
Gemma Carvill- PhD
- Professor (Assistant) at Northwestern University
Gemma Carvill
- PhD
- Professor (Assistant) at Northwestern University
About
101
Publications
30,490
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,618
Citations
Introduction
Our research focuses on genetic and epigenetic mechanisms that underlie epilepsy, for more info see our website: http://labs.feinberg.northwestern.edu/carvill/
Current institution
Publications
Publications (101)
Structural variants (SVs) are genetic variants that can vary widely in size, but are generally greater than 50bp. While there are many different types of SVs, deletions are perhaps the easiest to interpret given the loss of genetic material. As such up to 17% of neurodevelopmental disorders (NDDs) can be explained by SVs that disrupt coding regions...
Dravet syndrome is a developmental and epileptic encephalopathy associated with pathogenic variants in SCN1A. Most disease-causing variants are located within coding regions, but recent work has shed light on the role of non-coding variants associated with a poison exon in intron 20 of SCN1A. Discovery of the SCN1A poison exon known as 20N has led...
Multiplexed assays of variant effect (MAVEs) perform simultaneous characterization of many variants. Prime editing has been recently adopted for introducing many variants in their native genomic contexts. However, robust protocols and standards are limited, preventing widespread uptake. Herein, we describe curated loci prime editing (cliPE) which i...
Multiplexed assays of variant effect (MAVEs) perform simultaneous characterization of many variants. Prime editing has been recently adopted for introducing many variants in their native genomic contexts. However, robust protocols and standards are limited, preventing widespread uptake. Herein, we describe curated loci prime editing (cliPE) which i...
CHASERR encodes a human long noncoding RNA (lncRNA) adjacent to CHD2, a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Here, we report our findings in three unrelated children with a syndromic, early-onset neurodevelopmental disorder, each of whom had a de novo deletion in the CHASERR locus....
Plain language summary
A roadmap to cure disorders caused by the CHD2 and CHASERR genes
Coalition to Cure CHD2 (CCC) is a nonprofit founded in October 2020 to fund research towards a cure for individuals with CHD2-related disorders. The CHD2 gene was discovered as a genetic cause for epilepsy in 2013. Individuals with CHD2 typically experience seiz...
Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on...
Efforts to resolve the functional impact of variants of uncertain significance (VUS) have lagged behind the identification of new VUS; as such, there is a critical need for scalable VUS resolution technologies. Computational variant effect predictors (VEPs), once trained, can predict pathogenicity for all missense variants in a gene, set of genes,...
Genes encoding long non-coding RNAs (lncRNAs) comprise a large fraction of the human genome, yet haploinsufficiency of a lncRNA has not been shown to cause a Mendelian disease. CHASERR is a highly conserved human lncRNA adjacent to CHD2– a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Here...
Sequence-based genetic testing currently identifies causative genetic variants in ~50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations (epivariants) can drive disease by modulat...
Pathogenic loss-of-function SCN1A variants cause a spectrum of seizure disorders. We previously identified variants in individuals with SCN1A -related epilepsy that fall in or near a poison exon (PE) in SCN1A intron 20 (20N). We hypothesized these variants lead to increased PE inclusion, which introduces a premature stop codon, and, therefore, redu...
Purpose:
Sub-Saharan Africa bears the highest burden of epilepsy worldwide. A presumed proportion is genetic, but this etiology is buried under the burden of infections and perinatal insults in a setting of limited awareness and few options for testing. Children with developmental and epileptic encephalopathies (DEEs) are most severely affected by...
Objective:
KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants.
Methods:
We screened 893 individuals with developmental and epileptic encephalopathies (DEEs) for KCNH5 variants using targeted or exome sequencing. Additi...
Purpose: Sub-Saharan Africa bears the highest burden of epilepsy worldwide. A presumed proportion is genetic, but this aetiology is buried under the burden of infections and perinatal insults, in a setting of limited awareness and few options for testing. Children with developmental and epileptic encephalopathies (DEEs), are most severely affected...
An increasing number of epilepsies are being attributed to variants in genes with epigenetic functions. The products of these genes include factors that regulate the structure and function of chromatin and the placing, reading and removal of epigenetic marks, as well as other epigenetic processes. In this Review, we provide an overview of the vario...
Biallelic pathogenic variants in SZT2 result in a neurodevelopmental disorder with shared features, including early-onset epilepsy, developmental delay, macrocephaly, and corpus callosum abnormalities. SZT2 is as a critical scaffolding protein in the amino acid sensing arm of the mTORC1 signalling pathway. Due to its large size (3432 amino acids),...
Objective
KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants.
Methods
We screened 893 individuals with developmental and epileptic encephalopathies (DEEs) for KCNH5 variants using targeted or exome sequencing. Additional...
Aim
To identify additional genes associated with infantile spasms using a cohort with defined infantile spasms.
Method
Whole‐exome sequencing (WES) was performed on 21 consented individuals with infantile spasms and their unaffected parents (a trio‐based study). Clinical history and imaging were reviewed. Potentially deleterious exonic variants we...
This review summarizes the pathogenic mechanisms that underpin the monogenic epilepsies and discusses the potential of novel precision therapeutics to treat these disorders. Pathogenic mechanisms of epilepsy include recessive (null alleles), haploinsufficiency, imprinting, gain-of-function, and dominant negative effects. Understanding which pathoge...
Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 al...
Aim
To determine whether genes that cause developmental and epileptic encephalopathies (DEEs) are more commonly implicated in intellectual disability with epilepsy as a comorbid feature than in intellectual disability only.
Method
We performed targeted resequencing of 18 genes commonly implicated in DEEs in a cohort of 830 patients with intellectu...
Objective
The MAST family of microtubule-associated serine–threonine kinases (STK) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus call...
Developmental and epileptic encephalopathies (DEEs) describe a subset of neurodevelopmental disorders categorized by refractory epilepsy that is often associated with intellectual disability and autism spectrum disorder. The majority of DEEs are now known to have a genetic basis with de novo coding variants accounting for the majority of cases. Mor...
Objective
To describe the phenotypic spectrum in patients with MBD5-associated neurodevelopmental disorder (MAND) and seizures; features of MAND include intellectual disability, epilepsy, psychiatric features of aggression and hyperactivity, and dysmorphic features including short stature and microcephaly, sleep disturbance, and ataxia.
Methods
We...
Objective
The MAST family of microtubule-associated serine-threonine kinases (STK) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum.
Method...
Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense and missense variants in TSPOAP1, encoding the active zone RIM-binding protein 1 (RIMBP1), as a novel genetic cause of autosomal recessive dystonia in seven subjects from three unrelated familie...
Biallelic pathogenic variants in SZT2 result in a neurodevelopmental disorder with shared features, including early-onset epilepsy, developmental delay, macrocephaly, and corpus callosum abnormalities. SZT2 is as a critical scaffolding protein in the amino acid sensing arm of the mTOR signaling pathway. Due to its large size (3432 amino acids), lac...
Poison exons are naturally occurring, highly conserved alternative exons that contain a premature termination codon. Inclusion of a poison exon in a transcript targets the transcript for nonsense mediated decay, decreasing the amount of protein produced. Poison exons are proposed to play an important role in tissue-specific expression, development...
Epigenetics refers broadly to processes that influence medium to long‐term gene expression by changing the readability and accessibility of the genetic code. The Neurobiology Commission of the International League Against Epilepsy (ILAE) recently convened a Task Force to explore and disseminate advances in epigenetics to better understand their rol...
OBJECTIVES/GOALS: Epilepsy with myoclonic-atonic seizures (EMAS) is a childhood onset epilepsy disorder characterized by seizures with sudden loss of posture, or drop seizures. Our objective was to use short-read genome sequencing in 40 EMAS trios to better understand variants contributing to the development of EMAS. METHODS/STUDY POPULATION: Eligi...
Dystonia is a debilitating hyperkinetic movement disorder, frequently transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense and missense variants in TSPOAP1, encoding the active zone RIM-binding protein 1 (RIMBP1), as a novel genetic cause of autosomal recessive dystonia in seven subjects from three unrelated families....
Congenital disorders of glycosylation (CDG) are metabolic disorders that affect the glycosylation of proteins and lipids. Since glycosylation affects all organs, CDG show a wide spectrum of phenotypes. We present a patient with microcephaly, dysmorphic facies, congenital heart defect, focal epilepsy, infantile spasms, skeletal dysplasia, and a type...
CACNA1H genetic variants were originally reported in a childhood absence epilepsy cohort. Subsequently, genetic testing for CACNA1H became available and is currently offered by commercial laboratories. However, the current status of CACNA1H as a monogenic cause of epilepsy is controversial, highlighted by ClinGen's recent re‐classification of CACNA...
Heterozygous de novo variants in the eukaryotic elongation factor EEF1A2 have previously been described in association with intellectual disability and epilepsy but never functionally validated. Here we report 14 new individuals with heterozygous EEF1A2 variants. We functionally validate multiple variants as protein‐damaging using heterologous expr...
Developmental and epileptic encephalopathies (DEEs) can be primarily attributed to genetic causes. The genetic landscape of DEEs has been largely shaped by the rise of high-throughput sequencing, which led to the discovery of new DEE-associated genes and helped identify de novo pathogenic variants. We discuss briefly the contribution of de novo var...
Neuronal Mechanisms of Mutations in SCN8A Causing Epilepsy or Intellectual Disability Liu Y, Schubert J, Sonnenberg L, Helbig KL, Hoei-Hansen CE, Koko M, Rannap M, Lauxmann S, Huq M, Schneider MC, Johannesen KM, Kurlemann G, Gardella E7, Becker F, Weber YG, Benda J, Møller RS, Lerche H. Brain. 2019;142(2):376-390. doi:10.1093/brain/awy326. De novo...
Objective
Molecular genetic etiologies in epilepsy have become better understood in recent years, creating important opportunities for precision medicine. Building on these advances, detailed studies of the complexities and outcomes of genetic testing for epilepsy can provide useful insights that inform and refine diagnostic approaches and illumina...
The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function C...
Supp. Table S1. Summary of genomic findings
Supp. Table S2. Additional genes in the MHC region linked to disease.
Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies characterized by refractory seizures and developmental impairment. Sequencing approaches have identified causal genetic variants in only about 50% of individuals with DEEs.1–3 This suggests that unknown genetic etiologies exist, potentially in the ∼98% of human gen...
Rapid advances in genomic technologies have facilitated the identification pathogenic variants causing human disease. We report siblings with developmental and epileptic encephalopathy due to a novel, shared heterozygous pathogenic 13 bp duplication in SYNGAP1 (c.435_447dup, p.(L150Vfs*6)) that was identified by whole genome sequencing (WGS). The p...
The technological advancement of next-generation sequencing has greatly accelerated the pace of variant discovery in epilepsy. Despite an initial focus on autosomal dominant epilepsy due to the tractable nature of variant discovery with trios under a de novo model, more and more variants are being reported in families with epilepsies consistent wit...
Purpose:
Dravet syndrome (DS) is a well-described, severe genetic epileptic encephalopathy with an increased risk of SUDEP. The incidence and genetic architecture of DS in African patients is virtually unknown, largely due to lack of awareness and unavailability of genetic testing. The clinical benefits of the available precision medicine approach...
The chromodomain helicase DNA-binding (CHD) family of proteins are ATP-dependent chromatin remodelers that contribute to the reorganization of chromatin structure and deposition of histone variants necessary to regulate gene expression. CHD proteins play an important role in neurodevelopment, as pathogenic variants in CHD1, CHD2, CHD4, CHD7 and CHD...
Objective
The severe epilepsies of infancy (SEI) are a devastating group of disorders that pose a major care and economic burden on society; early diagnosis is critical for optimal management. This study sought to determine the incidence and etiologies of SEI, and model the yield and cost‐effectiveness of early genetic testing.
Methods
A populatio...
Over 80% of people with epilepsy live in low- to middle-income countries where epilepsy is often undiagnosed and untreated due to limited resources and poor infrastructure. In Africa, the burden of epilepsy is exacerbated by increased risk factors such as central nervous system infections, perinatal insults, and traumatic brain injury. Despite the...
In 10 of 120 family trios (consisting of a child with de novo epileptic encephalopathy and the child’s biologic parents), one parent was found to have mosaicism for the etiologic variant. This finding has implications for determining the risk of recurrence.
Objective: Cut homeodomain transcription factor CUX2 plays an important role in dendrite branching, spine development, and synapse formation in layer II‐III neurons of the cerebral cortex. We identify a recurrent de novo CUX2 p.Glu590Lys as a novel genetic cause for developmental and epileptic encephalopathy (DEE).
Methods: The de novo p.Glu590Lys...
Purpose
To estimate diagnostic yield and genotype-phenotype correlations in a cohort of 811 patients with lissencephaly or subcortical band heterotopia.
Methods
We collected DNA from 756 children with lissencephaly over 30 years. Many were tested for deletion 17p13.3 and mutations of LIS1, DCX, and ARX, but few other genes. Among those tested, 216...
Objective:
Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients.
Methods:
We collected 24 SLC6A1 probands and 6 affected family members. Four previously published cases were i...
Genotype-first combined with reverse phenotyping has shown to be a powerful tool in human genetics, especially in the era of next generation sequencing. This combines the identification of individuals with mutations in the same gene and linking these to consistent (endo)phenotypes to establish disease causality. We have performed a MIP (molecular i...
Heterozygous de novo variants in the autophagy gene, WDR45, are found in beta-propeller protein-associated neurodegeneration (BPAN). BPAN is characterized by adolescent onset dementia and dystonia; 66% patients have seizures. We asked whether WDR45 was associated with developmental and epileptic encephalopathy (DEE). We performed next generation se...
Objective: To define a distinct SCN1A developmental and epileptic encephalopathy with early onset, profound impairment, and movement disorder. Methods: A case series of 9 children were identified with a profound developmental and epileptic encephalopathy and SCN1A mutation. Results: We identified 9 children 3 to 12 years of age; 7 were male. Seizur...
Objective:
To define a distinct SCN1A developmental and epileptic encephalopathy with early onset, profound impairment, and movement disorder.
Methods:
A case series of 9 children were identified with a profound developmental and epileptic encephalopathy and SCN1A mutation.
Results:
We identified 9 children 3 to 12 years of age; 7 were male. S...
Objective:
To identify the genetic basis of a family segregating episodic ataxia, infantile seizures, and heterogeneous epilepsies and to study the phenotypic spectrum of KCNA2 mutations.
Methods:
A family with 7 affected individuals over 3 generations underwent detailed phenotyping. Whole genome sequencing was performed on a mildly affected gra...
Epileptic encephalopathies (EEs) are the most clinically important group of severe early-onset epilepsies. Next-generation sequencing has highlighted the crucial contribution of de novo mutations to the genetic architecture of EEs as well as to their underlying genetic heterogeneity. Our previous whole-exome sequencing study of 264 parent-child tri...
Genetic generalized epilepsy (GGE), formerly known as idiopathic generalized epilepsy, is the most common form of epilepsy and is thought to have predominant genetic etiology. GGE are clinically characterized by absence, myoclonic, or generalized tonic-clonic seizures with electroencephalographic pattern of bilateral, synchronous, and symmetrical s...
Objectives:
We report development of a targeted resequencing gene panel for focal epilepsy, the most prevalent phenotypic group of the epilepsies.
Methods:
The targeted resequencing gene panel was designed using molecular inversion probe (MIP) capture technology and sequenced using massively parallel Illumina sequencing.
Results:
We demonstrat...
Background:
Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what exten...
Objective:
To analyze the clinical syndromes and inheritance patterns of multiplex families with epilepsy toward the ultimate aim of uncovering the underlying molecular genetic basis.
Methods:
Following the referral of families with 2 or more relatives with epilepsy, individuals were classified into epilepsy syndromes. Families were classified i...
Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individu...
Next-generation sequencing technologies have revolutionized gene discovery in patients with intellectual disability (ID) and led to an unprecedented expansion in the number of genes implicated in this disorder. We discuss the strategies that have been used to identify these novel genes for both syndromic and nonsyndromic ID and highlight the phenot...
De novo SCN2A mutations have recently been associated with severe infantile-onset epilepsies. Herein, we define the phenotypic spectrum of SCN2A encephalopathy.
Twelve patients with an SCN2A epileptic encephalopathy underwent electroclinical phenotyping.
Patients were aged 0.7 to 22 years; 3 were deceased. Seizures commenced on day 1-4 in 8, week 2...
Objective:
To assess the presence of DEPDC5 mutations in a cohort of patients with epileptic spasms.
Methods:
We performed DEPDC5 resequencing in 130 patients with spasms, segregation analysis of variants of interest, and detailed clinical assessment of patients with possibly and likely pathogenic variants.
Results:
We identified 3 patients wi...
Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated with KCNT1, we examined individuals affected with foca...
GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy wi...
Epilepsy is a common disabling disease with complex, multifactorial genetic and environmental etiology. The small fraction of epilepsies subject to Mendelian inheritance offers key insight into epilepsy disease mechanisms; and pathologies brought on by mutations in a single gene can point the way to generalizable therapeutic strategies. Mutations i...
To delineate the phenotype of early childhood epileptic encephalopathy due to de novo mutations of CHD2, which encodes the chromodomain helicase DNA binding protein 2.
We analyzed the medical history, MRI, and video-EEG recordings of 9 individuals with de novo CHD2 mutations and one with a de novo 15q26 deletion encompassing CHD2.
Seizures began at...
(The American Journal of Human Genetics 94, 649–661; May 1, 2014) In this article, the authors reported on four individuals with intellectual disability, severely affected speech development, behavioral problems, and missense mutations affecting the SAND domain of DEAF1. Functional studies showing a loss of function of DEAF1 and behavioral studies...
SCN8A encodes the sodium channel voltage-gated α8-subunit (Nav1.6). SCN8A mutations have recently been associated with epilepsy and neurodevelopmental disorders. We aimed to delineate the phenotype associated with SCN8A mutations.
We used high-throughput sequence analysis of the SCN8A gene in 683 patients with a range of epileptic encephalopathies....
Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large, and the underlying causative genes are unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay in comparison to 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26...
In severe early-onset epilepsy, precise clinical and molecular genetic diagnosis is complex, as many metabolic and electro-physiological processes have been implicated in disease causation. The clinical phenotypes share many features such as complex seizure types and developmental delay. Molecular diagnosis has historically been confined to sequent...
Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort...
To determine the genes underlying Dravet syndrome in patients who do not have an SCN1A mutation on routine testing.
We performed whole-exome sequencing in 13 SCN1A-negative patients with Dravet syndrome and targeted resequencing in 67 additional patients to identify new genes for this disorder.
We detected disease-causing mutations in 2 novel genes...
Congenital diaphragmatic hernia (CDH) is a common birth defect affecting 1 in 3000 births. It is characterised by herniation of abdominal viscera through an incompletely formed diaphragm. Although chromosomal anomalies and mutations in several genes have been implicated, the cause for most patients is unknown.
We used whole exome sequencing in two...
The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unkno...
We examined whether copy number variants (CNVs) were more common in those with a combination of intellectual disability (ID) and genetic generalized epilepsy (GGE) than in those with either phenotype alone via a case-control study.
CNVs contribute to the genetics of multiple neurodevelopmental disorders with complex inheritance, including GGE and I...
Epilepsy-aphasia syndromes (EAS) are a group of rare, severe epileptic encephalopathies of unknown etiology with a characteristic electroencephalogram (EEG) pattern and developmental regression particularly affecting language. Rare pathogenic deletions that include GRIN2A have been implicated in neurodevelopmental disorders. We sought to delineate...
Epileptic encephalopathies are a devastating group of epilepsies with poor prognosis, of which the majority are of unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate genes for epileptic encephalopathy in 500 affected individuals (cases) to identify new genes involved and to investigate the phenotypic...
The recent explosion in the implementation of genome-wide microarray technology to discover rare, pathogenic genomic rearrangements in a variety of diseases has led to the discovery of numerous microdeletion syndromes. It is now clear that these microdeletions are associated with extensive phenotypic heterogeneity and incomplete penetrance. A subse...
Exome sequencing studies of autism spectrum disorders (ASDs) have identified many de novo mutations but few recurrently disrupted
genes. We therefore developed a modified molecular inversion probe method enabling ultra-low-cost candidate gene resequencing
in very large cohorts. To demonstrate the power of this approach, we captured and sequenced 44...
Introduction Mental retardation (MR) is estimated to have a prevalence of 1–3% in the developed world, making it a common congenital disorder (Leonard and Wen, 2002). Patients afflicted with this condition exhibit impaired development of adaptive and cognitive abilities, which manifests before 18 years of age. Mental retardation is a genetically an...
Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disea...