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Animal models are commonly used in the preclinical development of new
drugs to predict the metabolic behaviour of new compounds in humans. It is,
however, important to realise that humans differ from animals with regards
to isoform composition, expression and catalytic activities of drug-meta-
bolising enzymes. In this review the authors describe similarities and differ-
ences in this respect among the different species, including man. This may be
helpful for drug researchers to choose the most relevant animal species in
which the metabolism of a compound can be studied for extrapolating the
results to humans. The authors focus on CYPs, which are the main enzymes
involved in numerous oxidative reactions and often play a critical role in the
metabolism and pharmacokinetics of xenobiotics. In addition, induction and
inhibition of CYPs are compared among species. The authors conclude that
CYP2E1 shows no large differences between species, and extrapolation
between species appears to hold quite well. In contrast, the species-specific
isoforms of CYP1A, -2C, -2D and -3A show appreciable interspecies differ-
ences in terms of catalytic activity and some caution should be applied when
extrapolating metabolism data from animal models to humans.
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1.  Introduction

Relevant pharmacotoxicological properties of new chemical entities have to be
extensively studied in laboratory animals before human administration. Although
the validity of animal testing to predict efficacy and safety in human has been ques-
tioned, it is generally believed that pharmacokinetic (PK) data can be extrapolated
to humans reasonably well, using the appropriate PK principles. In general, rodents
are used because of their short lifespan, allowing for the growth of a large number of
animals in a short period of time and, consequently, the feasibility of many studies.
In contrast, large animals live longer, thus allowing for longitudinal studies, and they
are more similar in size to humans providing an opportunity to address issues related
to scaling up to human therapy [1]. Body size and weight have always been consid-
ered important covariables for describing the major PK parameters of xenobiotics
across species. This was formalised in the concept of allometric scaling, which states
that anatomical, physiological and biochemical variables in mammals (such as tissue
volumes, blood flow and process rates) can be scaled across species as a power func-
tion of the body weight [2]. The methodology was applied to the prediction of
plasma concentration–time profiles [3] and the main PK parameters (distribution
volumes and clearances) [4], and a number of modifications were subsequently
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proposed for improving the accuracy of these predictions [5,6].
Despite the fact that the allometric approach is empirical, it
reflects, to some extent, observations on the relationships of
some anatomical and physiological properties with body
weight, such as liver weight as a percentage of body weight. As
a consequence, the relative amount of hepatic enzymes, such
as CYP/gram body weight [7], is higher in small animals than
in humans. All this points out that, in general, small animals
tend to eliminate drugs more rapidly than human beings
when compared on a weight-normalised basis. Other physio-
logical parameters, such as body temperature (36 – 38°C),
haematocrit (40 – 45%) and serum albumin concentration
(30 – 40 g/l) are relatively conserved among animals and are
independent of animal size [8].

The most important drug-metabolising enzyme family,
CYP, is one of the conserved entities among species. CYP
appears to be derived from a single ancestral gene from
∼ 1.36 billion years ago [9]. Although all members of this
superfamily possess highly conserved regions of amino acid res-
idues, there are relatively small differences in the primary
amino acid sequences of the CYPs across species. However,
even small changes in the amino acid sequences can give rise to
profound differences in substrate specificity and catalytic activ-
ity. Thus, differences in CYP isoforms between species are a
major cause of species differences in drug metabolism. In con-
trast, for drugs that are not or only partly metabolised, species
differences seem smaller and cross-species PKs can be pre-
dicted very well by allometric scaling. Therefore, this introduc-
tion is focused on a description of the main CYP isoforms
involved in drug metabolism and on comparison of the differ-
ent isoforms among animals and man. This review is organised
into sections according to CYP subfamily. For each subfamily,
isoform composition and expression is briefly described in the
different animal species (mouse, rat, dog, monkey and
human), as well as their induction and inhibition properties.
Each section is concluded by a subsection summarising the
most relevant similarities and differences across species.

2.  CYP

CYP is a group of haemoproteins that play a central role in the
oxidative metabolism (phase I) of clinically used drugs and
other xenobiotics. In general, CYP enzymes bind two atoms of
oxygen, resulting in the formation of a water molecule together
with the production of a metabolite, which is generally more
polar than the parent drug. Often hydroxylation, dealkylation
or oxidation occurs, but ring-opening and reduction can also
take place. The CYP superfamily is divided into families (e.g.,
CYP1, -2, -3, etc.), between which the primary structure is
> 40% identical, and into subfamilies (labelled with letters A,
B, C, etc.) between which the primary structure is > 55% iden-
tical [10,11], and finally by an Arabic number, representing the
individual enzyme. In man, > 50 isoforms have been isolated
and ∼ 35 CYP isoenzymes are of clinical relevance. The CYP
families 1, 2 and 3 appear to be responsible for the metabolism

of drugs and other xenobiotics, but they are also involved in
metabolic conversion of a variety of endogenous compounds
such as vitamins, bile acids and hormones. The CYP isoen-
zymes from the other families are generally involved in endo-
genous processes, particularly hormone biosynthesis. In
animals and in man, CYPs can be found in virtually all organs,
notably the liver, small intestine, skin, nasal epithelia, lung and
kidney, but also in testis, brain and other organs. However, the
liver (300 pmol of total CYPs/mg microsomal protein) and the
intestinal epithelia (∼ 20 pmol of total CYPs/mg microsomal
protein) are the predominant sites for CYP-mediated drug
elimination, whereas the other tissues contribute to drug
elimination to a much smaller extent [12,13].

3.  Variability in CYP-mediated metabolism: 
induction, inhibition and polymorphism

Drug–drug interactions may occur as a result of induction of the
expression of metabolising enzymes, or as a result of inhibition of
enzyme activity or expression. One of the intriguing aspects of
the CYP family is that some, but not all, of the enzymes are
inducible. Human CYP1A1, -1A2, -2B6, -2C8, -2C9, -2C19
and -3A4 are known to be inducible, whereas CYP2D6 is not.
This induction is due to transcriptional activation, which results
in increased mRNA and subsequent protein synthesis. In con-
trast, CYP2E1 is induced by protein stabilisation. Induction
results in increased metabolism of the inducing xenobiotic itself
(autoinduction), or of concomitantly administered
substrates/drugs, resulting in increased clearance and altered PKs.

Transcriptional activation is mainly mediated by nuclear
receptors (pregnane X receptor [PXR], constitutive andro-
stane receptor [CAR], G protein-coupled receptor and vita-
min D3 receptor) for the induction of CYP3A and -2B
isoforms, whereas the cytosolic receptor aryl hydrocarbon
receptor (AhR) is involved in CYP1A induction.  In general,
induction in enzyme expression results in induced clearance
of xenobiotics, and may be considered beneficial or harmful,
depending on the case. For example, the induction of CYP1A
isoforms by β-naphthoflavone (βNF) reduces the carcino-
genicity of 7,12-dimethylbenz[a]anthracene in rodents [14]. In
contrast, CYP1A isoforms can also activate some compounds,
such as benzo[a]pyrene to their carcinogenic metabolite [15],
and the induction of these isoforms increases the risk of
carcinogenicity. Induction of metabolism usually needs syn-
thesis of new enzyme, and, consequently, takes days to
develop. However, unlike induction that compromises the
efficacy of the drug in a time-dependent manner, CYP inhibi-
tion is an immediate response (or in the case of time-depend-
ent inhibition, within hours), and may result in undesirable
elevations in plasma concentrations of co-administered drugs,
with therapeutic and toxicological consequences. The mecha-
nism of inhibition can be reversible, which is the most com-
mon form, or irreversible (mechanism-based inhibitors or
suicide inhibitors), leading to the formation of reactive
metabolites and causing the permanent loss of enzyme activity
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until new enzymes are synthesised. The inhibitors may be
substrates which are metabolised by the same P450 enzyme
(e.g., ketoconazole for CYP3A4) or substances that are merely
inhibitors, but not substrates, of CYPs (e.g., quinidine for
CYP2D6).  In addition to induction and inhibition, genetic
polymorphisms can also result in interindividual differences
in metabolic activity. A polymorphism is usually defined as a
genetically determined difference, affecting ≥ 2% of the pop-
ulation under investigation. Polymorphism means heritable
DNA changes that lead to lack of production of CYP iso-
forms, lack of inducibility or synthesis of a form of CYP with
altered catalytic activity. In humans, several isoforms, such as
CYP2C9 [16], -2C19 [16], -1A1 [17], -2B6, -2D6 [18], -3A4 [19]

and -3A5 [20], have been demonstrated to be polymorphic.
Polymorphisms have been shown to have clinical conse-
quences, resulting in toxicity of some drugs, and may alter
efficacy of other drugs in the affected individuals.

4.  CYP1A

The CYP1A subfamily consists of two members, CYP1A1
and -1A2 (Table 1), in mouse, rat, dog, monkey and man.
CYP1A shows a strong conservation among species [21] with
an identity to human > 80% in rat (83 and 80%, respectively,
for CYP1A1 and -1A2), mouse (83 and 80%, respectively for
CYP1A1 and -1A2), dog (84% for CYP1A2) and monkey
(95% for both CYP1A1 and -1A2). Both have been studied
extensively because of their roles in the metabolism of two
important classes of environmental carcinogens, polycyclic
aromatic hydrocarbons (PAH) [22] and arylamines [23].

4.1  CYP1A1
CYP1A1 is expressed only at very low levels in mouse, rat and
human liver and it is essentially an extrahepatic enzyme that is

present predominantly in the small intestine [24-26], lung [27],
placenta [28] and kidney [29]. In monkey and dog, CYP1A1 is
present only at low levels in the livers of untreated animals
[30,31]. In contrast to rats, in which CYP1A1 is the predominant
form expressed in rat small intestine [32], CYP1A1 is only
weakly detected in mouse small intestine [33]. There are no
reports on CYP1A1 and -1A2 activity in monkey and dog small
intestine. The expression levels of CYP1A1 in human small
intestine are reported to be variable. According to McDonnell
et al. [34] the CYP1A1 catalytic activity varied considerably in
human small intestine and microsomal preparations, and this
high interindividual variability was confirmed by several other
laboratories, leading to the suggestion that CYP1A1 expression
may not be constitutively expressed, but only expressed after
induction [35]. In fact, higher levels of CYP1A1 are often associ-
ated with increased smoking, physical exercise and ingestion of
chargrilled meats. However, Paine et al. [36] concluded that the
high variability of CYP1A1 in human liver microsomal prepa-
rations could not be accounted for by smoking habits alone,
but that diet may be significantly involved.

CYP1A1 is able to oxidise benzo[a]pyrene [37] and other
PAHs to their toxic derivatives. For example,
dibenzo[a]pyrene, which is considered to be the most potent
carcinogen among all PAHs, is oxidised almost exclusively by
CYP1A1 in humans to highly mutagenic diol-epoxides [38].

4.2  CYP1A2
CYP1A2 is expressed mainly in the liver and is not, or weakly,
expressed in extrahepatic tissues in human [39], rat and mouse
[29]. In human liver, CYP1A2 accounts for 13% of the total
CYP content [13,40] and is involved in the metabolism of
∼ 4% of drugs on the market [41]. In contrast, in monkey and
dog, CYP1A2 is expressed at low levels in the liver of
untreated animals [42,43], even though a strong similarity in

Table 1. CYP enzymes of the major drug-metabolising CYP family in humans, rat, mouse, dog and monkey.

Family Subfamily Human Mouse Rat Dog Monkey

CYP1 A 1A1, 1A2 1A1, 1A2 1A1, 1A2 1A1, 1A2 1A1, 1A2

B 1B1 1B1 1B1 1B1 1B1

CYP2 A 2A6, 2A7, 
2A13

2A4, 2A5, 2A12, 2A22 2A1, 2A2, 2A3 2A13, 2A25 2A23, 
2A24

B 2B6, 2B7 2B9, 2B10 2B1, 2B2, 2B3 2B11 2B17

C 2C8, 2C9, 
2C18, 2C19

2C29, 2C37, 2C38, 2C39, 2C40, 
2C44, 2C50, 2C54, 2C55

2C6, 2C7*, 2C11*, 
2C12*, 2C13*, 
2C22, 2C23

2C21, 2C41 2C20, 2C43

D 2D6, 2D7, 
2D8

2D9, 2D10, 2D11, 2D12, 2D13, 
2D22, 2D26, 2D34, 2D40

2D1, 2D2, 2D3, 
2D4, 2D5, 2D18

2D15 2D17‡, 2D19‡, 
2D29‡, 2D30‡

E 2E1 2E1 2E1 2E1 2E1

CYP3 A 3A4, 3A5, 
3A7, 3A43

3A11, 3A13, 3A16, 3A25, 3A41, 
3A44

3A1/3A23, 3A2*, 
3A9*, 3A18*, 3A62

3A12, 3A26 3A8

*Gender difference.
‡Strain specific.
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amino acid sequence to human CYP1A2 has been demon-
strated (95% in monkey). In monkey, the CYP1A enzymes
may differ in their activities between strains of the same spe-
cies [44], and CYP1A2 is less expressed in cynomolgus monkey
than in the marmoset [45]. In human, CYP1A2 metabolises
several drugs, including phenacetin, tacrine, ropinirole,
acetaminophen, riluzole, theophylline and caffeine [46].

4.3  Induction of CYP1A
Both CYP1A1 and -1A2 are under the transcriptional regula-
tion of the Ah locus, involving the interaction of AhR/AhR
nuclear translocator heterodimeric complexes with upstream
enhancer elements, and the transmission of the induction sig-
nal from the enhancer to the promoter. This is followed by
subsequent transcription of the appropriate mRNA and trans-
lation of the corresponding proteins [47]. Both isoforms are
inducible, not only by food or cigarette smoke, but also by
drugs, and their profiles of induction are quite similar among
species. The ingestion of the PAHs, such as 3-methylcholan-
threne or the treatment with βNF in rat [48,49], mouse, mon-
key [30] and dog [43], leads to an increase of the CYP1A protein
level in numerous tissues, such as small intestine, liver and
lung, as well as in cells in culture. In man [50], but not in
mouse [51] or rat [52], the antiulcer drug omeprazole has been
reported to induce CYP1A2 in the liver [53]. The effect of
omeprazole on CYP1A2 is thus an example of spe-
cies-dependent gene expression regulation, which is also
observed for CYP3A regulation (see Section 11.6). In man,
slight induction of CYP1A2 by rifampicin was suggested by a
15% increase in metabolism of caffeine to paraxanthine in
healthy subjects [54].  The induction of CYP1A1 by PAHs
mediated by the AhR results in the formation of muta-
genic/carcinogenic diol-epoxides in target tissues, including
liver [55]. The levels of CYP1A1 can be induced by smoking,
although the response varies considerably. However, attempts
to correlate the inducibility of the enzyme with the incidence
of smoking-induced lung cancer have been inconclusive.

4.4  Inhibition of CYP1A
Besides enzyme induction, enzyme inhibition is even more
clinically relevant and has been described both for CYP1A1
and -1A2 isoforms. Examples include the coadministration of
enoxacin, a quinolone antibiotic that is able to inhibit
CYP1A2, resulting in a decrease in the clearance of (R)-war-
farin, a CYP1A2 substrate [56]. In general, furafylline is con-
sidered as a selective, noncompetitive, mechanism-based
inhibitor of CYP1A2 [57,58], whereas α-naphthoflavone is an
inhibitor of both CYP1A1 and -1A2 [59]. Similar to humans,
furafylline also selectively inhibits CYP1A2, relative to
CYP1A1, in rats. However, furafylline inhibits rat CYP1A2
only at a 1000-fold higher concentration than is required to
inhibit the human isoenzymes, suggesting a major difference
in the active site geometry between human and rat ortho-
logues of CYP1A2 [60]. In addition, furafylline inhibits
CYP1A2 activity in mouse and dog to a lower extent when

compared with human, whereas no inhibition was observed
towards CYP1A2 in monkey [61]. Interestingly, ketoconazole,
a well-known human CYP3A4 inhibitor, has been reported to
also be a potent inhibitor of the CYP1A1 enzyme in man [36]

and rat [62], thus indicating a possible crossreactivity with the
more abundant CYP3A isoenzymes.

4.5  Conclusion
CYP1A1 and -1A2 show strong conservation among species.
CYP1A1 is expressed at very low levels in the liver of all species,
whereas its expression in extrahepatic tissue, such as small intes-
tine, is variable. Similarly, CYP1A2, which is highly expressed
in the liver, is more variable depending on the species. In gen-
eral, CYP1A is inducible in rodents and non-rodents, but the
variable effect of some inducers, such as omeprazole, is an
example of species difference in gene expression regulation. In
addition, furafylline inhibits CYP1A2 activity in human,
mouse, rat and dog to a different extent, whereas no inhibition
was observed towards CYP1A2 in monkey.

5.  CYP1B

5.1  CYP1B in animal species and man
In humans, CYP1B was discovered when it was found to be
transcriptionally induced by 2,3,7,8-tetrachlorodibenzo-p-
dioxin within a human keratinocyte cell line [63]. Following
this, extensive research was focused on the inducibility of
CYP1B1, especially given that it is differentially expressed
within the tumour microenvironment of several human
cancers [64,65]. CYP1B1 is constitutively expressed in normal
tissues, such as the heart, brain, placenta, lung, liver, kidney
and prostata [63], but it is expressed at much higher levels in
tumour cells compared with the surrounding normal tissue
[64,66]. Thus, CYP1B1 induction is an important factor in
determining risk associated with hormone-mediated cancers.
In addition, CYP1B1 is involved in the metabolism of some
clinically relevant anticancer agents used in the treatment of
hormone-mediated cancer. Human CYP1B1 also catalyses
estrogens to yield active 4-hydroxylated derivatives that may
cause breast cancer. In rat, CYP1B1 is expressed in liver and
lung, at least at the mRNA level [67]. In mouse, CYP1B1 has
been detected in several tissues such as the testis, kidney,
skeletal muscle, lung, spleen, brain and heart, but not in
liver [29,68].

In human and rodent species, CYP1B1 can bioactivate car-
cinogenic PAHs, such as benzo[a]pyrene, to DNA-reactive
species associated with toxicity, mutagenesis and carcino-
genesis [67,69]. Furthermore, benzo[a]pyrene can induce
expression of CYP1B1 by means of the AhR [67].

5.2  Conclusion
In human and animal species, CYP1B1 is the only gene pro-
duct of the CYP1B subfamily. In human, CYP1B1 is consti-
tutively expressed in normal tissues, and is expressed at much
higher levels in tumour cells compared with the surrounding
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normal tissue. However, little is known about CYP1B1 in
rodent and non-rodent species and, therefore, it is difficult to
make a species comparison.

6.  CYP2A

6.1  CYP2A in animal species and man
In human, the CYP2A family includes CYP2A6, -2A7 and
-2A13 (Table 1). CYP2A6 is expressed in human liver and
accounts for ∼ 4% of total hepatic CYP, whereas other human
P450 subfamily forms (2A7 and 2A13) appear to be expressed
at even lower levels. Human CYP2A6 shows different sub-
strate specificity in comparison with CYP2A enzymes in ani-
mal species. In contrast to rodents, in which CYP2A enzymes
have steroid 7α- and 15α-hydroxylation activities, CYP2A6 is
not involved in the hydroxylation of steroids [70]. CYP2A6 is
engaged in the metabolism of xenobiotics; for example,
O-deethylation of 7-ethoxycoumarin, 7-hydroxylation of cou-
marin (a marker reaction), oxidation of nicotine, cyclophos-
phamide, ifosfamide, fadrozole and aflatoxin B1 [24,70]. In
addition, CYP2A6 seems to have overlapping catalytic specifi-
city with CYP2E1 in the activation of nitrosamines [71].
CYP2A13 is an enzyme predominantly expressed in the
human respiratory tract and significantly involved in the acti-
vation of aflatoxin B1 to carcinogenic derivatives [72] and in
nicotine metabolism [73].

In rat, the CYP2A family includes CYP2A1, -2A2 and -2A3.
Rat CYP2A1 (female dominant) and -2A2 (male dominant) are
expressed in the liver (2%) [74]. In contrast, CYP2A3 is not
expressed in the rat liver [75,76], and is constitutively expressed in
the oesophagus, lung and nasal epithelium, but not in small
intestine, liver or kidney. Rat CYP2A1/2 show ∼ 60% homo-
logy in amino acid sequence to human CYP2A6. In contrast to
human, rat endogenous steroids are CYP2A substrates: CYP2A1
catalyses 7α-hydroxylation of testosterone, whereas CYP2A2 is
responsible for 15α- and 7α-hydroxylation of testosterone.

In mouse the CYP2A family comprises CYP2A4, -2A5,
-2A12 and -2A22. CYP2A5 and -2A4 show high sequence
similarity and differ in only 11 amino acids [24]. CYP2A5 is
expressed mainly in the liver, olfactory mucosa, kidney, lung,
brain and small intestine, but not in the heart or spleen [77].
CYP2A5 resembles the human orthologue in catalysing
7-hydroxylation of coumarin [78]. CYP2A4 is a female-pre-
dominant form in liver in several inbred mouse strains, and its
gene is transcriptionally repressed by growth hormone in
males [79]. CYP2A4 was also detected in the kidneys and, at
very low levels, in the olfactory mucosa.

In dog, the CYP2A family comprises CYP2A13 and -2A25,
and in monkey, the family comprises CYP2A23 and -2A24.
As reported by Bogaards et al. [61], dog and monkey
microsomes catalyse coumarin 7-hydroxylation.

Human CYP2A6 antibody showed moderate to strong
inhibition of coumarin 7-hydroxylase activities compared
with monkey, dog, human and mouse [61]. In human,
CYP2A6 is inhibited by diethyldithiocarbamate in vitro [80].

CYP2A isoforms are inducible. In humans, CYP2A6 is
induced by phenobarbital, rifampicin, dexamethasone and
nicotine [13,70]. In rats, CYP2A3 mRNA was increased by
treatment with 3-methylcholanthrene and pyrazole in the
oesophagus, kidneys and the distal part of the small intestine
[75]. The mechanism of CYP2A gene induction is not well
understood, but recent studies concerning the murine CYP2A5
indicate the role of CAR, PXR and PPAR in transcriptional
activation of CYP2A5 [77]. Moreover, human CYP2A6 may be
regulated post-transcriptionally by interaction of the nuclear
ribonucleoprotein A1 with CYP2A6 mRNA.

6.2  Conclusion
In humans and rodents, CYP2A is expressed in liver and extra-
hepatic tissues. The substrate specificity of human CYP2A6 is
considerably different from CYP2A enzymes in animal species.

7.  CYP2B

Several CYP2B isoforms have been identified in a number of
mammalian species (Table 1). These isoforms were among the
first microsomal CYPs purified and show the most dramatic
induction by barbiturates.

7.1  CYP2B in human
In humans, the CYP2B family includes CYP2B6 and -2B7.
CYP2B6 is expressed in the liver and in some extrahepatic tis-
sues, whereas CYP2B7 mRNA expression was detected in
lung tissue [81]. Although historically human CYP2B6 was
thought to play only a minor role in drug metabolism, more
recent estimates suggest that CYP2B6 is involved in the
metabolism of nearly 25% of drugs on the market today [82],
such as the anticancer drugs cyclophosphamide and
tamoxifen [83], the anaesthetics ketamine and propofol [84] and
procarcinogens, such as the environmental contaminants afla-
toxin B1 and dibenzanthracene [85]. In contrast to previous
studies that detected CYP2B6 only at 0.2% of the total
human liver CYP content [13,40], recent studies [86,87] using
more selective and specific immunochemical detection meth-
ods have demonstrated that the average relative abundance of
CYP2B6 in human liver is in the range of 2 – 10% of the total
CYP content. In human small intestine, the mRNA level of
CYP2B6 was not detected by reverse transcriptase polymerase
chain reaction [68]. In addition, significant interindividual dif-
ferences in hepatic CYP2B6 expression, which varies in some
studies from 25- to 250-fold, have been reported [88]. These
large differences may be due to both polymorphism and
induction. This finding of CYP2B6 variability suggests that
there are significant interindividual differences in the systemic
exposure to a variety of drugs that are metabolised by
CYP2B6, with the consequent variation in therapeutic and
toxic responses [89]. In particular, recent studies have reported
that liver tissue of females express significantly higher
amounts of CYP2B6 than male liver tissues, and that
CYP2B6 activity was 3.6- to 5.0-fold higher in Hispanic
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females than in Caucasian or African-American females [90].
This CYP2B6 variability may be explained by a combination
of single nucleotide polymorphisms that differ in each ethnic
group and/or by different expression levels of other gene
products, such as nuclear receptors (e.g., the relative CAR,
mRNA is higher in females than in males) or by hormonal
influences (e.g., sex hormones) [90]. 

7.2  CYP2B in mouse
In mouse, among several CYP2B isoenzymes, CYP2B9 and
-2B10 are the major CYP2B isoenzymes expressed constitu-
tively. CY2B10 mRNA is detected in the liver and small intes-
tine, and its expression seems to be higher in the duodenum
than in the liver [25]. However, data on metabolic activity are
lacking. As in rats, the CYP2B family is sexually dimorphic,
but female mice express more CYP2B9 isoenzymes than
males. In contrast, CYP2B10 was equally expressed in both
sexes [91].

7.3  CYP2B in rat
Rats express three CYP2B isoenzymes, CYP2B1, -2B2 and
-2B3. CYP2B1 and -2B2 are structurally related isoenzymes
(97% identical) with very similar substrate specificities [92].
However, CYP2B1 is generally much more catalytically active
than CYP2B2. Both are expressed constitutively in the liver and
extrahepatic tissues such as small intestine and lungs [26,49]. The
mRNA expression of CYP2B1 [26] and the pentoxyresorufin
O-dealkylase activity (correlated to CYP2B1/2) seems to be as
high in the small intestine as in the liver, according to several
reports [26,93], with the highest levels in the duodenum [32,93].
Their constitutive expression in liver is sexually dimorphic,
with male rats expressing higher CYP2B levels than females [94].
This sexual dimorphism may be explained by a sex-dependent
secretion of pituitary growth hormone, which suppresses
CYP2B expression more in female rats than in males [95].

7.4  CYP2B in dog
In dog, the main 2B isoform is CYP2B11, which has a 75%
homology, with respect to amino acid sequence, to that of rat
CYP2B1 [96]. Remarkably, CYP2B11 catalyses the
N-demethylation of dextromethorphan (mediated in human
by CYP3A) and the 4′-hydroxylation of mephenytoin
(a drug-metabolising step that is mediated in human by
CYP2C19), and, together with CYP3A12, dog CYP2B11 also
contributes to (S)-warfarin–hydroxylation (mediated in
human by CYP2C9) [97]. Interestingly, the dog is the only
mammalian species able to metabolise PAHs through its
CYP2B isoenzyme [24]. 

7.5  CYP2B in monkey
In monkey, so far, only one CYP2B isoform, referred as
CYP2B17, has been purified and characterised from liver
microsomes from cynomolgus monkeys. The N-terminal
amino acid sequence of the protein (the first 34 residues) closely
resembles that of the protein encoded by the 2B6 cDNA from

human (94%), and its content, as estimated by immunoblot
analysis, was 70 pmol/mg (∼ 5% of total CYP) [98]. 

7.6  Induction of CYP2B
The CYP2B family can be strongly induced in man and in
animals, both rodent and non-rodent species. Phenobarbital is
a potent inducer of CYP2B in many different species
[30,43,48,50]. In human and mouse, phenobarbital upregulates
CYP2B gene by activation of CAR [99]. In addition, PXR lig-
ands, such as rifampicin in human [100] and dexamethasone in
rat [48] and mouse [100], induce CYP2B, demonstrating a
crossregulation of this drug-metabolising enzyme in which
both CAR and PXR may be involved.

7.7  Inhibition of CYP2B
2-Isopropenyl-2-methyladamantane and 3-isopropenyl-3-meth-
yldiamantane are among the most potent human
CYP2B6-selective inhibitors discovered so far [101]. Both com-
pounds also inhibited reactions catalysed by rat CYP2B2 [101].
N-(α-methylbenzyl-)-1-aminobenzotriazole was identified as an
inhibitor of CYP2B in both mouse and dog microsomes [102]. In
rat, the benzodiazepine, clonazepam, has been proved to be a
potent noncompetitive or ‘mixed type’-competitive inhibitor of
catalytic activities mediated by CYP2B. Remarkably, a commer-
cially available antibody to rat CYP2B was found to crossreact
with CYP2B family of mouse, dog and human, but not with
monkey CYP2B, with respect to the inhibition of
7-ethoxy-4-trifuoromethyl-coumarin O-dealkylation [61].

7.8  Conclusion
CYP2B was detected in the liver of all species. In contrast,
CYP2B was not detected in the human small intestine, but
was highly expressed in the intestine of rat and mouse. Dif-
ferent isoforms are found in the species of interest for
ADME studies, and have different substrate specificities.
CYP2B is strongly induced by phenobarbital in both rodent
and non-rodent species. Interestingly, CYP2B is sexually
dimorphic in human, rat and mouse, but this is not
described for dog and monkey. 

8.  CYP2C

The CYP2C subfamily is the most complex subfamily of
the CYPs found in human and animal species with several
different isoforms.

8.1  CYP2C in human
In human, the CYP2C family (Table 1) is involved in the
metabolism of ∼ 16% of drugs on the market at present [103].
CYP2C8 and -2C9 are the major forms, accounting for
35 and 60%, respectively, of total human CYP2C, whereas
CYP2C18 (4%) and -2C19 (1%) are the minor expressed
CYP2C isoforms [104]. CYP2C8, -2C9 and -2C19 proteins
are primarily located in the liver, where they account for
∼ 20% of total CYP [13]. However, other expression levels
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were also reported, and the expression appears to show
race-related differences and genetic polymorphism [16].

CYP2C18 is not expressed in the liver and is most
abundantly expressed in human epidermis [105]. CYP2C8 is
expressed mainly in the liver, but its mRNA was also
detected in the kidney, adrenal glands, brain, uterus, mam-
mary glands, ovary and duodenum [106]. CYP2C8 is
involved in the metabolism of retinol and retinoic acid, ara-
chidonic acid, and benzo[a]pyrene, and in the oxidation of
the anticancer drug paclitaxel [107].  In addition to liver,
CYP2C9 mRNA is also detected in the kidney, testes, adre-
nal gland, prostate, ovary and duodenum [106]. CYP2C9
metabolises many clinically important drugs, including the
diabetic agents tolbutamide, the anticonvulsant phenytoin,
the S-enantiomer of the anticoagulant warfarin and numer-
ous anti-inflammatory drugs such as ibuprofen, diclofenac,
piroxicam, tenoxicam, mefenamic acid [108], the anti-
hypertensive losartan [109], the antidiabetic glipizide and the
diuretic torasemide [110]. CYP2C19 has been detected in the
liver and duodenum [106,111]. CYP2C19 has also been shown
to metabolise several drugs such as (S)-mephenytoin, ome-
prazole and other important proton pump inhibitors [112],
certain tricyclic antidepressants such as imipramine [113], the
anxiolytic agent diazepam, some barbiturates [114] and the
antimalarial drug proguanil [16]. CYP2C19 is highly
polymorphic. Poor metabolisers (PMs) of CYP2C19
represent ∼ 3 – 5% of Caucasians and African-Americans
and 12 – 100% of Asian groups [16]. Toxic effects can occur
in PMs exposed to diazepam, and the efficacy of some pro-
ton-pump inhibitors may be greater in PMs than in exten-
sive metabolisers at low doses of these drugs. In humans, no
differences in CYP2C isoforms between male and female
have been reported [115].

8.2  CYP2C in mouse
The mouse CYP2C family is larger and more complex than
its human counterpart, with > 10 members published so far,
including CYP2C29, -2C37, -2C38, -2C39, -2C40, -2C44,
-2C50, -2C54 and -2C55 [116-118], plus several unpublished
new members [118]. Like human and rat, the mouse CYP2C
has an important physiological role through the oxidation of
arachidonic acid into regio- and stereospecific epoxyeicosa-
trienoic acids and hydroxyeicosatetraenoic acids. The expres-
sion of different CYP2Cs is organ selective [119].  CYP2C29 is
expressed in liver as well as in extrahepatic tissues including
the brain, kidney, heart, small intestine, lungs, adrenal, aorta,
testicular and ovarian [118,120]. Among the CYP2Cs expressed
in murine lung, CYP2C29 is most abundant [119]. CYP2C37
is most abundant in the liver, white blood cells and female
adrenals [118], whereas CYP2C38 and -2C40 were found in
the liver, brain, kidney, lungs, heart and small intestine. In
particular, CYP2C40 is the major CYP2C found in both the
kidney and small intestine, and it is the only enzyme found
to produce the anti-inflammatory mediator 16-HETE [121],
whereas in human 16-HETE is mainly produced by

polymorphonuclear leukocytes [122]. CYP2C44, a new
member of CYP2C family, has been detected mainly in the
liver, kidney and adrenals [117]. CYP2C44 has the lowest
homology with other known mouse CYP2Cs (50 – 60%
identical at the amino acid level). CYP2C44 does not meta-
bolise the common CYP2C substrate tolbutamide and thus
differs from CYP2C29, -2C38 and -2C39 isoforms.
Midazolam has been reported to be metabolised by CYP2C
in addition to CYP3A [123], resulting in the formation of
α-OH midazolam.

8.3  CYP2C in rat
In rats, the CYP2C family includes several isoforms, such as
CYP2C6, -2C7, -2C11, -2C12, -2C13, -2C22 and -2C23.
The CYP2C family is the most abundant CYP2C isoform in
rat liver and is involved in the oxidation of dihydropyridines
and aflatoxin B1, and in the hydroxylation of steroids [124].
There are sex-dependent differences in the expression of the
CYP2C family in rats, which are developmentally regulated
and manifest in adult animals. Immunological data have shown
that CYP2C12 is more highly expressed in the livers of female
adult rats than in male, but those differences are not present in
immature and old rats [21]. The CYP2C7 isoform, which cata-
lyses retinoic acid 4-hydroxylation and steroid 5α-reduction, is
female predominant [125]. In contrast, CYP2C11, the major
male-specific androgen 2α- and 16α-hydroxylase of adult liver,
is not expressed in immature rats and is induced dramatically at
puberty (beginning 4 – 5 weeks of age) in male rats, but not in
female [126]. CYP2C11 is the predominant isoform in male rat
liver, comprising up to 50% of the total CYP content [126], and
is also expressed in extrahepatic tissues such as kidney and small
intestine at lower levels [32,127]. Therefore, the suppression of
this isoform in the liver helps to explain the decline in
drug-metabolising capacity [125]. CYP2C13 is also male spe-
cific, and is expressed not only in liver, but also in extrahepatic
tissue, such as in the rat brain [128]. In contrast, CYP2C6 is
expressed gender independently [125], and is detected in the
liver and at lower levels in the small intestine [32]. CYP2C23 is
highly expressed in rat kidney and has been suggested to be
important in producing compensatory renal artery vaso-
dilatation in response to salt loading. The gender-dependent
expression of the CYP2C family in rat has been demonstrated
to be regulated at the level of the hypothalamic–pituitary axis
[21] by the secretion of a growth hormone that regulates the
expression of uniquely male versus uniquely female CYP
isoforms. In addition, there is evidence in the literature that
some anticancer drugs, such as cisplatin [129] and cyclo-
phosphamide [130,131], suppress the expression of CYP2C iso-
enzymes in liver and in other tissues, and their action is in part
related to the hormonal perturbation of testosterone and estra-
diol that these cytotoxic agents induce. Drugs such as pheno-
barbital [132], dexamethasone, as well as other foreign
chemicals, such as ethanol, have been shown to suppress
CYP2C11 expression in liver, probably due to their influence
on testosterone serum levels. 
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8.4  CYP2C in dog
Despite dog being the most commonly used non-rodent spe-
cies in safety evaluation, which are required for any new drug
prior to use in man, knowledge concerning the canine CYP
system, and in particular the CYP2C family, is limited. Two
canine CYP2C isoenzymes have been isolated so far,
CYP2C21 and -2C41. These two canine CYP2C isoforms
exhibit 70% nucleotide and amino acid identity. Moreover,
they exhibit 74 – 83% nucleotide and 67 – 76% amino acid
identity with the human CYP2Cs. In particular, canine
CYP2C41 is more homologous to the human CYP2Cs than
CYP2C21. Both isoenzymes were found in dog liver, but the
expression is highly variable; CYP2C41 was present in only
one of the nine dogs tested. In addition, the CYP2C41 gene
was found only in 4 out of 28 dogs investigated [133]. There-
fore, this strong polymorphism in the CYP2C41 subfamily
may be an important source of variability in the metabolic
clearance of xenobiotics that are metabolised by CYP2C41 in
dogs [133]. In addition, the metabolism of specific human
CYP2C substrates, such as tolbutamide, warfarin and
(S)-mephenytoin, is impaired in dog compared with human
liver, illustrating an important species difference between dog
and human drug metabolism [97]. 

8.5  CYP2C in monkey
In monkey, the CYP2C family consists of two isoforms,
CYP2C20 and -2C43. These isoforms are both expressed in the
liver, and show an identity of 83 and 77% for the nucleotide and
amino acid sequences, respectively. Among the CYP2C iso-
enzymes in human, CYP2C43 shows the highest identity with
CYP2C9 (95 and 92% in nucleotide and amino acid sequences,
respectively), followed by CYP2C19 (93 and 89%), CYP2C18
(86 and 80%) and CYP2C8 (84 and 78%). CYP2C43, but not
CYP2C20, was able to metabolise (S)-mephenytoin, a probe
substrate of CYP2C19 in human. In contrast, CYP2C43 was
not able to metabolise tolbutamide, a probe substrate of
CYP2C9 in human. Therefore, monkey CYP2C43 appears to
be functionally related to human CYPC19, but not to human
CYP2C9, although the N-terminal sequence (first 18 residues)
was identical for CYP2C43 and -2C9 [134].

8.6  CYP2C induction
Human CYP2C8, -2C9 and -2C19 are inducible isoforms.
Compounds known to activate PXR, such as rifampicin and
dexamethasone, or CAR, such as phenobarbital, induce
CYP2C8, CYP2C9, and to a less extent CYP2C19 [135],
although the precise mechanism of induction by xenobiotics has
not yet been elucidated [136]. For example, it has been reported
that in human rifampicin enhances the clearance of the
CYP2C9 probe drugs tolbutamide and (S)-warfarin, as well as
the metabolism of the CYP2C19 probe (S)-mephenytoin [137]. 

8.7  CYP2C inhibition
Sulfaphenazole is perhaps the most potent and selective
inhibitor of CYP2C9 [46]. The mode of inhibition is through

ligation to the haem iron of CYP2C9. In dog and monkey,
sulfaphenazole shows a similar inhibition profile, even though
to a lesser extent in comparison to human [61]. In contrast, no
inhibition of diclofenac metabolism by sulfaphenazole was
found in rat liver microsomes, thus indicating a difference
between the active sites of human CYP2C9- and rat
CYP2C9-related protein [61]. In addition, the azole antifungal
fluconazole [138], the 5-hydroxy-3-methylglutaryl-coenzyme A
reductase inhibitors [139] and fluvastatin [139] are inhibitors of
CYP2C9. The most relevant inhibitors of CYP2C19 are the
selective serotonin re-uptake inhibitors, such as fluoxetine and
fluvoxamine [140], whereas some antifungal drugs, such as
miconazole, voriconazole and fluconazole, are inhibitors of
both CYP2C9 and -2C19 isoforms [141]. Inhibitors of CYP2C8
have been identified from a wide variety of therapeutic classes,
such as montelukast, salmeterol, ritonavir, ketoconazole,
tamoxifen, quercetin, simvastatin and lovastatin [142].

8.8  Conclusion
CYP2C is the largest and most complicated subfamily in
several species including human, rat and mouse. CYP2C is
detected in the liver of rodent and non-rodent species, and its
expression in extrahepatic tissue is isoform specific. Remarka-
bly, the expression of CYP2C is sex dependent in adult rats.
Substrate specificities are largely different between human and
animal isoforms, and particularly CYP2C-mediated meta-
bolism in the dog poorly represents human metabolism. In
addition, CYP2C is not expressed in all dogs, making predic-
tion hazardous. CYP2C is inducible in man, but, so far,
relatively little information is available on the mechanism of
CYP2C regulation.

9.  CYP2D

CYP2D isoforms have been identified in several mammalian
species (Table 1), and are involved in the monooxygenation of
various chemicals, including antidepressants (e.g., desipramine),
β-blockers (e.g., propanolol), antiarrhythmics (e.g., sparteine)
and others, such as dextromethorphan and methadone [143].
CYP2D was the first isoform shown to be polymorphic.
Induction of CYP2D has not been reported so far.

9.1  CYP2D in human
Although CYP2D6 is expressed at a low level in human liver,
accounting for ∼ 4% of total CYP (12.8 pmol/mg micro-
somal protein) [41,144], this enzyme is involved in the
biotransformation of 30% of drugs on the market at present
[41]. In human, only one isoform, CYP2D6, is expressed in
various tissues including the liver, kidney, placenta, brain,
breast, lungs and small intestine [145]. CYP2D7 and -2D8 are
inactive pseudogenes. Following its discovery, CYP2D6 has
been the most studied human genetic polymorphism in drug
metabolism, with > 80 identified alleles within most human
populations and racial groups. Problems in drug metabolism
related to polymorphism became evident when sparteine [146]
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and debrisoquine [147] were found to be metabolised at differ-
ent rates among individuals. Approximately 7 – 10% of the
Caucasian population inherits mutant CYP2D6 alleles as an
autosomal recessive trait [147], leading to individual variation
in response to many drugs that are cleared by CYP2D.
Another polymorphism stratifies the population depending
on the copy number of wild-type alleles between PMs (zero
copies), intermediate metabolisers (one copy), extensive
metabolisers (two copies), and ultrarapid metabolisers (mul-
tiple copies). In addition, this genetic variation in CYP2D6
is associated with a heightened risk for diseases and cancer,
for example Parkinson’s disease, lung cancer, liver cancer and
melanoma [148]. In the small intestine, CYP2D6 is expressed
in the duodenum and jejunum [93] and not in the ileum and
colon. Like CYP3A4, it is localised within the mucosal
enterocytes. The mean specific enzyme content of jejunal
microsomes was reported to be < 8% of hepatic CYP2D6
microsomal content (0.85 versus 12.8 pmol/mg), and there is
extensive interindividual variability in protein content of
both tissues [144].

9.2  CYP2D in mouse
Few studies have been performed to characterise the CYP2D
family in mouse. There are at least nine mouse CYP2D genes
(CYP2D9, -2D10, -2D11, -2D12, -2D13, -2D22, -2D26,
-2D34 and -2D40), but some of the isoenzymes have not
been characterised for expression and function [149]. One
isoenzyme, CYP2D22, has been suggested to be the ortho-
logue of human CYP2D6 [150], and it has been detected abun-
dantly in liver, whereas intermediate levels of expression are
seen in the adrenal, ovary and mammary glands. 

9.3  CYP2D in rat
In rats, six CYP2D isoforms (CYP2D1, -2D2, -2D3, -2D4,
-2D5 and -2D18) have been identified by genomic analysis
[151]. The rat and human CYP2D isoforms share a high
sequence identity (> 70%) [152]. Among these six, CYP2D5
and -2D18 have > 95% similarity in amino acid sequence to
CYP2D1 and -2D4, respectively [153]. Like human CYP2D6,
the six isoforms are expressed in various tissues such as the
liver, kidney and brain [154]. The mRNA of each isoform
shows a specific tissue distribution [155]. CYP2D2 and -2D3
mRNAs are mainly expressed in the liver, kidney, and small
intestinal mucosa. In contrast, CYP2D1/5 mRNAs are
expressed in various tissues. CYP2D4/18 mRNAs are
expressed in the brain, adrenal glands, ovary and testis, in
addition to the liver, kidney and small intestinal mucosa
[143]. CYP2D4 has also been identified in rat breast [156].
Therefore, the specific tissue distribution of rat CYP2D iso-
forms suggest that each isoform has specific catalytic proper-
ties and plays specific roles in various tissues [143]. For
example, (R)-mianserin was N-oxidated only by CYP2D1,
whereas 8-hydroxylation was performed by all isoforms [157].
Among the six isoforms, CYP2D1 is the rat orthologue of
human CYP2D6. 

9.4  CYP2D in dog
CYP2D15 is the major CYP2D in dog, with enzymatic acti-
vities similar to human CYP2D6 [41]. CYP2D15 is predomi-
nantly expressed in the liver, with lower, but detectable, levels
in several other tissues. CYP2D15 is polymorphic and three
different CYP2D15 cDNA clones have been identified [158,159].
Two clones correspond to variant full-length CYP2D15 cDNA
(termed CYP2D15 WT2 and CYP2D15 V1), whereas the
third was identified as a slicing variant missing exon 3 (termed
CYP2D15 V2). Bogaards et al. [61] reported that dog and
human liver microsomes showed similar enzyme kinetics with
respect to the 1′-hydroxylation of bufuralol. In addition, the
quinidine inhibition profiles obtained from dog and human
microsomes show strong similarities [61]. Therefore, because of
the similar enzyme kinetics and quinidine inhibition profiles,
dogs seem to be the most similar species to man with respect to
CYP2D inhibition [41,61]. 

9.5  CYP2D in monkey 
In monkey, the expression of different isoforms of CYP2D is
strain related. In cynomolgus monkey, a full-length cDNA
(called CYP2D17) encodes a 497-amino acid protein that is
93% identical to human CYP2D6 [160]. The recombinant
CYP2D17 catalyses the oxidation of bufuralol to 1′-hydroxy-
bufuralol and dextromethorphan to dextrophan, reactions
shown to be mediated by CYP2D6 in human, and strongly
inhibited by quinidine. In Rhesus monkey, CYP2D42 was
detected and is probably an orthologue of human CYP2D6.
In marmoset monkeys, two isoforms, CYP2D30 and -2D19,
have been isolated in two different female marmosets bred in
different laboratories. Even though both isoforms have shown
strong homologies in their nucleotide and amino acid
sequences, respectively [161], some differences in their catalytic
activities have been revealed. Marmoset CYP2D30, similar to
human CYP2D6, exhibited high debrisoquine 4-hydroxylase
activity and relatively low debrisoquine 5-, 6-, 7- and
8-hydroxylase activities, whereas CYP2D19 exhibited oppo-
site catalytic activity. In addition, the two marmoset recom-
binant enzymes are involved in the bufuralol metabolism. In
particular the 1′S-OH bufuralol metabolite was produced in
higher quantity by CYP2D30, whereas the 1′R-OH bufuralol
metabolite was produced in higher quantity by CYP2C19
[161]. Like in humans, quinidine exhibited an inhibitory effect
towards bufuralol 1′-hydroxylation activities. In Japanese
monkey (Macaca fuscata), a full-length cDNA encoded a
497-amino acid protein (designated CYP2D29) that is 96, 91
and 88% homologous to human CYP2D6, cynomolgus mon-
key CYP2D17 and marmoset monkey CYP2D19, respec-
tively. Like human CYP2D6, this isoform catalyses the
metabolism of debrisoquine and bufuralol [162]. 

9.6  CYP2D inhibition
CYP2D6 is inhibited by very low concentrations of quini-
dine. Although not metabolised by CYP2D6, but by
CYP3A4, quinidine conforms closely to the structural
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requirements for a substrate for the enzyme [163]. In addition
to quinidine, which is one of the most potent CYP2D6 inhib-
itors, some other compounds, such as the serotonin re-uptake
inhibitors and the HIV-I protease inhibitor ritonavir, have a
strong inhibitory interaction with CYP2D6 [164]. With
regards to the other species, Bogaards et al. [61] reported that
the quinidine inhibition profiles obtained from dog and
human microsomes show strong similarities. In contrast, its
quinine isomer shows moderate inhibition in dog, but not in
human [61].  In rat, monkey and mouse, the inhibition profile
was different in comparison with human. Bogaards et al. [61]

reported negligible (in rat and mouse) or low (in monkey)
inhibitory effects by quinidine towards bufuralol 1′-hydroxy-
lase catalytic activity, whereas the quinine isomer weakly
inhibited CYP2D in monkey and rat [61,124,165], but not in
mouse [61].

9.7  Conclusion 
The CYP2D family shows genetic polymorphism resulting in
variation in functional activity in drug metabolism in man. As in
other species, such as rat [166] and dog [158], polymorphism was
observed. Remarkably, the inhibition profile was different among
species; quinidine inhibits CYP2D in man, dog and monkey, but
not in rat and mouse. In contrast, the isoform quinine has inhi-
bitory effect towards CYP2D in rat, dog and monkey, but not in
man. CYP2D is thought to be noninducible.

10.  CYP2E1

10.1  CYP2E1 in animal species and man
CYP2E1 shows a strong conservation among species (Table 1)
with an identity to human CYP2E1 of 80% for rat, mouse
and dog and of 96% for monkey. CYP2E1 is the only gene of
this subfamily. In human, CYP2E1 accounts for ∼ 6% of
total CYP in the liver and is involved in the metabolism of
2% of the drugs on the market at present [41]. CYP2E1
appears to have a dual physiological role, namely roles in
detoxification and nutritional support. CYP2E1 is expressed
in many tissues, such as the nose, the oropharynx (exposed to
airborne xenobiotics), the lungs and the liver. The inducibi-
lity and adaptive responsiveness to xenobiotics is suggestive
of a protective role. Regarding xenobiotics such as ethanol,
CYP2E1 plays a detoxification role, preventing ethanol from
reaching excessive levels. Its inducibility by ethanol was
shown, not only in experimental animals [167], but also in
man [168]. In terms of its nutritional role, the upregulation of
CYP2E1 plays a useful physiological role when starvation
and/or low carbohydrate diet prevail because of its contribu-
tion to the metabolism of fatty acids and its capacity to con-
vert ketones to glucose [169]. However, like many other useful
adaptive systems, when the adaptation ceases to be homeo-
static and becomes excessive, adverse consequences prevail.
CYP2E1-mediated metabolism generates oxygen radicals
and, when this exceeds the cellular detoxification systems, it
results in oxidative stress with its various pathological

consequences. This is true not only when excess alcohol has
to be metabolised, but also when CYP2E1 is confronted with
an excess of ketones and fatty acids associated with diabetes
and/or obesity [170]. A few drugs are metabolised by CYP2E1,
such as acetaminophen, caffeine and chlorzoxazone, the latter
being considered a marker of CYP2E1 activity [171].
Although relatively few drugs are oxidised by CYP2E1, the
list of carcinogens that can be activated by CYP2E1 is quite
extensive and includes benzene, styrene, acrylonitrile and
nitrosoamines. CYP2E1 may generate reactive oxygen inter-
mediates, such as superoxide radicals [172], which play a key
role in liver injury because of the interaction with cellular
proteins or DNA [173]. Other examples of organic com-
pounds that show selective injurious action in the liver, as
well as in other tissues of alcoholics, include industrial sol-
vents, such as bromobenzene [174] and vinylidene chloride
[175], as well as anaesthetics such as enflurane [176]. Enhanced
metabolism and toxicity pertains also to a variety of pre-
scribed drugs, including isoniazid, phenylbutazone and
acetaminophen. CYP2E1 activity is inducible by ethanol and
acetone in both rodents and non-rodents. The regulation of
CYP2E1 expression is complex, and involves transcriptional,
post-transcriptional, translational and post-translational
mechanisms [177]. CYP2E1 is transcriptionally activated in
the first hour after birth. Xenobiotic inducers elevate
CYP2E1 protein levels through both increased translational
efficiency and stabilisation of the protein from degradation,
which appears to occur primarily through ubiquitylation and
proteasomal degradation [177].

Like human, many substrates, such as organic solvents,
nitrosamines and drugs such as paracetamol, are metabolised
by rodent CYP2E1. Therefore, rodents may be an appro-
priate model to study CYP2E1-dependent metabolism in
man [41]. However, in dogs and monkeys some discrepancies
have been found. In dog microsomes, the antibody against
human CYP1A was shown to influence the 6-hydroxylation
of chlorzoxazone, a typical activity of CYP2E1 in man [61].
In monkeys, CYP2E1 activities in liver microsomes seem to
be similar to human CYP2E1 [44], however, inducibility of
this enzyme by 3-methylcholantrene (another typical
inducer of the CYP1A) indicates significant differences in
the mechanism of induction of CYP2E1 [178]. Disulfiram
and diethyldithiocarbamate are mechanism-based inhibitors
of CYP2E1 in man. Moreover, 3,4- and 3,5-dichlorophenyl
derivates have recently been demonstrated to be potent
inhibitors of human CYP2E1 [179]. In addition,
diethyldithiocarbamate is a potent mechanism-based inhibi-
tor of 6-OH-chlorzoxazone formation in microsomes of
rodent and non-rodent species [180], indicating a species-con-
served mechanism for the oxidative biotransformation of
chlorzoxazone among species.

10.2  Conclusion
CYP2E1 is expressed in the liver and in many extrahepatic
tissues of several animal species. CYP2E1 plays a physiological
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role and is involved in the metabolism of few drugs. Like
human, CYP2E1 is inducible by ethanol and acetone in
rodents and non-rodents. In spite of some discrepancies,
CYP2E1 is well conserved, and, therefore, the extrapolation
between species appears to be hold quite well. The rat seems
to be the best model for human in this respect.

11.  Cytochrome P4503A

The CYP3A subfamily (Table 1) plays a very important role in
the metabolism of xenobiotics, and has a very broad substrate
specificity. It is highly inducible and can be inhibited by
numerous drugs. Therefore, large interindividual differences
in CYP3A-mediated metabolism have been reported.

11.1  CYP3A in human
The CYP3A subfamily is the most important of all human
drug-metabolising enzymes because this subfamily is involved
in the biotransformation of ∼ 50% of therapeutic drugs on
the market at present [41], although its content in the liver is
only 30% of total P450. Some examples of drugs metabolised
by CYP3A are terfenadine, the benzodiazepines midazolam
and triazolam, quinidine, lidocaine, carbamazepine, nife-
dipine, tacrolimus, dapsone, erythromycin and dextromethor-
phan [41,181]. In addition to drugs, CYP3A is involved in the
oxidation of a variety of endogenous substrates, such as ster-
oids, bile acids and retinoic acid [182]. Humans express four
CYP3A enzymes, CYP3A4, -3A5, -3A7 and -3A43. CYP3A4
and its related -3A5 are the most abundant CYP isoforms in
human liver, and are involved in the biotransformation of the
majority of drugs [183]. CYP3A4 and -3A5 are expressed in the
liver, stomach, lungs, small intestine and renal tissue. The
level of CYP3A4 content is highest in the liver, with a median
value of 70 pmol/mg microsomal protein, but it is also
expressed in the human duodenum, jejunum and ileum (31,
23 and 17 pmol/mg microsomal protein, respectively) [184]. It
is located at the apex of the enterocytes [185] and plays a major
role in the first-pass metabolism of xenobiotics. CYP3A
protein levels and catalytic activity decrease longitudinally
along the small intestine. Although the levels of CYP3A in the
small intestine expressed per mg microsomal protein are gen-
erally 10 – 50% lower than those found in the liver, in some
individuals CYP3A concentration is equal to, or even higher
than, those in the liver [184]. This together with its strategic
localisation at the tip of the villus suggests that intestinal
CYP3A plays a major role in drug metabolism. In addition,
P-glycoprotein can influence the metabolism process by recy-
cling drugs between enterocytes and lumen, thereby increas-
ing drug exposure to intestinal metabolic enzymes [186]. Thus,
the amount of an orally administered drug that reaches the
systemic circulation can be reduced by both intestinal and
hepatic metabolism. In addition to CYP3A4, CYP3A5 has
recently been demonstrated to play a major role in adults. Ini-
tial data suggested that CYP3A5 accounted for only a small
proportion of the total hepatic CYP3A content in only ∼ 20%

of samples [187], and when expressed it accounts for a third of
CYP3A4 [188]. However, recent evidence indicates that
CYP3A5 may represent > 50% of the total CYP3A in some
individuals [189]. In addition, within mucosa of the colon and
the stomach, CYP3A5 protein and mRNA appear to be more
prominent than the corresponding CYP3A4 protein and
mRNA [190]. Furthermore, CYP3A5 is expressed in a third of
Caucasian livers and more than half of African-American
livers examined [189].  CYP3A7 and -3A43 isoenzymes seem to
play a minor role in the metabolism of drugs. In fact,
CYP3A7 is expressed in fetal liver only, whereas CYP3A43,
which is expressed in liver, appears to be very restricted, both
in terms of its activity and expression (0.2 – 5% compared
with CYP3A4) [191].

11.2  CYP3A in mouse
In mouse, there are six CYP3A isoforms identified so far.
CYP3A11 and -3A13 show a maximal level of expression at
4 – 8 weeks of age, but the levels of CYP3A13 detected in
the liver were much (5- to 10-fold) lower compared with
CYP3A11 [192]. Of the mouse CYP3A isoforms, CYP3A11 is
the isoform most similar to human CYP3A4, having 76%
amino acid homology [193]. In addition, CYP3A11 is also
expressed in the small intestine [194] like CYP3A4 in man.
CYP3A16 has been identified as a fetal form, which dimin-
ishes rapidly after birth [195]. CYP3A25 appears primarily in
the liver and small intestine of newborn and adult mice,
with no evidence of gender bias in expression [196].
CYP3A41 [197] and -3A44 [198] were cloned and reported to
have a female-specific expression pattern. The catalytic
activity of the mouse CYP3A form towards clinically active
drugs has not been extensively tested, but it has been shown
that compounds such as aflatoxin B1 and ethylmorphine are
metabolised by mouse CYP3A isoforms [199] similar to
human [200,201]. No strain-related differences between nude
and CD-1 mouse have been revealed in CYP3A11
expression [25].

11.3  CYP3A in rat
In rats, CYP3A1, -3A2, -3A9, -3A18, -3A23 and -3A62
have been reported as CYP3A forms [202-206]. CYP3A23 has
been identified to be identical to CYP3A1 by analysis of the
CYP3A1 gene [207]. These CYP3A forms appear to be
expressed in a sex-specific manner in rats. For example,
CYP3A2 [208] and -3A18 [209] are male-specific forms,
whereas CYP3A9 is a female dominant form [209]. Recent
studies from Matsubara et al. [210] have identified the new rat
CYP3A62 form, and its expression profile is similar to that
of human CYP3A4 and rat CYP3A9. CYP3A62 is the pre-
dominant form in the intestinal tract, whereas CYP3A1 and
-3A2 were detected only in the liver. In addition, CYP3A9
and -3A18 were detected in the liver and in the small intes-
tinal tract [210]. The rat is not a good model for the human
situation to study CYP3A4 induction because CYP3A1 (the
main CYP3A form in rat liver) is not induced by rifampicin,
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a typical human CYP3A inducer [52]. Moreover, some dis-
crepancies in metabolism have also been revealed between
rats and human; for example, many prototypical substrates
of human CYP3A enzymes, such as dydropyridine
calcium-channel blockers (e.g., nifedipine), are not
metabolised by rat CYP3A1 [211,212].

11.4  CYP3A in dog
In dog, the CYP3A family comprises two isoforms: CYP3A12
and -3A26. Both have been detected in the liver. Several dis-
tinctions in catalytic activity have been identified between
these two enzymes. The major differences in steroid hydroxy-
lases identified clearly demonstrate that CYP3A26 is less
active than CYP3A12 [213]. The human isoforms CYP3A4
and -3A5 have been shown to exhibit some parallels when
compared with canine CYP3A12 and -3A26 [213].

11.5  CYP3A in monkey
In cynomolgus monkey CYP3A8 represents ∼ 20% of the
CYPs in monkey liver [214], and it is 93% similar to the human
CYP3A4 protein [178]. Taking into account the higher total
CYP levels/mg liver microsomal protein in monkeys compared
with human, this represents four- to five-times higher levels of
CYP3A8 compared with CYP3A4 per unit of liver.

In addition, the human 3A marker, midazolam 1′-hydroxy-
lase, showed five-fold higher CYP3A activity in cynomolgus
monkeys than in man. Estimated kinetic parameters indicate
that the affinity for midazolam is lower in monkey micro-
somes (higher estimated Km), but capacity is higher (higher
estimated Vmax) than in human microsomes, consistent with
the higher total CYP3A levels in monkeys. However, in
another CYP3A assay, erythromycin N-demethylation, mon-
keys exhibit a 19-fold higher activity than humans, and this
cannot be completely accounted for by the higher levels of
CYP3A protein in monkey microsomes. Therefore, differ-
ences are evident in affinity and enzymatic rates for CYP3A
substrates [44].

11.6  CYP3A induction
The induction of the CYP3A family is extensively studied
because of its importance on drug metabolism in man. The
CYP3A protein is highly inducible by drug exposure, mainly
through transcriptional activation. The major part of CYP3A4
transcriptional activation is mediated by PXR [215]; hence, the
activation of PXR by xenobiotics is a good indicator of induc-
tion of the CYP3A4 gene. In human and dogs, rifampicin is a
strong inducer of CYP3A [43,100], but not in rat and mouse,
whereas dexamethasone and pregnenolone 16α-carbonitrile
are strong PXR activators and/or inducers of CYP3A [48,100].
In addition, dexamethasone induces CYP3A in human, but
not in dog [52]. Those differences of induction among species
is explained by discrepancies in the ligand-binding domain of
PXR of the order of 70 – 75%, implying that their ligand
specificities may differ dramatically between species.
Therefore, extrapolation of animal data with respect to the

inducibility of the CYP3A subfamily in human can be
problematic [216]. 

11.7  CYP3A inhibition
Ketoconazole is a potent and well-studied inhibitor of CYP3A
in human and animals and is often used in vitro and in vivo as
a diagnostic inhibitor. The drug is not only an inhibitor of
CYP3A (Ki < 1 µM), but it is also a CYP3A substrate, being
metabolised into the imidazole ring, which is also the site of
its ligation to the haem [217]. Not surprisingly, oral ketocona-
zole is contraindicated with many CYP3A substrates and can
cause drug–drug interactions. In addition, ketoconazole has
been reported as a potent inhibitor of the CYP1A1 enzyme in
man [36] and in rat [62], thus indicating a possible cross-
reactivity with the more abundant CYP3A4 isoenzymes. In
particular, in rat, ketoconazole inhibited the activities of
CYP1A2 and -2C6 in addition to CYP3A1/2 isoforms.
Moreover, ketoconazole showed inhibition of diclofenac
4′-hydroxylase activity in mouse, rat and monkey, which was
not found in human and dog [61].  Other azole antifungals,
such as itraconazole, have CYP3A inhibitory effect in man
[218]. In addition, there are several examples of inhibitors act-
ing as mechanism-based or suicide inhibitors. The macrolide
antibiotic, erythromycin [219], is one example of a mecha-
nism-based inhibitor. Due to the large number of drugs
metabolised by CYP3A4, being a potent inhibitor can have a
detrimental effect on the marketability of a compound. This
is exemplified by mibefradil, which was withdrawn from the
market during its first year of sales due to its extensive
CYP3A4 drug–drug interactions [220]. 

11.8  Conclusion
CYP3A is the most important isoform involved in the meta-
bolism of xenobiotics in all species. However, the various
CYP3A isoforms expressed in different species show differ-
ent substrate specificities, making the extrapolation from
animal to man quite hazardous. In addition, CYP3A is
inducible in rodents and non-rodents, but the variable effect
of some inducers, such as rifampicin, pregnenolone
16α-carbonitrile and dexamethasone is an example of spe-
cies-dependent gene expression regulation. This high induc-
ibility is the cause of large interindividual variations in
metabolism in individual patients, which may vary 20- to
50-fold. In addition, prominent interspecies differences in
inhibition have been reported.

12.  Expert opinion

For the development of new drugs, the investigation of drug
metabolism mediated by CYP and the evaluation of potential
drug–drug interaction is essential. The experimental
approach is based on animal drug-metabolising systems, and
is used to predict kinetics and toxicity in man. However, this
interspecies comparison suffers from certain limitations
because specific isoforms are expressed in different species,
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and even when a high degree of sequence identity in the
amino acid sequences exists between the isoforms, this does
not automatically mean similar catalytic specificity [24]. None
of the animal species are completely similar to man with
respect to all CYP enzymes activities. However, similarities
can be found for some specific CYP isoforms. For example
CYP2E1, of which only one isoform is known, shows no
appreciable differences with respect to expression and cata-
lytic activity between species according to several authors
[24,61], and extrapolation between species appears to hold
quite well. Regarding CYP1A, all species seem to express the
two isoforms CYP1A1 and -1A2, albeit to a different extent,
and different catalytic activity has been observed. Therefore
some caution is required in extrapolation. CYP2C, -2D and
-3A show substantial differences in terms of isoforms, expres-
sion, organ specificity and catalytic activity. According to
Bogaards et al. [61] and Zuber et al. [41], compared to man,
dog seems to be more similar for CYP2D activity, monkey
for CYP2C activity, mouse for CYP1A activity, and mouse
and male rat for CYP3A activity. However, the selection of
the best animal species to be used during the development of
a new drug is difficult, considering that different animal
models might be needed depending on the particular study

type (e.g., metabolism, induction or inhibition). Relevant
in vitro studies with liver microsomes, hepatocytes, liver
slices and recombinant enzymes are very valuable to make
this selection because they are usually the only source of
information for the human situation.

In the future, much effort should be devoted to increase
predictivity for the human situation. For example, incubation
with specific isoenzymes expressed in cell systems is necessary
to determine which CYP isoform is involved in metabolism of
a new chemical entity and to allow comparison among spe-
cies. All important human CYPs are now available as single
recombinant-expressed isoforms. For rat, only some (but not
all) recombinant expressed single CYPs are commercially
available, whereas isoforms from mouse, monkey and dog are
scarcely available. The assessment of the absolute amount of
CYP isoforms in different animals and in different organs,
such as liver and small intestine, will help to identify and
understand species differences in terms of organ specificity
and catalytic activity, and to predict metabolic clearance in
man. In addition, future research should focus on the investi-
gation of the transporters involved in drug clearance in
different animal species in order to explain potential
metabolic differences among animals.
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