About
315
Publications
106,951
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
37,993
Citations
Introduction
Professor Tyson’s group at the Queensland University of Technology uses metagenomic and metatranscriptomic approaches he helped pioneer to investigate microbial communities in a wide range of different communities in both engineered systems and natural environments.
Additional affiliations
January 2011 - December 2012
January 2008 - December 2010
January 2004 - December 2009
Publications
Publications (315)
Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soil...
Methanogenic archaea are a group of microorganisms found in the gastrointestinal tract of various herbivores and humans; however, the quantity (intensity) of methane emissions during feed digestion varies. Macropodids, such as the Eastern Gray Kangaroo (Macropus giganteus), are considered to be low methane-emitting animals, but their gut methanogen...
While rapid progress has been made to characterize the bacterial and archaeal populations of the rumen microbiome, insight into how they interact with keystone protozoal species remains elusive. Here, we reveal two distinct rumen community types (RCT-A and RCT-B) that are not strongly associated with host phenotype nor genotype but instead linked t...
Recovery of microbial genomes from metagenomic datasets has provided genomic representation for hundreds of thousands of species from diverse biomes. However, low abundance microorganisms are often missed due to insufficient genomic coverage. Here we present Bin Chicken, an algorithm which substantially improves genome recovery through automated, t...
The human gut microbiome is intrinsically involved in health and disease, representing a wealth of untapped therapeutic potential. Here, we demonstrate the utility and potential of a metagenome guided, large cohort-based approach for the rational selection of live biotherapeutics from the human gut. We applied this approach to Inflammatory Bowel Di...
Background Accurate and comprehensive identification of enteropathogens, causing infectious gastroenteritis, is essential for optimal patient treatment and effective isolation processes in health care systems. Traditional diagnostic techniques are well established and optimised in low-cost formats. However, thorough testing for a wider range of cau...
Introduction
Little is known about the biogeography of the mucosa associated microbiome (MAM) in patients with inflammatory bowel disease (IBD) versus controls in different segments of the gastrointestinal tract, as well as the links between the MAM, gastrointestinal symptoms, and use of proton pump inhibitors (PPI).
Methods
We recruited 59 contro...
Coral reefs are vital ecosystems under threat from human activity, especially climate change. A core part of coral health and resilience is the association with microbes like bacteria and archaea. Understanding those relationships could help inform conservation efforts, but such research is often limited by technical challenges. A recent study was...
Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experimen...
With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along...
The bacterial species ‘Candidatus Alkanivorans nitratireducens’ was recently demonstrated to mediate nitrate-dependent anaerobic oxidation of short-chain gaseous alkanes (SCGAs). In previous bioreactor enrichment studies1,2, the species appeared to reduce nitrate in two phases, switching from denitrification to dissimilatory nitrate reduction to am...
Microbial diversity has been extensively explored in reef-building corals. However, the functional roles of coral-associated microorganisms remain poorly elucidated. Here, we recover 191 bacterial and 10 archaeal metagenome-assembled genomes (MAGs) from the coral Acropora kenti (formerly A. tenuis) and adjacent seawater, to identify microbial funct...
Determining the taxonomy and relative abundance of microorganisms in metagenomic data is a foundational problem in microbial ecology. To address the limitations of existing approaches, we developed ‘SingleM’, which estimates community composition using conserved regions within universal marker genes. SingleM accurately profiles complex communities...
The short-chain gaseous alkanes (ethane, propane, and butane; SCGAs) are important components of natural gas, yet their fate in environmental systems is poorly understood. Microbially mediated anaerobic oxidation of SCGAs coupled to nitrate reduction has been demonstrated for propane, but is yet to be shown for ethane or butane—despite being energe...
While wetlands are major sources of biogenic methane (CH 4 ), our understanding of resident microbial metabolism is incomplete, which compromises the prediction of CH 4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen M...
Anaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence suppo...
The short chain gaseous alkanes (ethane, propane and butane; SCGAs) are important components of natural gas, yet our understanding of their fate in environmental systems is poorly understood. Microbially mediated anaerobic oxidation of SCGAs coupled to nitrate reduction has been demonstrated for propane, but is yet to be shown for ethane or butane,...
Objectives:
In order to provide a better insight into the functional capacity of the human gut microbiome, we isolated a novel bacterium, "Candidatus Intestinicoccus colisanans" gen. nov. sp. nov., and performed whole genome sequencing. This study will provide new insights into the functional potential of this bacterium and its role in modulating...
Advances in sequencing technologies and bioinformatics tools have dramatically increased the recovery rate of microbial genomes from metagenomic data. Assessing the quality of metagenome-assembled genomes (MAGs) is a critical step before downstream analysis. Here, we present CheckM2, an improved method of predicting genome quality of MAGs using mac...
While wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolisms is incomplete, which compromises prediction of CH4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire, i...
The microbial guild coupling anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is an innovative process to achieve energy-efficient nitrogen removal with the beneficial use of methane in biogas or in anaerobically treated wastewater. Here, metagenomics and metatranscriptomics were used to reveal the microbial ecology of two...
Background
With an increasing interest in the manipulation of methane produced from livestock cultivation, the microbiome of Australian marsupials provides a unique ecological and evolutionary comparison with ‘low-methane’ emitters. Previously, marsupial species were shown to be enriched for novel lineages of Methanocorpusculum, as well as Methanob...
‘Candidatus Methanoperedens’ are anaerobic methanotrophic (ANME) archaea with global importance to methane cycling. Here meta-omics and fluorescence in situ hybridization (FISH) were applied to characterize a bioreactor dominated by ‘Candidatus Methanoperedens nitroreducens’ performing anaerobic methane oxidation coupled to nitrate reduction. Unexp...
Anaerobic microorganisms are thought to play a critical role in regulating the flux of short-chain gaseous alkanes (SCGAs; including ethane, propane and butane) from terrestrial and aquatic ecosystems to the atmosphere. Sulfate has been confirmed to act as electron acceptor supporting microbial anaerobic oxidation of SCGAs, yet several other energe...
Heterotrophic bacterial diazotrophs (HBDs) are ubiquitous in the pelagic ocean, where they have been predicted to carry out the anaerobic process of nitrogen fixation within low-oxygen microenvironments associated with marine pelagic particles. However, the mechanisms enabling particle colonization by HBDs are unknown. We hypothesized that HBDs use...
Advances in DNA sequencing and bioinformatics have dramatically increased the rate of recovery of microbial genomes from metagenomic data. Assessing the quality of metagenome-assembled genomes (MAGs) is a critical step prior to downstream analysis. Here, we present CheckM2, an improved method of predicting the completeness and contamination of MAGs...
Methane produced by methanogenic archaea has an important influence on Earth’s changing climate. Methanogenic archaea are phylogenetically diverse and widespread in anoxic environments. These microorganisms can be divided into two subgroups based on whether or not they use b-type cytochromes for energy conservation. Methanogens with b-type cytochro...
Anaerobic oxidation of methane (AOM) is an important microbial process mitigating methane (CH4) emission from natural sediments. Anaerobic methanotrophic archaea (ANME) have been shown to mediate AOM coupled to the reduction of several compounds, either directly (i.e. nitrate, metal oxides) or in consortia with syntrophic bacterial partners (i.e. s...
The capacity of planktonic marine microorganisms to actively seek out and exploit microscale chemical hotspots has been widely theorized to affect ocean-basin scale biogeochemistry1,2,3, but has never been examined comprehensively in situ among natural microbial communities. Here, using a field-based microfluidic platform to quantify the behavioura...
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure c...
Sulfate-coupled anaerobic oxidation of methane (AOM) is a major methane sink in marine sediments. Multiple lineages of anaerobic methanotrophic archaea (ANME) often coexist in sediments and catalyze this process syntrophically with sulfate-reducing bacteria (SRB), but the potential differences in ANME ecophysiology and mechanisms of syntrophy remai...
Investigating the composition and metabolic capacity of aquatic microbial assemblages usually requires the filtration of multi-litre samples, which are up to 1 million-fold larger than the microenvironments within which microbes are predicted to be spatially organised. To determine if community profiles can be reliably generated from microlitre vol...
Permafrost thaw is a major potential feedback source to climate change as it can drive increased release of greenhouse gases carbon dioxide (CO2) and methane (CH4). This carbon release from decomposition of thawing soil organic material can be mitigated by increased net primary production (NPP) caused by warming, increasing atmospheric CO2, and pla...
There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the...
Background
Microbial communities in both natural and applied settings reliably carry out myriads of functions, yet how stable these taxonomically diverse assemblages can be and what causes them to transition between states remains poorly understood. We studied monthly activated sludge (AS) samples collected over 9 years from a full-scale wastewater...
Northern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH 4 ) from sediments. Ebullitive CH 4 flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH 4 flux rel...
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure c...
Methanotrophic microorganisms play a critical role in controlling the flux of methane from natural sediments into the atmosphere. Methanotrophs have been shown to couple the oxidation of methane to the reduction of diverse electron acceptors (e.g., oxygen, sulfate, nitrate, and metal oxides), either independently or in consortia with other microbia...
The ability to preserve microbial communities in faecal samples is essential as increasing numbers of studies seek to use the gut microbiome to identify biomarkers of disease. Here we use shotgun metagenomics to rigorously evaluate the technical and compositional reproducibility of five room temperature (RT) microbial stabilisation methods compared...
A fundamental goal of microbial ecology is to accurately determine the species composition in a given microbial ecosystem. In the context of the human microbiome, this is important for establishing links between microbial species and disease states. Here we benchmark the Microba Community Profiler (MCP) against other metagenomic classifiers using 1...
Mechanisms controlling CO2 and CH4 production in wetlands are central to understanding carbon cycling and greenhouse gas exchange. However, the volatility of these respiration products complicates quantifying their rates of production in the field. Attempts to circumvent the challenges through closed system incubations, from which gases cannot esca...
Preeclampsia is a pregnancy-specific disorder characterized by hypertension and dysfunction of several organs, that is associated with maternal and fetal complications. The human gut microbiota is related to health and disease including hypertension. Alterations in gut microbiota composition can change the short-chain fatty acid profile released by...
Wastewater monitoring (WM) of SARS-CoV-2 from sewers was applied throughout the world early in the COVID-19 pandemic. Sharing of protocols and experiences in WM of SARS-CoV-2 by national and international researchers and practitioners has been vital to ensuring the sensitivity and specificity of the methods. WM has been a valuable adjunct to human...
Recent discoveries of mcr and mcr-like genes in genomes from diverse archaeal lineages suggest that methane metabolism is an ancient pathway with a complicated evolutionary history. One conventional view is that methanogenesis is an ancestral metabolism of the class Thermoplasmata. Through comparative genomic analysis of 12 Thermoplasmata metagenom...
Accelerating microbial iron cycling is an innovative environmentally responsible strategy for mine remediation. In the present study, we extend the application of microbial iron cycling in environmental remediation, to include biocementation for the aggregation and stabilization of mine wastes. Microbial iron reduction was promoted monthly for 10 m...
Modern microbial and ecosystem sciences require diverse interdisciplinary teams that are often challenged in “speaking” to one another due to different languages and data product types. Here we introduce the IsoGenie Database (IsoGenieDB; https://isogenie-db.asc.ohio-state.edu/ ), a de novo developed data management and exploration platform, as a s...
Anaerobic oxidation of methane (AOM) is an important biological process responsible for controlling the flux of methane into the atmosphere. Members of the archaeal family Methanoperedenaceae (formerly ANME-2d) have been demonstrated to couple AOM to the reduction of nitrate, iron, and manganese. Here, comparative genomic analysis of 16 Methanopere...
Recent discoveries of mcr and mcr-like complexes in genomes from diverse archaeal lineages suggest that methane (and more broadly alkane) metabolism is an ancient pathway with complicated evolutionary histories. The conventional view is that methanogenesis is an ancestral metabolism of the archaeal class Thermoplasmata. Through comparative genomic...
Northern post-glacial lakes are a significant and increasing source of atmospheric carbon (C), largely through ebullition (bubbling) of microbially-produced methane (CH 4 ) from the sediments ¹ . Ebullitive CH 4 flux correlates strongly with temperature, suggesting that solar radiation is the primary driver of these CH 4 emissions ² . However, here...
Anaerobic oxidation of methane (AOM) is an important biological process responsible for controlling the flux of methane into the atmosphere. Members of the archaeal family Methanoperedenaceae (formerly ANME-2d) have been demonstrated to couple AOM to the reduction of nitrate, iron, and manganese. Here, comparative genomic analysis of 16 Methanopere...
Anaerobic oxidation of methane (AOM) is a major biological process that reduces global methane emission to the atmosphere. Anaerobic methanotrophic archaea (ANME) mediate this process through the coupling of methane oxidation to different electron acceptors, or in concert with a syntrophic bacterial partner. Recently, ANME belonging to the archaeal...
In tropical iron ore regions, biologically mediated reduction of crystalline iron oxides drives ongoing iron cycling that contributes to the stability of surface duricrusts. This represents a biotechnological opportunity with respect to post-mining rehabilitation attempts, requiring re-formation of these duricrusts. However, cultivated dissimilator...
Corals and the reef ecosystems that they support are in global decline due to increasing anthropogenic pressures such as climate change¹. However, effective reef conservation strategies are hampered by a limited mechanistic understanding of coral biology and the functional roles of the diverse microbial communities that underpin coral health2,3. He...
A methanotrophic community was enriched in a semi-continuous reactor under non-aseptic conditions with methane and ammonia as carbon and nitrogen source. After a year of operation, Methylosinus sp., accounted for 80% relative abundance of the total sequences identified from potential polyhydroxyalkanoates (PHAs) producers, dominated the methane-fed...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Together these results show that hot spring environments harbor many mcr-containing organisms from outside of the Euryarchaeota and further expand the diversity of Mcr meditated methane or alkane metabolism processes. The predicted wide range of metabolic mechanisms suggests that these organisms may utilize diverse and as yet unidentified substrate...