Gennady A. El

Gennady A. El
Northumbria University · Department of Mathematics, Physics and Electrical Engineering

Doctor of Philosophy

About

179
Publications
27,212
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,178
Citations
Introduction
Gennady El leads the Mathematics of Complex and Nonlinear Phenomena (MCNP) research group at the Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne
Additional affiliations
September 2018 - present
Loughborough University
Position
  • Professor

Publications

Publications (179)
Article
Full-text available
We review the spectral theory of soliton gases in integrable dispersive hydrodynamic systems. We first present a phenomenological approach based on the consideration of phase shifts in pairwise soliton collisions and leading to the kinetic equation for a non-equilibrium soliton gas. Then, a more detailed theory is presented in which soliton gas dyn...
Article
Full-text available
We use the spectral kinetic theory of soliton gas to investigate the likelihood of extreme events in integrable turbulence described by the one-dimensional focusing nonlinear Schrödinger equation (fNLSE). This is done by invoking a stochastic interpretation of the inverse scattering transform for fNLSE and analytically evaluating the kurtosis of th...
Article
Full-text available
The concept of soliton gas was introduced in 1971 by Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted (rarefied) soliton gas, solitons with random amplitude and phase parameters are almost nonoverlapping. More recently, the concept h...
Preprint
Full-text available
We study two-dimensional stationary soliton gas in the framework of the time-independent reduction of the Kadomtsev-Petviashvili (KPII) equation, which coincides with the integrable two-way ``good'' Boussinesq equation in the xy-plane. This (2+0)D reduction enables the construction of the kinetic equation for the stationary gas of KP solitons by in...
Preprint
Full-text available
We present an experimental study on the perturbed evolution of Korteweg-deVries soliton gases in a weakly dissipative nonlinear electrical transmission line. The system's dynamics reveal that an initially dense, fully randomized, soliton gas evolves into a coherent macroscopic state identified as a soliton condensate through nonlinear spectral anal...
Preprint
Full-text available
We use the spectral theory of soliton gas for the one-dimensional focusing nonlinear Schr\"odinger equation (fNLSE) to describe the statistically stationary and spatially homogeneous integrable turbulence emerging at large times from the evolution of the spontaneous (noise-induced) modulational instability of the elliptic ``dn'' fNLSE solutions. We...
Preprint
Full-text available
We present an analytical model of integrable turbulence in the focusing nonlinear Schr\"odinger (fNLS) equation, generated by a one-parameter family of finite-band elliptic potentials in the semiclassical limit. We show that the spectrum of these potentials exhibits a thermodynamic band/gap scaling compatible with that of soliton and breather gases...
Article
Full-text available
Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at leading order. We report hydrodynamic experiments in which we investigate the interaction between two beams or jets of soliton gases having nearly identical amplitudes but opposite velocities of the same magnitude. The space-time evolution...
Article
Full-text available
We report an optical fiber experiment in which we investigate the interaction between an individual soliton and a dense soliton gas. We evidence a refraction phenomenon where the tracer soliton experiences an effective velocity change due to its interaction with the optical soliton gas. This interaction results in a significant spatial shift that i...
Preprint
Full-text available
Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at the leading order. We report hydrodynamic experiments in which we investigate the interaction between two "beams" or "jets" of soliton gases having nearly identical amplitudes but opposite velocities of the same magnitude. The space-time e...
Article
Full-text available
We consider large-scale dynamics of non-equilibrium dense soliton gas for the Korteweg–de Vries (KdV) equation in the special “condensate” limit. We prove that in this limit the integro-differential kinetic equation for the spectral density of states reduces to the N-phase KdV–Whitham modulation equations derived by Flaschka et al. (Commun Pure App...
Preprint
Full-text available
We use the spectral kinetic theory of soliton gas to investigate the likelihood of extreme events in integrable turbulence described by the one-dimensional focusing nonlinear Schr\"odinger equation (fNLSE). This is done by invoking a stochastic interpretation of the inverse scattering transform for fNLSE and analytically evaluating the kurtosis of...
Article
Full-text available
The mathematical description of localized solitons in the presence of large-scale waves is a fundamental problem in nonlinear science, with applications in fluid dynamics , nonlinear optics, and condensed matter physics. Here, the evolution of a soliton as it interacts with a rar-efaction wave or a dispersive shock wave, examples of slowly varying...
Preprint
Full-text available
The concept of soliton gas was introduced in 1971 by V. Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted soliton gas, solitons with random parameters are almost non-overlapping. More recently, the concept has been extended to dense g...
Preprint
Full-text available
We report an optical fiber experiment in which we investigate the interaction between an individual soliton and a dense soliton gas. We evidence a refraction phenomenon where the tracer soliton experiences an effective velocity change due to its interaction with the optical soliton gas. This interaction results in a significant spatial shift that i...
Conference Paper
We report recent theoretical and experimental studies of soliton gases. In particular we measure the spectral parameters distribution (inverse scattering transform) of the soliton gas induced by the modulation instability in optical fibers.
Preprint
Full-text available
The propagation of localized solitons in the presence of large-scale waves is a fundamental problem, both physically and mathematically, with applications in fluid dynamics, nonlinear optics and condensed matter physics. Here, the evolution of a soliton as it interacts with a rarefaction wave or a dispersive shock wave, examples of slowly varying a...
Article
Full-text available
We establish the explicit correspondence between the theory of soliton gases in classical integrable dispersive hydrodynamics, and generalised hydrodynamics (GHD), the hydrodynamic theory for many-body quantum and classical integrable systems. This is done by constructing the GHD description of the soliton gas for the Korteweg-de Vries equation. We...
Preprint
Full-text available
We consider large-scale dynamics of non-equilibrium dense soliton gas for the Korteweg-de Vries (KdV) equation in the special "condensate'' limit. We prove that in this limit the integro-differential kinetic equation for the spectral density of states reduces to the $N$-phase KdV-Whitham modulation equations derived by Flaschka, Forest and McLaughl...
Article
Full-text available
Peregrine soliton (PS) is widely regarded as a prototype nonlinear structure capturing properties of rogue waves that emerge in the nonlinear propagation of unidirectional wave trains. As an exact breather solution of the one-dimensional focusing nonlinear Schrödinger equation with nonzero boundary conditions, the PS can be viewed as a soliton on f...
Preprint
Full-text available
We establish the explicit correspondence between the theory of soliton gases in classical integrable dispersive hydrodynamics, and generalized hydrodynamics (GHD), the hydrodynamic theory for many-body quantum and classical integrable systems. This is done by constructing the GHD description of the soliton gas for the Korteweg-de Vries (KdV) equati...
Article
Full-text available
The interaction of localised solitary waves with large-scale, time-varying dispersive mean flows subject to non-convex flux is studied in the framework of the modified Korteweg–de Vries (mKdV) equation, a canonical model for internal gravity wave propagation and potential vorticity fronts in stratified fluids. The effect of large amplitude, dynamic...
Article
Full-text available
Long time dynamics of the smoothed step initial value problem or dispersive Riemann problem for the Benjamin-Bona-Mahony (BBM) equation are studied using asymptotic methods and numerical simulations. The catalog of solutions of the dispersive Riemann problem for the BBM equation is much richer than for the related, integrable, Korteweg-de Vries equ...
Preprint
Full-text available
Peregrine soliton (PS) is widely regarded as a prototype nonlinear structure capturing properties of rogue waves that emerge in the nonlinear propagation of unidirectional wave trains. As an exact breather solution of the one-dimensional focusing nonlinear Schr\"odinger equation with nonzero boundary conditions, the PS can be viewed as a soliton on...
Preprint
Full-text available
We review spectral theory of soliton gases in integrable dispersive hydrodynamic systems. We first present a phenomenological approach based on the consideration of phase shifts in pairwise soliton collisions and leading to the kinetic equation for a non-equilibrium soliton gas. Then a more detailed theory is presented in which soliton gas dynamics...
Article
Full-text available
We numerically realize a breather gas for the focusing nonlinear Schrödinger equation. This is done by building a random ensemble of N∼50 breathers via the Darboux transform recursive scheme in high-precision arithmetics. Three types of breather gases are synthesized according to the three prototypical spectral configurations corresponding the Akhm...
Article
Full-text available
The theory of soliton gas had been previously developed for unidirectional integrable dispersive hydrodynamics in which the soliton gas properties are determined by the overtaking elastic pairwise interactions between solitons. In this paper, we extend this theory to soliton gases in bidirectional integrable Eulerian systems where both head-on and...
Preprint
Full-text available
The interaction of localised solitary waves with large-scale, time-varying dispersive mean flows subject to nonconvex flux is studied in the framework of the modified Korteweg-de Vries (mKdV) equation, a canonical model for nonlinear internal gravity wave propagation in stratified fluids. The principal feature of the studied interaction is that bot...
Article
Full-text available
It has been shown analytically that Peregrine solitons emerge locally from a universal mechanism in the so-called semiclassical limit of the one-dimensional focusing nonlinear Schrödinger equation. Experimentally, this limit corresponds to the strongly nonlinear regime where the dispersion is much weaker than nonlinearity at initial time. We review...
Preprint
Full-text available
We numerically realize breather gas for the focusing nonlinear Schr\"odinger equation. This is done by building a random ensemble of N $\sim$ 50 breathers via the Darboux transform recursive scheme in high precision arithmetics. Three types of breather gases are synthesized according to the three prototypical spectral configurations corresponding t...
Article
Full-text available
Soliton gases represent large random soliton ensembles in physical systems that exhibit integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optical media, their controlled experimental realization has been missing. We report a controlled synthes...
Preprint
Full-text available
Long time dynamics of the smoothed step initial value problem or dispersive Riemann problem for the Benjamin-Bona-Mahony (BBM) equation $u_t + uu_x = u_{xxt}$ are studied using asymptotic methods and numerical simulations. The catalog of solutions of the dispersive Riemann problem for the BBM equation is much richer than for the related, integrable...
Preprint
Full-text available
The theory of soliton gas had been previously developed for unidirectional integrable dispersive hydrodynamics in which the soliton gas properties are determined by the overtaking elastic pairwise interactions between solitons. In this paper, we extend this theory to soliton gases in bidirectional integrable Eulerian systems where both head-on and...
Preprint
Full-text available
Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optical media their controlled experimental realization has been missing. We report the first controlled...
Article
Full-text available
Solitons and breathers are localized solutions of integrable systems that can be viewed as “particles” of complex statistical objects called soliton and breather gases. In view of the growing evidence of their ubiquity in fluids and nonlinear optical media, these “integrable” gases present a fundamental interest for nonlinear physics. We develop an...
Article
Full-text available
We report water wave experiments performed in a long tank where we consider the evolution of nonlinear deep-water surface gravity waves with the envelope in the form of a large-scale rectangular barrier. Our experiments reveal that, for a range of initial parameters, the nonlinear wave packet is not disintegrated by the Benjamin-Feir instability bu...
Article
Full-text available
Solitary wave fission of a large disturbance in a viscous fluid conduit - Volume 883 - M. D. Maiden, N. A. Franco, E. G. Webb, G. A. El, M. A. Hoefer
Article
We investigate the fundamental phenomenon of the spontaneous, noise-induced modulational instability (MI) of a plane wave. The statistical properties of the noise-induced MI, observed previously in numerical simulations and in experiments, have not been explained theoretically. In this Letter, using the inverse scattering transform (IST) formalism,...
Preprint
Full-text available
We report water wave experiments performed in a long tank where we consider the evolution of nonlinear deep-water surface gravity waves with the envelope in the form of a large-scale rectangular barrier. Our experiments reveal that, for a range of initial parameters, the nonlinear wave packet is not disintegrated by the Benjamin-Feir instability bu...
Preprint
Solitons and breathers are localized solutions of integrable systems that can be viewed as "particles" of complex statistical objects called soliton and breather gases. In view of the growing evidence of their ubiquity in fluids and nonlinear optical media these "integrable" gases present fundamental interest for nonlinear physics. We develop spect...
Article
Full-text available
A new type of wave–mean flow interaction is identified and studied in which a small-amplitude, linear, dispersive modulated wave propagates through an evolving, nonlinear, large-scale fluid state such as an expansion (rarefaction) wave or a dispersive shock wave (undular bore). The Korteweg–de Vries (KdV) equation is considered as a prototypical ex...
Article
Full-text available
We examine statistical properties of integrable turbulence in the defocusing and focusing regimes of one-dimensional small-dispersion nonlinear Schrödinger equation (1D-NLSE). Specifically, we study the 1D-NLSE evolution of partially coherent waves having Gaussian statistics at time t=0. Using short time asymptotic expansions and taking advantage o...
Preprint
Full-text available
We investigate theoretically the fundamental phenomenon of the spontaneous, noise-induced modulational instability (MI) of a plane wave. The long-term statistical properties of the noise-induced MI have been previously observed in experiments and in simulations but have not been explained so far. In the framework of inverse scattering transform (IS...
Preprint
Full-text available
We investigate theoretically the fundamental phenomenon of the spontaneous, noise-induced modulational instability (MI) of a plane wave. The long-term statistical properties of the noise-induced MI have been previously observed in experiments and in simulations but have not been explained so far. In the framework of inverse scattering transform (IS...
Preprint
Full-text available
The temporal evolution of a large, localized initial disturbance is considered in the context of the viscous fluid conduit system---the driven, cylindrical, free interface between two miscible Stokes fluids with high viscosity contrast. Due to buoyancy induced nonlinear self-steepening balanced by stress induced interfacial dispersion, the disturba...
Preprint
Full-text available
We examine statistical properties of integrable turbulence in the defocusing and focusing regimes of one-dimensional small-dispersion nonlinear Schrodinger equation (1D-NLSE). Specifically, we study the 1D-NLSE evolution of partially coherent waves having Gaussian statistics at time t=0. Using short time asymptotic expansions and taking advantage o...
Preprint
Full-text available
A new type of wave-mean flow interaction is identified and studied in which a small-amplitude, linear, dispersive modulated wave propagates through an evolving, nonlinear, large-scale fluid state such as an expansion (rarefaction) wave or a dispersive shock wave (undular bore). The Korteweg-de Vries (KdV) equation is considered as a prototypical ex...
Article
Full-text available
The nonlinear Schrödinger (NLS) equation and the Whitham modulation equations both describe slowly varying, locally periodic nonlinear wavetrains, albeit in differing amplitude‐frequency domains. In this paper, we take advantage of the overlapping asymptotic regime that applies to both the NLS and Whitham modulation descriptions in order to develop...
Article
Full-text available
The data recorded in optical fiber and in hydrodynamic experiments reported the pioneering observation of nonlinear waves with spatiotemporal localization similar to the Peregrine soliton are examined by using nonlinear spectral analysis. Our approach is based on the integrable nature of the one-dimensional focusing nonlinear Schrödinger equation (...
Preprint
Full-text available
The data recorded in optical fiber [1] and in hydrodynamic [2] experiments reported the pioneering observation of nonlinear waves with spatiotemporal localization similar to the Peregrine soliton are examined by using nonlinear spectral analysis. Our approach is based on the integrable nature of the one-dimensional focusing nonlinear Schrodinger eq...
Preprint
Full-text available
The data recorded in optical fiber [1] and in hydrodynamic [2] experiments reported the pioneering observation of nonlinear waves with spatiotemporal localization similar to the Peregrine soliton are examined by using nonlinear spectral analysis. Our approach is based on the integrable nature of the one-dimensional focusing nonlinear Schrodinger eq...
Preprint
Full-text available
We report an optical fiber experiment in which we study nonlinear stage of modulational instability of a plane wave in the presence of a localized perturbation. Using a recirculating fiber loop as experimental platform, we show that the initial perturbation evolves into expanding nonlinear oscillatory structure exhibiting some universal characteris...
Preprint
Full-text available
We report an optical fiber experiment in which we study nonlinear stage of modulational instability of a plane wave in the presence of a localized perturbation. Using a recirculating fiber loop as experimental platform, we show that the initial perturbation evolves into expanding nonlinear oscillatory structure exhibiting some universal characteris...
Article
Full-text available
We report an optical fiber experiment in which we study nonlinear stage of modulational instability of a plane wave in the presence of a localized perturbation. Using a recirculating fiber loop as experimental platform, we show that the initial perturbation evolves into expanding nonlinear oscillatory structure exhibiting some universal characteris...
Article
Full-text available
We report an optical fiber experiment in which we study the nonlinear stage of modulational instability of a plane wave in the presence of a localized perturbation. Using a recirculating fiber loop as the experimental platform, we show that the initial perturbation evolves into an expanding nonlinear oscillatory structure exhibiting some universal...
Article
Full-text available
A conceptually new notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and th...
Article
Full-text available
Ubiquitous nonlinear waves in dispersive media include localized solitons and extended hydrodynamic states such as dispersive shock waves. Despite their physical prominence and the development of thorough theoretical and experimental investigations of each separately, experiments and a unified theory of solitons and dispersive hydrodynamics are lac...
Article
Full-text available
We develop a general approach to the description of dispersive shock waves (DSWs) for a class of nonlinear wave equations with a nonlocal Benjamin-Ono type dispersion term involving the Hilbert transform. Integrability of the governing equation is not a pre-requisite for the application of this method which represents a modification of the DSW fitt...
Article
Full-text available
Stationary expansion shocks have been recently identified as a new type of solution to hyperbolic conservation laws regularized by non-local dispersive terms that naturally arise in shallow-water theory. These expansion shocks were studied in (El, Hoefer, Shearer 2016) for the Benjamin-Bona-Mahony equation using matched asymptotic expansions. In th...