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Abstract. For a graph G, let P(G,λ) denote the chromatic polynomial of G. Two graphs G and H are chromatically 
equivalent (or simply χ-equivalent), denoted by G ~ H, if P(G,λ) = P(H,λ).  A graph G is chromatically unique (or simply 
χ-unique) if for any graph H such as H ~ G, we have H G, i.e, H is isomorphic to G. A K4-homeomorph is a subdivision 
of the complete graph K4.  In this paper, we investigate the chromaticity of one family of K4-homeomorph which has 
girth 9, and give sufficient and necessary condition for the graph in the family to be chromatically unique.  

Keywords: Chromatic polynomial, chromaticity, K4-homeomorph. 
PACS: 02.10.Ox 

INTRODUCTION 

All graphs considered here are simple graphs.  For such a graph G, let P(G,λ) denote the chromatic polynomial of 
G.  Two graphs G and H are chromatically equivalent (or simply χ-equivalent), denoted by G~H, if P(G,λ)= P(H,λ).  
A graph G is chromatically unique (or simply χ-unique) if for any graph H such as H~G, we have H G,i.e, H is 
isomorphic to G.  A K4-homeomorph is a subdivision of the complete graph K4.  Such a homeomorph is denoted by 
K4(a,b,c,d,e,f) if the six edges of K4 are replaced by the six paths of length a,b,c,d,e,f, respectively, as shown in 
Figure 1. So far, the chromaticity of K4-homeomorph with girth g, where 3 ≤ g ≤ 7 has been studied by many 
authors(see [1-5]).  Also the study of the chromaticity of K4-homeomorph with at least two paths of length 1 has 
been fulfilled (see [2,6-8]).  Recently, Shi et al. [9] studied the chromaticity of one family of K4-homeomorph with 
girth 8, i.e., K4(2,3,3,d,e,f).  In [10], Shi has solved completely the chromaticity of K4-homeomorph with girth 8.  As 
we know, only the chromaticity of such graph with at least two paths of length 1 has been obtained among all the 
K4-homeomorph with girth 9. The chromaticity of K4-homeomorph  with exactly three paths of the same length has 
been obtained by Ren [11].  Recently, Catada-Ghimire and Hasni [12] investigated the chromaticity of K4-
homeomorph with exactly two paths of length 2.  When referring to the chromaticity of K4-homeomorph with girth 
9, we know that six types of K4-homeomorph need to be solved, that is, K4(1,2,6,d,e,f), K4(1,3,5,d,e,f), 
K4(1,4,4,d,e,f), K4(2,3,4,d,e,f), K4(1,2,c,3,e,3) and K4(1,3,c,2,e,3).  Because the length of this paper will be too long 
and some details cannot be left out, in this paper, we consider the chromaticity K4 (2, 3, 4, d, e, f) (Figure 2).  The 
chromaticity of other types will be discussed in other paper. 
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FIGURE 1.  K4(a,b,c,d,e,f) 
 

PRELIMINARY RESULTS 

In this section, we give some known results used in the sequel. 
 

 
FIGURE 2.  K4(2,3,4,d,e,f) 

 
 

Lemma 2.1 Assume that G and H are simply χ-equivalent.  Then, 
(1) |V(G)| = |V(H)|, |E(G)| = |E(H)| (see [13]); 
(2) G and H has the same girth and the same number of cycles with length equal to their girth (see[14]); 
(3) If G is a K4-homeomorph, then H must itself be a K4-homeomorph (see [15]); 
(4) Let G = K4(a,b,c,d,e,f) and H = K4(a’,b’,c’,d’,e’,f’), then  
(i) min (a,b,c,d,e,f) = min (a’,b’,c’,d’,e’,f’) and the number of times that this minimum occurs in the list {a,b,c,d,e,f} 
is equal to the number of times that his minimum occurs in the list {a’,b’,c’,d’,e’,f’} (see [16]); 
(ii) if {a,b,c,d,e,f} = {a’,b’,c’,d’,e’,f’} as multisets, then H G (see [2]). 
 
Lemma 2.2 (Hasni [17]) Let K4-homeomorphs K4(2,3,4,d,e,f) and K4(1,2,6,d’,e’,f’) be chromatically equivalent, 
then 

K4(2,3,4,1,7,s) ~ K4(1,2,6,4,s,4), 
K4(2,3,4,7,1,5) ~ K4(1,2,6,6,3,4),  
K4(2,3,4,1,5,8) ~ K4(1,2,6,6,4,4),  
K4(2,3,4,1,7,4) ~ K4(1,2,6,4,4,4),  
K4(2,3,4,10,6,1) ~ K4(1,2,6,9,3,5),  
K4(2,3,4,6,6,1) ~ K4(1,2,6,5,5,5),  

where s ≥ 6. 
 
Lemma 2.3 (Ren [11]) Let G = K4(a,b,c,d,e,f) when exactly three of a,b,c,d,e,f are the same.  Then G is not 
chromatically unique if and only if G is isomorphic to K4(s,s,s-2,1,2,s) or K4(s,s-2,s,2s-2,1,s) or K4(t,t,1,2t,t+2,t) or 
K4(t,t,1,2t,t+1,t) or K4(t,t+1,t,2t+1,1,t) or K4(1,t,1,t+1,3,1) or K4(1,1,t,2,t+2,1), where s ≥ 3, t ≥ 2. 
 
Lemma 2.4 (Catada-Ghimire and Hasni [12]) A K4-homeomorph graph with exactly two paths of length two is χ-
unique if and only if it is not isomorphic to K4(1,2,2,4,1,1) or K4(4,1,2,1,2,4) or K4(1,s+2,2,1,2,s) or 
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K4(1,2,2,t+2,t+2,t) or K4(1,2,2,t,t+1,t+3) or K4(3,2,2,r,1,5) or K4(1,r,2,4,2,4) or K4(3,2,2,r,1,r+3) or K4(r+2,2,2,1,4,r) 
or K4(r+3,2,2,r,1,3) or K4(4,2,2,1,r+2,r) or K4(3,4,2,4,2,6) or K4(3,4,2,4,2,8) or K4(3,4,2,8,2,4) or K4(7,2,2,3,4,5) or 
K4(5,2,2,3,4,7) or K4(8,2,2,3,4,6) or K4(5,2,2,9,3,4) or K4(5,2,2,5,3,4) where r ≥ 3, s ≥ 3, t ≥ 3.  
 

MAIN RESULT 

In this section, we present our main results. In the following, we only consider graphs with at most one path of 
length 1 and have girth 9. 

 
Lemma 3.1 Let K4-homeomorph K4(2,3,4,d,e,f) and K4(1,3,5,d’,e’,f’) be chromatically equivalent, then 

 
K4(2,3,4,1,5,7) ~ K4(1,3,5,2,8,3),  
K4(2,3,4,e+4,e,1) ~ K4(1,3,5,e+3,2,e),  
K4(2,3,4,6,e,1) ~ K4(1,3,5,5,e,2), 

where e ≥ 6. 
 
Proof. Let G and H  be two graphs such that G K4(2,3,4,d,e,f) and H  K4(1,3,5,d’,e’,f’).  Since the girth of G is 9, 
there is at most a 1 among d, e or f.  Let  
 
 Q(K4(a,b,c,d,e,f)) = -(s+1)(sa+sb+sc+sd+se+sf)+sa+d+sb+f+sc+e+sa+b+e+sb+d+c+sa+c+f+sd+e+f. 
 
Suppose s = 1-λ and x is the number of edges in G.  From [16], we have the chromatic polynomial of K4-
homeomorphs K4(a,b,c,d,e,f) as follows: 
 

 1 2 1

4 42
( ( , , , , , )) ( 1) 3 2 ( , , , , , )

( 1)
x xs

Q K a b c d e f s s Q K a b c d e f s
s

 

 
Hence P(G) = P(H) if and only if Q(G) = Q(H).  We solve the equation Q(G) = Q(H) to get all solutions.  Let the 
lowest remaining power and the highest remaining power denoted by l.r.p. and h.r.p., respectively.  As 
G K4(2,3,4,d,e,f) and H  K4(1,3,5,d’,e’,f’), then 
 
 Q(G) = -(s+1)(s2+s3+s4+sd+se+sf)+sd+2+sf+3+se+4+se+5+sd+7+sf+6+sd+e+f 

 Q(H) = -(s+1)(s+s3+s5+sd’+se’+sf’)+sd’+1+sf’+3+se’+5+se’+4+sd’+8+sf’+6+sd’+e’+f’ 
 
Since K4(2,3,4,d,e,f) has exactly one path of length 1, we have min {d,e,f}= 1.  From Lemma 2.1(1), 
 
  d + e + f = d’ + e’ + f’                 (1) 
 
Q(G) = Q(H) yields 
 
 Q1(G) = -s3-s4-sd-se-sf-sd+1-se+1-sf+1+sd+2+sd+7+se+4+se+5+sf+3+sf+6 

 Q1(H) = -s-s6-sd’-se’-sf’-se’+1-sf’+1+sd’+8+se’+4+se’+5+sf’+3+sf’+6 

 
There are three cases to be considered, that is, d = 1 (Case A) or e = 1 (Case B) or f = 1 (Case C).  We only show the 
detailed proof of Case A, that is the case d = 1. 
 
Case A d = 1.  We obtain the following after simplification. 
 
 Q2(G) = -s2-s4-se-sf-se+1-sf+1+s8+se+4+se+5+sf+3+sf+6 
 Q2(H) = -s6-sd’-se’-sf’-se’+1-sf’+1+sd’+8+se’+4+se’+5+sf’+3+sf’+6 
 
After comparing the l.r.p. in Q2(G) and the l.r.p. in Q2(H), we have d’ = 2 or e’ = 2 or f’ = 2. 
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Case 1 d’ = 2.  We have e’ ≥ 4 and f’ ≥ 3.  From Q2(G) and Q2(H), we obtain the following after simplification. 
 
 Q3(G) = -s4-se-sf-se+1-sf+1+s8+se+4+se+5+sf+3+sf+6 
 Q3(H) = -s6-se’-sf’-se’+1-sf’+1+s10+se’+4+se’+5+sf’+3+sf’+6 
 
Consider the l.r.p. in Q3(G) and the l.r.p. in Q3(H).  then, we have e’ = 4 or f’ = 4. 
 
Case 1.1  e’ = 4.  From Q3(G) and Q3(H), we obtain the following after simplification. 
 
 Q4(G) = -se-sf-se+1-sf+1+se+4+se+5+sf+3+sf+6 
 Q4(H) = -s5-s6-sf’-sf’+1+s9+s10+sf’+3+sf’+6 
 
Consider the h.r.p. in Q4(G) and the h.r.p. in Q4(H), then either e + 5 = f’ + 6  or  f + 6 = f’ + 6. 
 
Case 1.1.1  e + 5 = f’ + 6.  Then, e = f’ + 1.  By Equation (1), f = 4.  Simplifying Q4(G) and Q4(H), we obtain 
 
 Q5(G) = -s4-se+1+s7+se+4,    

Q5(H) = -s6-sf’+s9+sf’+3 

 
We can see that e = 5 and f’ = 4.  Thus, G  H. 
 
Case 1.1.2  f + 6 = f’ + 6.  So f = f’.  By Equation (1), e = 5.  Thus, G  H. 
 
Case 1.2   f’ = 4.  From Q3(G) and Q3(H), we obtain the following after simplification. 
 
 Q6(G) = -se-sf-se+1-sf+1+s8+se+4+se+5+sf+3+sf+6 
 Q6(H) = -s5-s6-se’-se’+1+s7+s10+s10+se’+4+se’+5 

 
We know that e’ ≥ 4.  If e’ = 4, we get the same conclusion as in Case 1.1.1.  If e’ ≥ 5, by comparing the h.r.p. in 
Q6(G) and the h.r.p. in Q6(H), then either e + 5 = e’ + 5 or f + 6 = e’ + 5. 
 
Case 1.2.1  e + 5 = e’ + 5, then e = e’.  From Equation (1), f = 5.  We obtain that Q6(G) ≠Q6(H), a contradiction. 
 
Case 1.2.2  f + 6 = e’ + 5, then f + 1 = e’.  From Equation (1), e = 6.  We obtain that Q6(G) ≠Q6(H), a contradiction. 
 
Case 2 e’ = 2.  Then, d’ ≥ 4 and f’ ≥ 6.  From Q2(G) and Q2(H), we obtain the following after simplification. 
 
 Q7(G) = -s4-se-sf-se+1-sf+1+s8+se+4+se+5+sf+3+sf+6 
 Q7(H) = -s3-sd’-sf’-sf’+1+s7+sd’+8+sf’+3+sf’+6 

 
Consider the term –s3 in Q7(H).  It cannot be cancelled with any positive term in Q7(H) since d’ ≥ 4 and f’ ≥ 6 and it 
cannot be cancelled with any negative term in Q7(G) as well since f ≥ 4 and e ≥ 5.  Thus, a contradiction. 
 
Case 3 f’ = 2.  Then d’ ≥ 3 and e’ ≥ 6.  From Q2(G) and Q2(H), we obtain the following after simplification. 
 
 Q8(G) = -s4-se-sf-se+1-sf+1+se+4+se+5+sf+3+sf+6 
 Q8(H) = -s3-s6-sd’-se’-se’+1+s5+sd’+8+se’+4+se’+5 

 
The term –s3  Q8(H) cannot be cancelled with any term in Q8(G) and Q8(H), thus a contradiction. 
 
Cases B and C can be proved similar to Case A. 
 
This completes the proof of Lemma 3.1 □ 
 
Similar to Lemma 3.1, we can prove the following lemmas. 
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Lemma 3.2 Let K4-homeomorph K4(2,3,4,d,e,f) and K4(1,4,4,d’,e’,f’) be chromatically equivalent, then 
 

   K4(2,3,4,1,7,4) ~ K4(1,4,4,4,2,6),  
K4(2,3,4,1,5,8) ~ K4(1,4,4,6,2,6). 

 
Lemma 3.3 Let K4-homeomorph K4(2,3,4,d,e,f) and K4(2,2,5,d’,e’,f’) be chromatically equivalent, then  
 

K4(2,3,4,2,4,8) ~ K4(2,2,5,4,3,7),  
K4(2,3,4,6,2,8) ~ K4(2,2,5,3,9,4). 

 
Lemma 3.4 If G is in the type of K4(2,3,4,d,e,f), and H is in the type of K4(2,3,4,d’,e’,f’), then there is no graph G 
satisfying G ~ H unless G  H. 
 
Lemma 3.5 If G is in the type of K4(2,3,4,d,e,f), and H is in the type of K4(1,3,c’,2,e’,3), then there is no graph G 
satisfying G ~ H. 
 
Lemma 3.6 If G is in the type of K4(2,3,4,d,e,f), and H is in the type of K4(1,2,c’,3,e’,3), then there is no graph G 
satisfying G ~ H. 
 
Lemma 3.7 If G is in the type of K4(2,3,4,d,e,f), and H is in the type of K4(2,2,c’,2,e’,3), then there is no graph G 
satisfying G ~ H. 
 
We now give our main result. 
 
Theorem 3.1 K4-homeomorphs K4(2,3,4,d,e,f) with girth 9 is not χ-unique if and only if it is isomorphic to 
K4(2,3,4,1,7,f), K4(2,3,4,7,1,5), K4(2,3,4,1,5,8), K4(2,3,4,1,5,7), K4(2,3,4,e+4,e,1), K4(2,3,4,6,e,1), K4(2,3,4,2,4,8), 
K4(2,3,4,6,2,8), where f ≥ 4 (f ≠ 5), e ≥ 6. 
 
Proof. It follows directly from Lemmas 3.1-3.7. 
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