 W/kg). Mitochondrial ROS generation in both germ cell populations and spermatozoa w...
Article
Full-text available
The functional maturation of spermatozoa that is necessary to achieve fertilization occurs as they transit through the epididymis, a highly specialized region of the male reproductive tract. A defining feature of this maturation process is that it occurs in the complete absence of nuclear gene transcription or de novo protein translation in the spe...
Article
The mammalian epididymis generates one of the most complex intraluminal fluids of any endocrine gland in order to support the post-testicular maturation and storage of spermatozoa. Such complexity arises due to the combined secretory and absorptive activity of the lining epithelial cells. Here, we describe the techniques for the analysis of epididy...
Article
One of the leading causes of male infertility is defective sperm function, a pathology that commonly arises from oxidative stress in the germline. Lipid peroxidation events in the sperm plasma membrane result in the generation of cytotoxic aldehydes such as 4-hydroxynonenal (4HNE), which accentuate the production of reactive oxygen species (ROS) an...
Article
Full-text available
The testicular spermatozoa of all mammalian species are considered functionally immature owing to their inability to swim in a progressive manner and engage in productive interactions with the cumulus–oocyte complex. The ability to express these key functional attributes develops progressively during the cells’ descent through the epididymis, a hig...
Article
The reproductive consequences of global warming are not currently understood. In order to address this issue we have examined the reproductive consequences of exposing male mice to a mild heat stress. For this purpose, adult male mice were exposed to an elevated ambient temperature of 35°C under two exposure models. The first involved acute exposur...
Article
We have previously reported the synthesis and breast cancer selectivity of (Z)-2-(3,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile (ANI-7) in cancer cell lines. To further evaluate the selectivity of ANI-7 we have expanded upon the initial cell line panel to now include the breast cancer cell lines (MCF7, MCF7/VP16, BT474, T47D, ZR-75-1, SKBR3,...
Article
Full-text available
An increase in intraovarian reactive oxygen species (ROS) has long been implicated in the decline in oocyte quality associated with maternal ageing. Oxidative stress (OS)-induced lipid peroxidation and the consequent generation of highly electrophilic aldehydes, such as 4-hydroxynonenal (4-HNE), represents a potential mechanism by which ROS can inf...
Article
Study question: Does dynamin regulate human sperm acrosomal exocytosis? Summary answer: Our studies of dynamin localization and function have implicated this family of mechanoenzymes in the regulation of progesterone-induced acrosomal exocytosis in human spermatozoa. What is known already: Completion of an acrosome reaction is a prerequisite f...
Chapter
Among the numerous families of heat shock protein (HSP) that have been implicated in the regulation of reproductive system development and function, those belonging to the 70 kDa HSP family have emerged as being indispensable for male fertility. In particular, the testis-enriched heat shock 70 kDa protein 2 (HSPA2) has been shown to be critical for...
Article
The need to protect human spermatozoa from oxidative stress during assisted reproductive technology, has prompted a detailed analysis of the impacts of phenolic compounds on the functional integrity of these cells. Investigation of 16 individual compounds revealed a surprising variety of negative effects including: (i) a loss of mitochondrial membr...
Article
Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of ho...
Article
We have discovered a class of phenylacrylonitrile-based small molecules that selectively target breast cancer cell lines while having little to no effect on normal breast cancer cells or on cell lines derived from other tumour types including colon, ovarian, lung, skin, prostate and pancreatic carcinomas, neuroblastoma and glioblastoma. Indeed thes...
Article
STUDY QUESTION What are the mechanisms by which the preparation of spermatozoa on discontinuous density gradients leads to an increase in oxidative DNA damage?
Article
Full-text available
One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, whic...
Article
Full-text available
Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. This review provides a synopsis of the most recent studies from each of the...
Article
Full-text available
The discovery of a truncated base excision repair pathway in human spermatozoa mediated by OGG1 has raised questions regarding the effect of mutations in critical DNA repair genes on the integrity of the paternal genome. The senescence accelerated mouse prone 8 (SAMP8) is a mouse model containing a suite of naturally occurring mutations resulting i...
Article
Full-text available
This article considers the origins of DNA damage in human spermatozoa, the methods that are available to monitor this aspect of semen quality and the clinical significance of such measurements. DNA damage in spermatozoa appears to be largely oxidative in nature, inversely correlated with levels of nuclear protamination and frequently associated wit...
Article
Oxidative stress is known to have a major impact on human sperm function and, as a result, there is a need to develop sensitive methods for measuring reactive oxygen species (ROS) generation by these cells. A variety of techniques have been developed for this purpose including chemiluminescence (luminol and lucigenin), flow cytometry (MitoSOX Red,...
Article
Full-text available
The prolonged incubation of human spermatozoa in vitro was found to induce a loss of motility associated with the activation of mitochondrial reactive oxygen species generation in the absence of any change in mitochondrial membrane potential. The increase in mitochondrial free radical production was paralleled by a loss of protein thiols and a conc...
Article
Contents Our ability to diagnose and treat male infertility is gradually improving in concert with advances in our understanding of the molecular mechanisms underpinning defective sperm function. In this context, one of the factors to emerge as a major causative agent in male infertility is oxidative stress. Spermatozoa are particularly susceptible...
Article
Full-text available
Oxidative stress is a major cause of defective sperm function in cases of male infertility. Such stress is known to be associated with high levels of superoxide production by the sperm mitochondria; however, the causes of this aberrant activity are unknown. Here we show that electrophilic aldehydes such as 4-hydroxynonenal (4HNE) and acrolein, gene...
Chapter
The beneficial impacts of mobile-based communications on society are considerable. Health concerns over the broadcast of radio frequency electromagnetic waves, which carry the information for this medium, are now gaining momentum but are not without its controversies. Studies in the past that aim to determine whether concerns are warranted are some...
Chapter
The accurate, selective measurement of reactive oxygen species (ROS) production by human spermatozoa is still a work-in-progress. Traditionally, chemiluminescence approaches have been employed using luminol or lucigenin as probes to provide a sensitive readout of the redox status of human sperm populations. A particular concern with these chemilumi...
Chapter
DNA damage in human spermatozoa is a source of some concern because of its association with impaired conception, disrupted embryonic development, increased rates of miscarriage, and morbidity in the offspring. Oxidative stress appears to be the single most important cause of sperm DNA damage, although the factors responsible for the creation of thi...
Article
Full-text available
DNA damage in human spermatozoa is known to be associated with a variety of adverse clinical outcomes affecting both reproductive efficiency and the health and wellbeing of the offspring. However, the origin of this damage, its biochemical nature and strategies for its amelioration, still await resolution. Using novel methods to simultaneously asse...
Article
Infertility is a relatively common condition affecting approximately one in ten of the population. In half of these cases, a male factor is involved, making defective sperm function the largest single, defined cause of human infertility. Among other factors, recent data suggest that oxidative stress plays a major role in the etiology of this condit...
Article
The purpose of this study was to evaluate the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay as a method for assessing DNA damage in human spermatozoa. The conventional assay was shown to be insensitive and unresponsive to the DNA fragmentation induced in human and mouse spermatozoa on exposure to Fenton reagents (H₂O₂...
Article
Dasyurids are a diverse group of Australian native carnivores and insectivores that contains several threatened species. Despite successful cryopreservation of sperm from several marsupials, only 3% postthaw motility is reported for dasyurid marsupials. This study examined sperm preservation in the fat-tailed dunnart (Sminthopsis crassicaudata), an...
Article
DNA damage in the male germ line has been linked with a variety of adverse clinical outcomes including impaired fertility, an increased incidence of miscarriage and an enhanced risk of disease in the offspring. The origins of this DNA damage could, in principle, involve: (i) abortive apoptosis initiated post meiotically when the ability to drive th...
Article
Whereas studies have revealed that the cryopreservation of human semen increases sperm DNA fragmentation, the mechanisms involved in this type of cryo-injury are largely unknown. Elucidation of these mechanisms may provide insight into preventing such injury. We obtained 60 semen samples from 60 men and conducted experiments to determine the cause...
Article
DNA damage in human spermatozoa has been associated with a range of adverse clinical outcomes, including infertility, abortion, and disease in the offspring. We have advanced a two-step hypothesis to explain this damage involving impaired chromatin remodeling during spermiogenesis followed by a free radical attack to induce DNA strand breakage. The...
Article
DNA damage is a common feature of human spermatozoa with purported links to poor rates of conception, impaired embryonic development, an increased incidence of miscarriage and the appearance of various kinds of morbidity in the offspring including childhood cancer. However, difficulties in interpretation arise, because these associations are not co...
Article
Full-text available
BACKGROUND: In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved ha...
Article
Unusually high levels of DNA damage in the male germ line are, unfortunately, characteristic of our species. A great deal of circumstantial evidence has linked DNA damage in human spermatozoa with adverse reproductive outcomes including reduced fertility and high rates of miscarriage. Although oxidative stress is thought to make a significant contr...
Article
Full-text available
Male infertility has been linked with the excessive generation of reactive oxygen species (ROS) by defective spermatozoa. However, the subcellular origins of this activity are unclear. The objective of this study was to determine the importance of sperm mitochondria in creating the oxidative stress associated with defective sperm function. Intracel...
Article
Full-text available
A great deal of circumstantial evidence has linked DNA damage in human spermatozoa with adverse reproductive outcomes including reduced fertility and high rates of miscarriage. Although oxidative stress is thought to make a significant contribution to DNA damage in the male germ line, the factors responsible for creating this stress have not been e...
Article
DNA damage in the male germ line is associated with failed fertilization, impaired preimplantation development and poor pregnancy outcomes. Large-scale epidemiological studies have also suggested that DNA damage in spermatozoa is associated with adverse impacts on the health and wellbeing of children, including dominant genetic disease and childhoo...
Article
DNA damage in the male germline is associated with poor fertilization rates following IVF, defective preimplantation embryonic development, and high rates of miscarriage and morbidity in the offspring, including childhood cancer. This damage is poorly characterized, but is known to involve hypomethylation of key genes, oxidative base damage, endonu...
Article
Full-text available
Lipid peroxidation is known to be a major factor in the aetiology of defective sperm function. Although biochemical assays for this process exist, they are relatively insensitive and require large numbers of spermatozoa; a condition that cannot be met with many infertility specimens. Recently, a new approach for monitoring peroxidative damage has b...
Chapter
The issue of male germ line mutagenesis and the effects on developmental defects in the next generation has become increasingly high profile over recent years. Mutations are thought to be becoming more prevalent as a result of: exposure to chemicals in the environment, anti cancer regimes that use genotoxic agents and assisted conception techniques...
Article
DNA damage in the male germ line is associated with failed fertilisation, impaired preimplantation development and poor pregnancy outcomes, whether the insemination is natural or artificial. It is also apparent that DNA damage in spermatozoa is associated with adverse impacts on the health and wellbeing of children. This may be particularly importa...
Article
Full-text available
Defective sperm function is the largest defined cause of human infertility; however, the etiology of this condition is poorly understood. Although oxidative stress is acknowledged as a key contributor to this pathology, there are also data indicating that defective human spermatozoa contain abnormally high amounts of cis-unsaturated fatty acids. Th...
Article
Based on the 10-methyl-1,4,8,12-tetraazacyclopentadecane-10-amine (1) parent, macrocycles 10-benzylamine-10-methyl-1,4,8,12-tetraazacyclopentadecane (2), 10-(2′-pyridinylmethanamino)-10-methyl-1,4,8,12- tetraazacyclopentadecane (3) and 5-(hydroxymethyl)-5′-(10″-methyl- 1″,4″,8″,12″-tetraazacyclopentadecane-10″-amino) -(2,2′-dipyridine) (4), as well...
Article
Full-text available
Oxidative stress in the male germ line has been associated with poor fertility, impaired embryonic development, miscarriage, and childhood disease. Such stress is known to be associated with the peroxidation of unsaturated fatty acids in the sperm plasma membrane and oxidative DNA damage to both the nuclear and mitochondrial genomes. However, the s...

Network

Cited By