About
115
Publications
170,924
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
35,048
Citations
Introduction
Current institution
Publications
Publications (115)
The astrophysical origin of the over 90 compact binary mergers discovered by the LIGO and Virgo gravitational wave observatories is an open question. While the unusual mass and spin of some of the discovered objects constrain progenitor scenarios, the observed mergers are consistent with multiple interpretations. A promising approach to solve this...
This paper presents a search for generic short-duration gravitational-wave (GW) transients (or GW bursts) in the data from the third observing run of Advanced LIGO and Advanced Virgo. We use coherent WaveBurst (cWB) pipeline enhanced with a decision-tree classification algorithm for more efficient separation of GW signals from noise transients. The...
The detection of eccentricity from a gravitational wave signal is expected to help distinguish between formation channels for a given binary. In this study, we reassess all previously-reported binary black holes with previous claims of possible eccentricity as well as a few binaries with more interesting source parameters, for the first time using...
Coherent WaveBurst is a generic, multidetector gravitational wave burst search based on the excess power approach. The coherent WaveBurst algorithm currently employed in the all-sky short-duration gravitational wave burst search uses a conditional approach on selected attributes in the multidimensional event attribute space to distinguish between n...
The origin of black hole mergers discovered by the LIGO¹ and Virgo² gravitational-wave observatories is currently unknown. GW1905213,4 is the heaviest black hole merger detected so far. Its observed high mass and possible spin-induced orbital precession could arise from the binary having formed following a close encounter. An observational signatur...
As the Advanced LIGO and Advanced Virgo interferometers, soon to be joined by the KAGRA interferometer, increase their sensitivity, they detect an ever-larger number of gravitational waves with a significant presence of higher multipoles in addition to the dominant (2, 2) multipole. These higher multipoles can be detected with different approaches, s...
In this work, we use the coherent WaveBurst (cWB) pipeline enhanced with machine learning (ML) to search for binary black hole (BBH) mergers in the Advanced LIGO-Virgo strain data from the third observing run (O3). We detect, with equivalent or higher significance, all gravitational-wave (GW) events previously reported by the standard cWB search fo...
Coherent WaveBurst is a generic, multi-detector gravitational wave burst search based on the excess power approach. The coherent WaveBurst algorithm currently employed in the all-sky short-duration gravitational wave burst search uses a conditional approach on a selected attributes in the multi-dimensional event attribute space to distinguish betwe...
The coherent WaveBurst (cWB) pipeline implements a minimally-modelled search to find a coherent response in the network of gravitational wave detectors of the LIGO-Virgo Col-laboration in the time-frequency domain. In this manuscript, we provide a timely introduction to an extension of the cWB analysis to detect spectral features beyond the main qu...
The global network of gravitational-wave detectors has completed three observing runs with ∼50 detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Such additions to the network increase the numb...
The coherent WaveBurst (cWB) pipeline implements a minimally-modelled search to find a coherent response in the network of gravitational wave detectors of the LIGO-Virgo Collaboration in the time-frequency domain. In this manuscript, we provide a timely introduction to an extension of the cWB analysis to detect spectral features beyond the main qua...
By probing the population of binary black hole (BBH) mergers detected by LIGO-Virgo, we can infer properties about the underlying black hole formation channels. A mechanism known as pair-instability (PI) supernova is expected to prevent the formation of black holes from stellar collapse with mass greater than ∼40–65 M⊙ and less than ∼120 M⊙. Any BB...
The origin of the black hole mergers detected by LIGO–Virgo remains an open question. While the unusual mass and spin of a few events constrain their possible astrophysical formation mechanisms, it is difficult to classify the bulk of the observed mergers. Here we consider the distribution of masses and spins in LIGO–Virgo’s first two observing cat...
As the Advanced LIGO and Advanced Virgo interferometers, soon to be joined by the KAGRA interferometer, increase their sensitivity, they detect an ever-larger number of gravitational waves with a significant presence of higher multipoles in addition to the dominant $(2, 2)$ multipole. These higher multipoles can be detected with different approache...
The coherent WaveBurst (cWB) search algorithm identifies generic gravitational wave (GW) signals in the LIGO-Virgo strain data. We propose a machine learning (ML) method to optimize the pipeline sensitivity to the special class of GW signals known as binary black hole (BBH) mergers. Here, we test the ML-enhanced cWB search on strain data from the f...
coherent WaveBurst (cWB) is a highly configurable pipeline designed to detect a broad range of gravitational-wave (GW) transients in the data of the worldwide network of GW detectors. The algorithmic core of cWB is a time–frequency analysis with the Wilson–Daubechies–Meyer wavelets aimed at the identification of GW events without prior knowledge of...
By probing the population of binary black hole (BBH) mergers detected by LIGO-Virgo, we can infer properties about the underlying black hole formation channels. A mechanism known as pair-instability (PI) supernova is expected to prevent the formation of black holes from stellar collapse with mass greater than $\sim 40-65\,M_\odot$ and less than $\s...
The Coherent WaveBurst (cWB) search algorithm identifies generic gravitational wave (GW) signals in the LIGO-Virgo strain data. We propose a machine learning (ML) method to optimize the pipeline sensitivity to the special class of GW signals known as binary black hole (BBH) mergers. Here, we test the ML-enhanced cWB search on strain data from the f...
The global network of gravitational-wave detectors has completed three observing runs with $\sim 50$ detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Multiple detectors operating at different...
On May 21, 2019 the Advanced LIGO and Advanced Virgo detectors observed a gravitational-wave transient GW190521, the heaviest binary black-hole merger detected to date with remnant mass of 142 M⊙ that was published recently. This observation is the first strong evidence for the existence of intermediate-mass black holes. The significance of this ob...
The origin of the black hole mergers detected by LIGO and Virgo remains an open question. While the unusual mass and spin of a few events constrain their possible astrophysical formation mechanisms, it is difficult to classify the bulk of the observed mergers. Here we consider the distribution of masses and spins in LIGO/Virgo's first and second ob...
Gravitational-wave observations can be used to accurately measure the Hubble constant H 0 and could help understand the present discrepancy between constraints from Type Ia supernovae and the cosmic microwave background. Neutron star mergers are primarily used for this purpose as their electromagnetic emission can be used to greatly reduce measurem...
This article is an addendum to a recent publication by Chandra et al. [Phys. Rev. D 102, 044035 (2020)]. We present updated results on upper limits on the merger of intermediate-mass black holes (IMBHs) with total mass between 210 M⊙ and 500 M⊙, mass ratio 1 to 7, and generic spins using data from the second Advanced LIGO observing run. Based on ou...
Identifying the presence of a gravitational wave transient buried in nonstationary, non-Gaussian noise, which can often contain spurious noise transients (glitches), is a very challenging task. For a given dataset, transient gravitational wave searches produce a corresponding list of triggers that indicate the possible presence of a gravitational w...
The data from the ground-based interferometric gravitational-wave (GW) detectors is often plagued by highly localized short-duration glitches which pose a serious challenge for any transient GW search. These glitches are not of any astrophysical origin but rather arise due to environmental or instrumental artifacts. In this work, we propose a glitc...
The heaviest neutron stars and lightest black holes expected to be produced by stellar evolution leave the mass range 2.2 M largely unpopulated. Objects found in this so-called lower mass gap likely originate from a distinct astrophysical process. Such an object, with mass 2.6 M was recently detected in the binary merger GW190814 through gravitatio...
Gravitational wave observations can be used to accurately measure the Hubble constant $H_0$ and could help understand the present discrepancy between constraints from Type Ia supernovae and the cosmic microwave background. Neutron star mergers are primarily used for this purpose as their electromagnetic emission can be used to greatly reduce measur...
Gravitational waves from neutron star mergers have long been considered a promising way to measure the Hubble constant, $H_0$, which describes the local expansion rate of the Universe. While black hole mergers are more abundantly observed, their expected lack of electromagnetic emission and poor gravitational-wave localization makes them less suite...
On May 21, 2019 Advanced LIGO and Advanced Virgo detectors observed a gravitational-wave transient GW190521, the heaviest binary black-hole merger detected to date with the remnant mass of 142$\,$M$_\odot$ that was published recently. This observation is the first strong evidence for the existence of intermediate-mass black holes. The significance...
The stellar-mass black hole merger GW190521 is the heaviest system discovered by LIGO/Virgo so far, with masses unexpected from stellar evolution. The system underwent precession due to its black hole spin orientation, a signature of binaries formed through gravitational capture. Capture through close encounters can also lead to eccentric binary or...
On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the d...
The advent of gravitational wave (GW) astronomy has provided us with observations of black holes more massive than those known from x-ray astronomy. However, the observation of an intermediate-mass black hole (IMBH) remains a big challenge. After their second observing run, the LIGO & Virgo Scientific collaborations (LVC) placed upper limits on the...
Identifying the presence of a gravitational wave transient buried in non-stationary, non-Gaussian noise which can often contain spurious noise transients (glitches) is a very challenging task. For a given data set, transient gravitational wave searches produce a corresponding list of triggers that indicate the possible presence of a gravitational w...
The heaviest neutron stars and lightest black holes expected to be produced by stellar evolution leave the mass-range $2.2$ M$_{\odot}\lesssim m \lesssim 5$ M$_\odot$ largely unpopulated. Objects found in this so-called lower mass gap likely originate from a distinct astrophysical process. Such an object, with mass $2.6$ M$_\odot$ was recently dete...
The data from the ground-based interferometric gravitational wave detectors(GW) is often masqueraded by highly localised short-duration glitches which pose a serious challenge for any transient GW search. In this work, we propose a glitch identification algorithm for the scenario of presence of a glitch along with a long duration GW transient. We d...
Coherent WaveBurst (cWB) is a software tool designed for detection of a broad range of gravitational-wave transients without prior knowledge of the signal waveform. The algorithmic core of cWB is a time-frequency analysis with the Wilson-Daubechies-Meyer wavelets aimed at the identification of gravitational-wave events detected by networks of detec...
The advent of gravitational wave (GW) astronomy has provided us with observations of black holes more massive than those known from X-ray astronomy. However, the observation of an intermediate-mass black hole (IMBH) remains a big challenge. After their second observing run, the LIGO \& Virgo Scientific collaborations (LVC) placed upper limits on th...
Despite the rapidly growing number of stellar-mass binary black hole mergers discovered through gravitational waves, the origin of these binaries is still not known. In galactic centers, black holes can be brought to each others’ proximity by dynamical processes, resulting in mergers. It is also possible that black holes formed in previous mergers...
Gravitational-wave astronomy is established with direct observation of gravitational wave from merging binary black holes and binary neutron stars during the first and second observing run of LIGO and Virgo detectors. The gravitational-wave transient searches mainly separate into two families: modeled and modeled-independent searches. The modeled s...
Despite the rapidly growing number of stellar-mass binary black hole mergers discovered through gravitational waves, the origin of these binaries is still not known. In galactic centers, black holes can be brought to each others' proximity by dynamical processes, resulting in mergers. It is also possible that black holes formed in previous mergers...
The origins of the stellar-mass black hole mergers discovered by LIGO/Virgo are still unknown. Here we show that if migration traps develop in the accretion disks of active galactic nuclei (AGNs) and promote the mergers of their captive black holes, the majority of black holes within disks will undergo hierarchical mergers—with one of the black hol...
Gravitational wave astronomy is established with direct observation of gravitational wave from merging binary black holes and binary neutron stars during the first and second observing run of LIGO and Virgo detectors. The gravitational-wave transient searches mainly categories into two families: modeled and modeled-independent searches. The modeled...
The origins of the stellar-mass black hole mergers discovered by LIGO and Virgo are still unknown. The masses and spins of merging black holes, which can be reconstructed from gravitational-wave observations, are characteristic of the formation mechanism. Here we show that the majority of black hole mergers within the disks of active galactic nucle...
We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravi...
Transient gravitational-wave searches can be divided into two main families of approaches: modeled and unmodeled searches, based on matched filtering techniques and time-frequency excess power identification respectively. The former, mostly applied in the context of compact binary searches, relies on the precise knowledge of the expected gravitatio...
On August 17, 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these st...
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work we improve initial estimates of the bina...
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar...
We report on a new all-sky search for periodic gravitational waves in the frequency band 475–2000 Hz and with a frequency time derivative in the range of [−1.0,+0.1]×10−8 Hz/s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO’s fir...
Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitationa...
We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between September 2015 and January 2016, with a total observational time of 49 days. The search targets gravitational wave transients of \unit[10 -- 500]{s} duration in a frequency band o...
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-w...
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar...
We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's fi...
We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarization...
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can...
The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects a...
Cosmic strings are topological defects which can be formed in GUT-scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus off...
On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ~40 Mpc, consistent with the gravit...
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray...
On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credi...
A second generation of gravitational wave detectors will soon come online with the objective of measuring for the first time the tiny gravitational signal from the coalescence of black hole and/or neutron star binaries. In this communication, we propose a new time-frequency search method alternative to matched filtering techniques that are usually...
The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the...
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of th...
The detection of GW170817 (ref. 1) heralds the age of gravitational-wave multi-messenger astronomy, with the observations of gravitational-wave and electromagnetic emission from the same transient source. On 17 August 2017 the network of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors observed GW170817, a str...
The source of the gravitational-wave signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two week long electromagnetic counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter exam...
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of with respect to the merger t...
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of th...
On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 × 10 4 years . We infer the component masses of...
The source of the gravitational-wave signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two week long electromagnetic counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter exam...
On August 17, 2017 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just $\sim$40 Mpc, consistent with the g...
The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The...
On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲ 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-nois...
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can...
On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal...
We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations...
We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can b...
We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can b...
We report on an all-sky search for periodic gravitational waves in the frequency band 20–475 Hz and with a frequency time derivative in the range of [−1.0,+0.1]×10−8 Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO’s first observ...
On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise...
The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by Ice...
We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power...
We report on an all-sky search for periodic gravitational waves in the frequency band 20–475 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10[superscript -8] Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO’...
We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modelled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can...
We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noi...
We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ra...
We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ra...
Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes...
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass bla...
Results are presented from a semi-coherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run (O1). The search combines a frequency domain matched filter (Bessel-weighted $\mathcal{F}$-statistic) with a hidden Markov model to track wande...
We present the result of searches for gravitational waves from 200 pulsars using data from the first observing run of the Advanced LIGO detectors. We find no significant evidence for a gravitational-wave signal from any of these pulsars, but we are able to set the most constraining upper limits yet on their gravitational-wave amplitudes and ellipti...
We present the result of searches for gravitational waves from 200 pulsars using data from the first observing run of the Advanced LIGO detectors. We find no significant evidence for a gravitational-wave signal from any of these pulsars, but we are able to set the most constraining upper limits yet on their gravitational-wave amplitudes and ellipti...
The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by Ice...
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binari...