## Chromaticity of a family of K 4-homeomorph with Girth 9

N. S. A. Karim, R. Hasni, and G. C. Lau

Citation: AIP Conference Proceedings 1605, 563 (2014); doi: 10.1063/1.4887650
View online: http://dx.doi.org/10.1063/1.4887650
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1605?ver=pdfcov
Published by the AIP Publishing

## Articles you may be interested in

Chromaticity of a family of 6-bridge graphs
AIP Conf. Proc. 1635, 440 (2014); 10.1063/1.4903619
Thermopower behavior in the Gd 5 ( Si 0.1 Ge 0.9 ) 4 magnetocaloric compound from 4 to 300 K J. Appl. Phys. 91, 4457 (2002); 10.1063/1.1459612

Fourier-transform infrared observation of SiC n chains. I. The $\mathrm{v} 4(\sigma)$ mode of linear SiC 9 in Ar at 10 K J. Chem. Phys. 110, 11214 (1999); 10.1063/1.479062

Raman spectra of solid CH4 under high pressure. II. New phases below 9 kbar at 4.2 K
J. Chem. Phys. 76, 4817 (1982); 10.1063/1.442800

ESR Linewidths in Dilute Hexaaquomanganese(II) Solutions at 9.4 and 24 kMc
J. Chem. Phys. 36, 378 (1962); 10.1063/1.1732513

# Chromaticity of A Family of $\boldsymbol{K}_{\mathbf{4}}$-homeomorph with Girth $\mathbf{9}$ 

N.S.A. Karim ${ }^{\text {a }}$, R. Hasni ${ }^{\text {b }}$ and G. C. Lau ${ }^{\text {c }}$<br>${ }^{a}$ Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak<br>${ }^{b}$ School of Informatics and Applied Mathematics, University Malaysia Terengganu 21030 Kuala Terengganu, Terengganu<br>${ }^{c}$ Faculty of Computer and Mathematical Sciences, University Teknologi MARA (Segamat Campus) 85000 Segamat, Johor


#### Abstract

For a graph $G$, let $P(G, \lambda)$ denote the chromatic polynomial of $G$. Two graphs $G$ and $H$ are chromatically equivalent (or simply $\chi$-equivalent), denoted by $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. A graph $G$ is chromatically unique (or simply $\chi$-unique) if for any graph $H$ such as $H \sim G$, we have $H \cong G$, i.e, $H$ is isomorphic to $G$. A $K_{4}$-homeomorph is a subdivision of the complete graph $K_{4}$. In this paper, we investigate the chromaticity of one family of $K_{4}$-homeomorph which has girth 9 , and give sufficient and necessary condition for the graph in the family to be chromatically unique.


Keywords: Chromatic polynomial, chromaticity, $K_{4}$-homeomorph.
PACS: 02.10.Ox

## INTRODUCTION

All graphs considered here are simple graphs. For such a graph $G$, let $P(G, \lambda)$ denote the chromatic polynomial of $G$. Two graphs $G$ and $H$ are chromatically equivalent (or simply $\chi$-equivalent), denoted by $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. A graph $G$ is chromatically unique (or simply $\chi$-unique) if for any graph $H$ such as $H \sim G$, we have $H \cong G$,i.e, $H$ is isomorphic to $G$. A $K_{4}$-homeomorph is a subdivision of the complete graph $K_{4}$. Such a homeomorph is denoted by $K_{4}(a, b, c, d, e, f)$ if the six edges of $K_{4}$ are replaced by the six paths of length $a, b, c, d, e, f$, respectively, as shown in Figure 1. So far, the chromaticity of $K_{4}$-homeomorph with girth $g$, where $3 \leq g \leq 7$ has been studied by many authors(see [1-5]). Also the study of the chromaticity of $K_{4}$-homeomorph with at least two paths of length 1 has been fulfilled (see [2,6-8]). Recently, Shi et al. [9] studied the chromaticity of one family of $K_{4}$-homeomorph with girth 8 , i.e., $K_{4}(2,3,3, d, e, f)$. In [10], Shi has solved completely the chromaticity of $K_{4}$-homeomorph with girth 8. As we know, only the chromaticity of such graph with at least two paths of length 1 has been obtained among all the $K_{4}$-homeomorph with girth 9 . The chromaticity of $K_{4}$-homeomorph with exactly three paths of the same length has been obtained by Ren [11]. Recently, Catada-Ghimire and Hasni [12] investigated the chromaticity of $K_{4}{ }^{-}$ homeomorph with exactly two paths of length 2 . When referring to the chromaticity of $K_{4}$-homeomorph with girth 9, we know that six types of $K_{4}$-homeomorph need to be solved, that is, $K_{4}\left(1,2,6, d, e_{f}\right), K_{4}\left(1,3,5, d, e_{2} f\right)$, $K_{4}(1,4,4, d, e, f), K_{4}(2,3,4, d, e, f), K_{4}(1,2, \mathrm{c}, 3, e, 3)$ and $K_{4}(1,3, \mathrm{c}, 2, e, 3)$. Because the length of this paper will be too long and some details cannot be left out, in this paper, we consider the chromaticity $K_{4}(2,3,4$, d, e, f) (Figure 2). The chromaticity of other types will be discussed in other paper.


FIGURE 1. $K_{4}(a, b, c, d, e, f)$

## PRELIMINARY RESULTS

In this section, we give some known results used in the sequel.


FIGURE 2. $K_{4}(2,3,4, d, e, f)$

Lemma 2.1 Assume that $G$ and $H$ are simply $\chi$-equivalent. Then,
(1) $|V(G)|=|V(H)|,|E(G)|=|E(H)|$ (see [13]);
(2) $G$ and $H$ has the same girth and the same number of cycles with length equal to their girth (see[14]);
(3) If $G$ is a $K_{4}$-homeomorph, then $H$ must itself be a $K_{4}$-homeomorph (see [15]);
(4) Let $G=K_{4}\left(a, b, c, d, e_{,}\right)$and $H=K_{4}\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then
(i) $\min \left(a, b, c, d, e_{2} f\right)=\min \left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right)$ and the number of times that this minimum occurs in the list $\left\{a, b, c, d, e_{2} f\right\}$ is equal to the number of times that his minimum occurs in the list $\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}$ (see [16]);
(ii) if $\left\{a, b, c, d, e_{2} f\right\}=\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}$ as multisets, then $H \cong G$ (see [2]).

Lemma 2.2 (Hasni [17]) Let $K_{4}$-homeomorphs $K_{4}(2,3,4, d, e, f)$ and $K_{4}\left(1,2,6, d^{\prime}, e^{\prime}, f^{\prime}\right)$ be chromatically equivalent, then

$$
\begin{aligned}
& K_{4}(2,3,4,1,7, s) \sim K_{4}(1,2,6,4, s, 4), \\
& K_{4}(2,3,4,7,1,5) \sim K_{4}(1,2,6,6,3,4), \\
& K_{4}(2,3,4,1,5,8) \sim K_{4}(1,2,6,6,4,4), \\
& K_{4}(2,3,4,1,7,4) \sim K_{4}(1,2,6,4,4,4), \\
& K_{4}(2,3,4,10,6,1) \sim K_{4}(1,2,6,9,3,5), \\
& K_{4}(2,3,4,6,6,1) \sim K_{4}(1,2,6,5,5,5),
\end{aligned}
$$

where $s \geq 6$.
Lemma 2.3 (Ren [11]) Let $G=K_{4}(a, b, c, d, e, f)$ when exactly three of $a, b, c, d, e, f$ are the same. Then $G$ is not chromatically unique if and only if $G$ is isomorphic to $K_{4}(s, s, s-2,1,2, s)$ or $K_{4}(s, s-2, s, 2 \mathrm{~s}-2,1, s)$ or $K_{4}(t, t, 1,2 t, t+2, t)$ or $K_{4}(t, t, 1,2 t, t+1, t)$ or $K_{4}(t, t+1, t, 2 t+1,1, t)$ or $K_{4}(1, t, 1, t+1,3,1)$ or $K_{4}(1,1, t, 2, t+2,1)$, where $s \geq 3, t \geq 2$.

Lemma 2.4 (Catada-Ghimire and Hasni [12]) A $K_{4}$-homeomorph graph with exactly two paths of length two is $\chi$ unique if and only if it is not isomorphic to $K_{4}(1,2,2,4,1,1)$ or $K_{4}(4,1,2,1,2,4)$ or $K_{4}(1, s+2,2,1,2, s)$ or
$K_{4}(1,2,2, t+2, t+2, t)$ or $K_{4}(1,2,2, t, t+1, t+3)$ or $K_{4}(3,2,2, r, 1,5)$ or $K_{4}(1, r, 2,4,2,4)$ or $K_{4}(3,2,2, r, 1, r+3)$ or $K_{4}(r+2,2,2,1,4, r)$ or $K_{4}(r+3,2,2, r, 1,3)$ or $K_{4}(4,2,2,1, r+2, r)$ or $K_{4}(3,4,2,4,2,6)$ or $K_{4}(3,4,2,4,2,8)$ or $K_{4}(3,4,2,8,2,4)$ or $K_{4}(7,2,2,3,4,5)$ or $K_{4}(5,2,2,3,4,7)$ or $K_{4}(8,2,2,3,4,6)$ or $K_{4}(5,2,2,9,3,4)$ or $K_{4}(5,2,2,5,3,4)$ where $r \geq 3, s \geq 3, t \geq 3$.

## MAIN RESULT

In this section, we present our main results. In the following, we only consider graphs with at most one path of length 1 and have girth 9 .

Lemma 3.1 Let $K_{4}$-homeomorph $K_{4}(2,3,4, d, e, f)$ and $K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$ be chromatically equivalent, then

$$
\begin{aligned}
& K_{4}(2,3,4,1,5,7) \sim K_{4}(1,3,5,2,8,3) \\
& K_{4}(2,3,4, e+4, e, 1) \sim K_{4}(1,3,5, e+3,2, e) \\
& K_{4}(2,3,4,6, e, 1) \sim K_{4}(1,3,5,5, e, 2)
\end{aligned}
$$

where $e \geq 6$.
Proof. Let $G$ and $H$ be two graphs such that $G \cong K_{4}\left(2,3,4, d, e_{2}\right)$ and $H \cong K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$. Since the girth of $G$ is 9 , there is at most a 1 among $d, e$ or $f$. Let

$$
\mathrm{Q}\left(K_{4}\left(a, b, c, d, e_{2} f\right)\right)=-(s+1)\left(s^{a}+s^{b}+s^{c}+s^{d}+s^{e}+s^{f}\right)+s^{a+d}+s^{b+f}+s^{c+e}+s^{a+b+e}+s^{b+d+c}+s^{a+c+f}+s^{d+e+f} .
$$

Suppose $s=1-\lambda$ and $x$ is the number of edges in $G$. From [16], we have the chromatic polynomial of $K_{4}{ }^{-}$ homeomorphs $K_{4}\left(a, b, c, d, e_{f} f\right)$ as follows:

$$
Q\left(K_{4}(a, b, c, d, e, f)\right)=(-1)^{x-1} \frac{s}{(s-1)^{2}}\left[\left(s^{2}+3 s+2\right)+Q\left(K_{4}(a, b, c, d, e, f)\right)-s^{x-1}\right]
$$

Hence $P(G)=P(H)$ if and only if $Q(G)=Q(H)$. We solve the equation $Q(G)=Q(H)$ to get all solutions. Let the lowest remaining power and the highest remaining power denoted by 1.r.p. and h.r.p., respectively. As $G \cong K_{4}(2,3,4, d, e, f)$ and $H \cong K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then

$$
\begin{aligned}
& Q(G)=-(s+1)\left(s^{2}+s^{3}+s^{4}+s^{d}+s^{e}+s^{f}\right)+s^{d+2}+s^{f+3}+s^{e+4}+s^{e+5}+s^{d+7}+s^{f+6}+s^{d+e+f} \\
& Q(H)=-(s+1)\left(s+s^{3}+s^{5}+s^{d^{\prime}}+s^{e^{\prime}}+s^{f^{\prime}}\right)+s^{d^{\prime+1}}+s^{f^{\prime+3}}+s^{e^{\prime}+5}+s^{e^{\prime}+4}+s^{d^{\prime}+8}+s^{f^{\prime}+6}+s^{d^{\prime}+e^{\prime}+f^{\prime}}
\end{aligned}
$$

Since $K_{4}(2,3,4, d, e, f)$ has exactly one path of length 1 , we have $\min \left\{d, e_{,} f\right\}=1$. From Lemma 2.1(1),

$$
\begin{equation*}
d+e+f=d^{\prime}+e^{\prime}+f^{\prime} \tag{1}
\end{equation*}
$$

$Q(G)=Q(H)$ yields

$$
\begin{aligned}
& Q_{1}(G)=-s^{3}-s^{4}-s^{d}-s^{e}-s^{f}-s^{d+1}-s^{e+1}-s^{f+1}+s^{d+2}+s^{d+7}+s^{e+4}+s^{e+5}+s^{f+3}+s^{f+6} \\
& Q_{1}(H)=-s-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{e}+1}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}
\end{aligned}
$$

There are three cases to be considered, that is, $d=1$ (Case A) or $e=1$ (Case B) or $f=1$ (Case C). We only show the detailed proof of Case A, that is the case $d=1$.

Case A $d=1$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{2}(G)=-s^{2}-s^{4}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{8}+s^{e+4}+s^{e+5}+s^{f+3}+s^{f+6} \\
& Q_{2}(H)=-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{2+1}}-s^{f^{+1}+}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{e+5}}+s^{f^{++3}}+s^{f^{++6}}
\end{aligned}
$$

After comparing the 1.r.p. in $Q_{2}(G)$ and the 1.r.p. in $Q_{2}(H)$, we have $d^{\prime}=2$ or $e^{\prime}=2$ or $f^{\prime}=2$.

Case $1 d^{\prime}=2$. We have $e^{\prime} \geq 4$ and $f^{\prime} \geq 3$. From $Q_{2}(G)$ and $Q_{2}(H)$, we obtain the following after simplification.

$$
\begin{aligned}
& Q_{3}(G)=-s^{4}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{8}+s^{e+4}+s^{e+5}+s^{f+3}+s^{f+6} \\
& Q_{3}(H)=-s^{6}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{e+1}}-s^{f^{+1}+}+s^{10}+s^{e^{2+4}+s^{e^{+}+5}+s^{f^{\prime+3}}+s^{f^{\prime+}+6}}
\end{aligned}
$$

Consider the 1.r.p. in $Q_{3}(G)$ and the 1.r.p. in $Q_{3}(H)$. then, we have $e^{\prime}=4$ or $f^{\prime}=4$.
Case 1.1 $e^{\prime}=4$. From $Q_{3}(G)$ and $Q_{3}(H)$, we obtain the following after simplification.

$$
\begin{aligned}
& Q_{4}(G)=-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+3}+s^{f+6} \\
& Q_{4}(H)=-s^{5}-s^{6}-s^{f^{2}}-s^{f^{+1}+}+s^{9}+s^{10}+s^{f+3}+s^{f+6}
\end{aligned}
$$

Consider the h.r.p. in $Q_{4}(G)$ and the h.r.p. in $Q_{4}(H)$, then either $e+5=f^{\prime}+6$ or $f+6=f^{\prime}+6$.
Case 1.1.1 $e+5=f^{\prime}+6$. Then, $e=f^{\prime}+1$. By Equation (1), $f=4$. Simplifying $Q_{4}(G)$ and $Q_{4}(H)$, we obtain

$$
\begin{aligned}
& Q_{5}(G)=-s^{4}-s^{e+1}+s^{7}+s^{e+4} \\
& Q_{5}(H)=-s^{6}-s^{f^{\prime}}+s^{9}+s^{f^{\prime+3}}
\end{aligned}
$$

We can see that $e=5$ and $f^{\prime}=4$. Thus, $G \cong H$.
Case 1.1.2 $f+6=f^{\prime}+6$. So $f=f^{\prime}$. By Equation (1), $e=5$. Thus, $G \cong H$.
Case 1.2 $f^{\prime}=4$. From $Q_{3}(G)$ and $Q_{3}(H)$, we obtain the following after simplification.

$$
\begin{aligned}
& Q_{6}(G)=-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{8}+s^{e+4}+s^{e+5}+s^{f+3}+s^{f+6} \\
& Q_{6}(H)=-s^{5}-s^{6}-s^{e^{2}}-s^{e^{\prime+1}}+s^{7}+s^{10}+s^{10}+s^{e^{++4}}+s^{e^{+}+5}
\end{aligned}
$$

We know that $e^{\prime} \geq 4$. If $e^{\prime}=4$, we get the same conclusion as in Case 1.1.1. If $e^{\prime} \geq 5$, by comparing the h.r.p. in $Q_{6}(G)$ and the h.r.p. in $Q_{6}(H)$, then either $e+5=e^{\prime}+5$ or $f+6=e^{\prime}+5$.

Case 1.2.1 $e+5=e^{\prime}+5$, then $e=e^{\prime}$. From Equation (1), $f=5$. We obtain that $Q_{6}(G) \neq Q_{6}(H)$, a contradiction.
Case 1.2.2 $f+6=e^{\prime}+5$, then $f+1=e^{\prime}$. From Equation (1), $e=6$. We obtain that $Q_{6}(G) \neq Q_{6}(H)$, a contradiction.
Case 2 $e^{\prime}=2$. Then, $d^{\prime} \geq 4$ and $f^{\prime} \geq 6$. From $Q_{2}(G)$ and $Q_{2}(H)$, we obtain the following after simplification.

$$
\begin{aligned}
& Q_{7}(G)=-s^{4}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{8}+s^{e+4}+s^{e+5}+s^{f+3}+s^{f+6} \\
& Q_{7}(H)=-s^{3}-s^{d^{\prime}}-s^{f^{\prime}}-s^{t^{+1}}+s^{7}+s^{d^{\prime}+8}+s^{p^{+3}}+s^{t^{+6}}
\end{aligned}
$$

Consider the term $-s^{3}$ in $Q_{7}(H)$. It cannot be cancelled with any positive term in $Q_{7}(H)$ since $d^{\prime} \geq 4$ and $f^{\prime} \geq 6$ and it cannot be cancelled with any negative term in $Q_{7}(G)$ as well since $f \geq 4$ and $e \geq 5$. Thus, a contradiction.

Case $3 f^{\prime}=2$. Then $d^{\prime} \geq 3$ and $e^{\prime} \geq 6$. From $Q_{2}(G)$ and $Q_{2}(H)$, we obtain the following after simplification.

$$
\begin{aligned}
& Q_{8}(G)=-s^{4}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+3}+s^{f+6} \\
& Q_{8}(H)=-s^{3}-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime+1}+s^{5}+s^{d+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}}
\end{aligned}
$$

The term $-s^{3} \in Q_{8}(H)$ cannot be cancelled with any term in $Q_{8}(G)$ and $Q_{8}(H)$, thus a contradiction.
Cases B and C can be proved similar to Case A.
This completes the proof of Lemma $3.1 \square$
Similar to Lemma 3.1, we can prove the following lemmas.

Lemma 3.2 Let $K_{4}$-homeomorph $K_{4}(2,3,4, d, e, f)$ and $K_{4}\left(1,4,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$ be chromatically equivalent, then

$$
\begin{aligned}
& K_{4}(2,3,4,1,7,4) \sim K_{4}(1,4,4,4,2,6), \\
& K_{4}(2,3,4,1,5,8) \sim K_{4}(1,4,4,6,2,6)
\end{aligned}
$$

Lemma 3.3 Let $K_{4}$-homeomorph $K_{4}\left(2,3,4, d, e_{2}\right)$ and $K_{4}\left(2,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$ be chromatically equivalent, then

$$
\begin{aligned}
& K_{4}(2,3,4,2,4,8) \sim K_{4}(2,2,5,4,3,7) \\
& K_{4}(2,3,4,6,2,8) \sim K_{4}(2,2,5,3,9,4)
\end{aligned}
$$

Lemma 3.4 If $G$ is in the type of $K_{4}(2,3,4, d, e, f)$, and $H$ is in the type of $\mathrm{K}_{4}\left(2,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then there is no graph $G$ satisfying $G \sim H$ unless $G \cong H$.

Lemma 3.5 If $G$ is in the type of $K_{4}(2,3,4, d, e, f)$, and $H$ is in the type of $K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$, then there is no graph $G$ satisfying $G \sim H$.

Lemma 3.6 If $G$ is in the type of $K_{4}\left(2,3,4, d, e_{e} f\right)$, and $H$ is in the type of $\mathrm{K}_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 3\right)$, then there is no graph $G$ satisfying $G \sim H$.

Lemma 3.7 If $G$ is in the type of $K_{4}(2,3,4, d, e, f)$, and $H$ is in the type of $K_{4}\left(2,2, c^{\prime}, 2, e^{\prime}, 3\right)$, then there is no graph $G$ satisfying $G \sim H$.

We now give our main result.
Theorem 3.1 $K_{4}$-homeomorphs $K_{4}(2,3,4, d, e, f)$ with girth 9 is not $\chi$-unique if and only if it is isomorphic to $K_{4}(2,3,4,1,7, f), K_{4}(2,3,4,7,1,5), K_{4}(2,3,4,1,5,8), K_{4}(2,3,4,1,5,7), K_{4}(2,3,4, e+4, e, 1), K_{4}(2,3,4,6, e, 1), K_{4}(2,3,4,2,4,8)$, $K_{4}(2,3,4,6,2,8)$, where $f \geq 4(f \neq 5), e \geq 6$.

Proof. It follows directly from Lemmas 3.1-3.7.

## REFERENCES

1. X.E. Chen and K.Z. Ouyang, Discrete Math. 172, 17-29 (1997).
2. W.M. Li, Ars Combin. 23, 13-36 (1987).
3. Y.-I. Peng, Discrete Math. 228, 177-183 (2004).
4. Y.-I. Peng, Discrete Math. 308, 6132-6140 (2008).
5. Y.-I. Peng, Ars Combin. 105, 491-502 (2012).
6. Z.Y. Guo and E.G. Whitehead Jr., Discrete Math. 172, 53-58 (1997).
7. Y.-I. Peng and R.Y. Liu, Discrete Math. 258, 161-177 (2002).
8. S.Xu, Discrete Math. 117, 293-297 (1993).
9. W. Shi, Y.-I. Pan and Y. Zhao, J. Math Research Applications 32, 269-280 (2012).
10. W. Shi, Master Thesis, University of Science and Technology of China, 2011.
11. H.Z. Ren, Discrete Math. 252, 247-257 (2002).
12. S. Catada-Ghimire and R. Hasni, Int. J. Computer Mathematics, 2013, DOI: 10.1080/00207160.2013.814771.
13. K.M. Koh and K.L. Teo, Graphs Combin. 6, 256-285 (1990).
14. S. Xu, Ars Combin. 32, 315-318 (1991).
15. C.Y. Chao and L.C. Zhao, Ars Combin. 15, 111-129 (1983).
16. E.G. Whitehead Jr. and L.C. Zhao, Journal of Graph Theory 8, 355-364 (1984).
17. R. Hasni, Int. J. Pure Appl. Mathematics 85, 33-43 (2013).
