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Abstract. While solid-state devices offer naturally reliable hardware for
modern classical computers, thus far quantum information processors resemble
vacuum tube computers in being neither reliable nor scalable. Strongly correlated
many body states stabilized in topologically ordered matter offer the possibility
of naturally fault tolerant computing, but are both challenging to engineer and
coherently control and cannot be easily adapted to different physical platforms.
We propose an architecture which achieves some of the robustness properties
of topological models but with a drastically simpler construction. Quantum
information is stored in the symmetry-protected degenerate ground states of

7 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

New Journal of Physics 15 (2013) 025020
1367-2630/13/025020+17$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:stephen.bartlett@sydney.edu.au
http://www.njp.org/
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0


2

spin-1 chains, while quantum gates are performed by adiabatic non-Abelian
holonomies using only single-site fields and nearest-neighbor couplings. Gate
operations respect the symmetry, and so inherit some protection from noise and
disorder from the symmetry-protected ground states.
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1. Introduction

Research into quantum computing has produced an ever increasing variety of physical
realizations of a quantum bit (qubit) that aim to simplify the construction of a practical quantum
computer. The original quantum circuit model, where the logic of the quantum computer is
implemented by the time-dependent control of the system Hamiltonian, is a common choice in
practical realizations. Despite its theoretical simplicity, the model makes significant practical
demands. For example, the controlling fields have to be sharp and precise enough (in both space
and time) to execute a universal set of elementary gates with very high fidelity, while avoiding
undesired decoherence resulting from the inevitable coupling of the system to the environment.
For error rates below a certain (noise model dependent) threshold, quantum error correction
can be used to allow for scalable fault tolerant quantum computation [1]. To date, however,
no physical architectures meet the advertised error thresholds, and while there exist theoretical
techniques to further reduce errors, such as dynamical decoupling [2], it is sensible to consider
how the challenge of fault-tolerance could be simplified by a more elaborate architecture.

Our architecture, summarized schematically in figure 1 and explained in section 2,
combines two key ideas to advance this goal while making modest technological demands. The
first is to use a non-Abelian holonomy (geometric phase) [3] of an adiabatic transformation
for the logical gate action [4, 5], because such a geometrical quantity is more robust to
temporal inaccuracy of the controlling fields than dynamically generated transformations. This
mechanism is doubly advantageous when the degenerate subspace relevant for the non-Abelian
holonomy is physically well-isolated from the other degrees of freedom in the Hilbert space, as
this reduces the chance of leakage errors. To this end, the second idea is to define our qubit as
the gapped ground subspace of a two-body interacting system of small numbers of spin particles
(which we require to be integer spins, e.g. spin 1’s, for our purpose). By basing our strongly-
interacting system on a model possessing symmetry-protected topological order (SPTO) [6, 7],
the degeneracy of this ground space is protected by a symmetry and cannot be broken by any
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Figure 1. Spin-chain qubit encoding and logical operations. (a) In the Haldane
phase, ground states of spin-1 chains correspond to edge-localized spin- 1

2 degrees
of freedom and are used as encoded qubits. Blue spheres represent the spin-1
objects, and the yellow bands their coupling. The encoded qubit is represented
as an arrow piercing the Bloch sphere, and its localization by Bloch spheres at
successive spin-1 elements on the end of the chain. (b) Adiabatically decoupling
the boundary spin from its immediate neighbor while simultaneously turning
on a local field, shown in red, realizes a single qubit operation, transferring the
encoded qubit to the slightly shorter chain while effecting a π rotation about
the local field axis. The time-reversed process works similarly, and combining
π rotations around different axes enables the execution of any single-qubit
operation. (c) Appropriate adiabatic coupling of boundary spins of neighboring
chains (shown in green) and simultaneous decoupling from their respective
chains realizes a cphase gate followed by a joint π rotation about the x̂-axis
(pointing out of the page). (d) Measurement and initialization of the encoded
qubit can be performed as in [12]. The coupling to the boundary spin
is adiabatically switched off and subsequently a measurement made of the
boundary spin in the basis |Sz = m〉. The result m = 1 (m = −1) corresponds
to a projection of the qubit onto |0〉 (|1〉), while m = 0 corresponds to a ẑ-axis
π rotation. The rotation can be undone by recoupling the boundary spin as in
(a), and so the readout operation can be repeated until a nonzero m outcome is
obtained.

symmetry-respecting perturbations. Our logic gates respect this symmetry, and therefore will
preserve the encoding. In addition, the energy gap in our model provides built-in protection
against some errors [8]. In our proposed architecture, a constant energy gap guarantees that a
sufficiently slow adiabatic transformation also preserves the ground state encoding.

The interplay between strongly-correlated ground states of spin lattices and quantum
computation has been the subject of considerable recent activity e.g. in [8–16]. We
emphasize that our proposed implementation is distinct from proposals for topological quantum
computation, which is essentially the implementation of a quantum circuit model using exotic
non-Abelian statistics of quasi-particles anyons in topological ordered systems [17], including
one-dimensional (1D) chains [18]. Our architecture is not topologically protected against
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arbitrary local perturbations, instead being protected by the dihedral group D2 (equivalently
Z2 ×Z2) of π rotations of the entire chain about two orthogonal spatial directions. Such
SPTO systems do not offer the same robustness to arbitrary finite-range perturbations as do
topologically ordered systems, but they do guarantee both that the logical subspace is protected
by the energy gap and also that its degeneracy is preserved under D2-invariant perturbations.

The D2 group of symmetry operations also serves to define the logical Pauli operators of the
encoded qubits in our scheme, which can be interpreted as acting on the so-called edge state: a
pair of fractionalized emergent spin- 1

2 degrees of freedom, one at each end of the spin chain [19].
These edge states were speculated to be useful for quantum information processing in [20].
A key advantage of encoding in these edge states is that their existence and degeneracy is a
robust property of an entire symmetry-protected phase, i.e. it does not rely on fine-tuning of the
Hamiltonian. Such encodings have been used in measurement-based models [8, 12]; in contrast,
our qubit operations are performed by adiabatic manipulation of the edge fields and couplings,
with no need to ‘consume’ the spins of the chain by measuring them. Our proposal is essentially
an adiabatic version of [12], echoing the adiabatic replacement of gate teleportation [21] and
the cluster state architecture [22].8

Symmetries of the phase also play a crucial role in defining logical gates. Single qubit gates,
the most basic of which in this proposal are π rotations about a chosen spatial direction, rely on
the system possessing D2 symmetry of π rotations containing the rotation axis. The symmetry
basis can be adapted from gate to gate, meaning full rotational invariance is not required in
order to perform rotations about arbitrary axes. The two-qubit cphase gate relies on a different
symmetry, one generated by spatial reflection in two orthogonal planes as well as combined
rotations of spins in both chains. This symmetry group is not analytically known to protect the
Haldane phase, but numerical investigation shows that the ground state degeneracy is not lifted
during the gate action.

The outline of the paper is as follows. In section 2 we give a detailed account of the
quantum computation protocol and show how the holonomic gates work on qubits encoded in
the degenerate ground state of a SPTO spin chain. In section 3 we analyze the effect of various
noise sources in our system and describe how the information processing can be made fault
tolerant by using error correction and cooling on top of our improved coherent operations. We
conclude with a summary of the results in section 4.

2. Architecture

Despite its nonstandard appearance, computation in our model (see figure 1) proceeds just
as in the original circuit model, with gates based on adiabatic transformations of degenerate
energy eigenstates, and thus it can be thought of as an instance of holonomic quantum
computation [4, 5]. Accordingly, the methods of fault-tolerant holonomic computation [26, 27]
can be applied.

In our model, each qubit is encoded in an edge mode associated with the (near-) degenerate
ground state of a spin-1 chain in the Haldane phase. The Haldane phase of a spin-1 chain is a
gapped phase, possessing SPTO that can be characterized (among several possible symmetries)

8 In fact, in one-dimension the cluster state possesses Z2 ×Z2 SPTO [15, 23] and, in the framework of [24], it can
be transformed to the same fixed-point state which lies in the Haldane phase as we describe here, in terms of local
unitaries [25] chosen to be symmetry-respecting.
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by the symmetry D2 [6, 7, 24]. Unlike phases characterized by the traditional Landau’s
spontaneous symmetry breaking, this ground state still respects the symmetry and is now
considered a 1D counterpart of the ‘topological’ phase because of the following notable
properties: (i) a four-fold degenerate gapped ground state in the thermodynamic limit, with
finite chains possessing an exponentially-small splitting of this degeneracy in terms of the
chain length; (ii) a corresponding degeneracy of the entanglement spectrum of the ground
state for any bipartition [7]; (iii) fractionalized spin- 1

2 degrees of freedom on the boundaries
of a finite chain—the edge states. Canonical points within this phase are the spin-1 Heisenberg
antiferromagnet, as well as the Affleck–Kennedy–Lieb–Tasaki (AKLT) model [28]. The ground
state(s) of the AKLT model possess an exact valence-bond solid (VBS) description with bond
dimension 2, and exact four-fold degeneracy even for finite chains. This exact description of
the AKLT ground state allowed for initial demonstrations that it was useful as a resource for
measurement-based quantum computation [8], and subsequently it was realized that many of its
quantum-computational properties can be extended throughout the phase [13–15].

We now consider quantum gates on this encoding. A universal set of quantum gates can be
realized using the two-body interaction of the cphase gate and a handful of local field settings
for single-qubit logic, along with turning off the coupling of boundary spins and their neighbors.
Critically, only two-body couplings are involved, a feature absent in previous proposals of
adiabatic holonomically-controlled architectures [21, 22, 26, 27]. (In these prior proposals, the
necessity of more than two-body interactions is overcome by the use of perturbation gadgets,
but the fact that ideal gate operation is only achieved in the limit of zero perturbation implies a
very delicate control of the energy scale in practice.) Finally, initialization and readout can be
performed by adapting the scheme of [12].

2.1. Holonomic gates

Consider a chain of n spin-1 particles, each coupled to its nearest neighbors via the Heisenberg
coupling with Hamiltonian

H open
n = J

n−1∑
j=1

ES j · ES j+1, (1)

for J > 0. This Hamiltonian, which is D2-invariant and gapped, describes a Haldane phase that
is distinct from the trivial phase in that local perturbations that respect the D2 symmetry cannot
connect these phases without closing the gap [6, 7]. The ground state of such open chains is
nearly four-fold degenerate, with a splitting that decays exponentially in the chain length. In
particular, the singlet (triplet) states are ground states for even (odd) length n chains but the
splitting scales like O((−1)n e−n/ξn−1/2) where ξ ≈ 6.03 is the correlation length, whereas the
gap to bulk spin-2 excitations is 1≈ 0.41J [29, 30].

The four ground states correspond to two fractionalized spin-1
2 degrees of freedom, one at

each edge [19, 29, 31]. In order to model the state of one edge only, say the left, we ‘terminate’
the right end of the chain with an additional spin-1

2 particle (which may be fictitious), coupling
the termination spin-1

2 to the boundary spin-1 with the Heisenberg interaction so that the total
Hamiltonian is

H term
n = J

n−1∑
j=1

ES j · ES j+1 + J ESn · Esn+1. (2)
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This effectively fixes boundary conditions on the right edge (in physics language), or purifies the
right edge mode (in the language of quantum information theory), leaving a two-fold degenerate
ground state9. Though presented here as merely a mathematical device, the extra spin- 1

2 system
could be realized as part of the system.

Several facts justify this model of the edge states. Firstly, at the AKLT point the
description is exact, as ground states of the terminated Hamiltonian are also ground states of
the unterminated Hamiltonian due to the frustration-free property of the valence-bond solid
AKLT ground state [28]. Secondly, away from AKLT, numerical results show that for chains of
modest length, measuring the termination spin of a H term

n ground state results in a high-fidelity
approximation to a H open

n ground state. Specifically, fidelities at the Heisenberg point exceed
0.998 for chains of length up to 12, decreasing roughly linearly with chain length. Finally,
direct numerical simulation of the gates and measurements presented below make clear that the
scheme works well even for quite short chains: single qubit gate fidelities at the Heisenberg
point exceed 0.999 even for chains of length as short as six.

The remaining fractionalized edge degree of freedom can be used to encode a single qubit,
with logical Pauli operators σ̄ m̂

=6m̂
n for the length-n chain defined as global rotations around

the m̂-axis:

i6m̂
n =

 n⊗
j=1

exp(iπ Sm̂
j )

 ⊗ exp
(

i
π

2
σ m̂

)
. (3)

As these operators generate a projective representation of the D2 symmetry (the Pauli group),
this qubit encoding is well-defined throughout the phase.

The encoded qubit can be manipulated by adiabatically weakening the boundary spin
coupling and turning on a local term, as in the Hamiltonian

Hn(t)= f (t)J (S ẑ
1)

2 + g(t)J ES1 · ES2 + H term
n−1 , (4)

with monotonic f, g obeying f (0)= g(T )= 0 and f (T )= g(0)= 1. This squeezes the qubit
into a slightly shorter chain, as the boundary spin is now in a product state with the remainder of
the chain. Note that the time-dependent part of the Hamiltonian in equation (4) is D2-invariant,
and so preserves the degeneracy of the ground state.

To determine the effect of the single-qubit dynamics, we make use of two conserved
quantities: 6 ẑ

n and 6 x̂
n . The former is clearly conserved; to see that the latter is, too, note

that [(S ẑ)2, exp(iπ S x̂)] = 0 and in particular, exp(iπ S x̂)|S ẑ
= 0〉 = −|S ẑ

= 0〉. Now imagine
the qubit starts in a +1 eigenstate of 6 ẑ

n, i.e. the state

|ψ(0)〉 = |0〉n ≡
∣∣6 ẑ

n = +1, H term
n = 0

〉
. (5)

After the adiabatic dynamics it becomes

|ψ(T )〉 =
∣∣6 ẑ

n = +1, (S ẑ
1)

2
= 0, H term

n−1 = 0
〉
. (6)

9 The termination coupling is also D2-invariant, yet does break the degeneracy of the ground states of the open
chain, in apparent contradiction to the claim of degeneracy protection. Strictly speaking, the degeneracy is only
protected for D2-invariant perturbations which do not alter the representation by which the ground state trans-
forms [24]. By coupling to an additional spin- 1

2 system rather than an integer spin, this representation becomes pro-
jective. (Recall that a (true) representation T of a group G must satisfy T (g1)T (g2)= T (g1g2) for all g1, g2 ∈ G.
A projective representation need only satisfy the weaker condition that T (g1)T (g2)= ω(g1, g2)T (g1g2) for some
phase ω.).
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Om̂Om̂

Om̂
⊥

Hn(0)

Hn(T1)
Hn(T1 + T2)

= Hn(T1 + T2 + T3)

Figure 2. Sketch of a holonomic path in parameter space of the chain
Hamiltonian Hn(t), traced out by time dependent coupling between the boundary
spin-1 and its neighbor, which realizes a single qubit rotation. The axes
parameterize weights on the operators O ES· ES

= ES1 · ES2, O r̂
= (Sr̂

1)
2
−

1
3 (where r̂

are unit vectors in R3) on Hn(t). The operators {O ES· ES, O m̂, O m̂⊥

} constitute a
trace orthogonal set and are all D2-invariant. The path consists of three adiabatic
steps which each take a time T j ∼ 1/1. The qubit states are maintained in the
ground state for paths that take place in the positive octant of the parameter
space. The holonomy is a qubit rotation about the axis m̂ × m̂ ′ by an angle equal
to twice angle formed by m̂ and m̂ ′.

But due to the product form of 6 ẑ
n, this is nothing other than the state |S ẑ

= 0〉 ⊗ |6 ẑ
n−1 = +1,

H term
n−1 = 0〉, meaning |ψ(T )〉 = |S ẑ

= 0〉 ⊗ |0〉n−1, up to some unknown phase. By the same
argumentation, |1〉n becomes |S ẑ

= 0〉 ⊗ |1〉n−1, up to a possibly different phase.
Up to an irrelevant global phase, the effect of the dynamics is a rotation of the qubit around

the ẑ-axis, the amount depending on the relative phase accumulated by the two states |0〉n and
|1〉n. The relative phase is fixed by the other conserved quantity. Consider the time evolution
of a logical qubit initialized in the +1 eigenstate of 6 x̂

n , |+〉n. Because exp(iπ S x̂)|S ẑ
= 0〉 =

−|S ẑ
= 0〉, the eigenvalue of 6 x̂

n−1 in the final step must be −1, so |+〉n is transformed into
|S ẑ

= 0〉 ⊗ |−〉n−1. Therefore, the dynamics effects a π rotation of the qubit about the ẑ axis.
The dynamics can just as well be run in reverse, meaning we can perform any single

qubit operation by first uncoupling and then recoupling the boundary spin. Aligning the local
field to m̂ during the forward stage and to m̂ ′ during the reverse results in a qubit rotation of
2 cos−1(m̂ · m̂ ′) around the axis m̂ × m̂ ′. The local field rotation on the boundary spin should
also be done adiabatically with respect to the local gap which we assume is ∼1; see figure 2.

Two-qubit operations can be similarly realized by appropriately coupling the ends of two
neighboring chains A and B while decoupling them from their respective chains. For a judicious
choice of coupling, this results in a cphase gate followed by a joint π rotation about the x̂-axis.
The Hamiltonian for this process, H AB consists of the time-independent part H A

n−1 + H B
n−1 and

a time-dependent part

H AB(t)= f (t)J W AB + g(t)J ( ES A
1 · ES A

2 + ESB
1 · ESB

2 ), (7)

where the interaction term is given by

W AB
= [(S x̂

1 )
2
− (S ŷ

1 )
2]A

⊗ [S ẑ
1]B + [S ẑ

1]A
⊗ [(S x̂

1 )
2
− (S ŷ

1 )
2]B . (8)
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Table 1. Symmetry operators of the interaction W AB of equation (7), their
eigenvalues in its ground state, and the corresponding conserved quantities for
two chains under the associated dynamics. The first factor in the tensor product
acts on system A, the second on B. The conserved quantities fix the action on
the encoded qubits to be the cphase gate (followed by local rotations). The
symmetry operators are all rotations, defined by Rm̂

= exp(−iπ Sm̂) and
√

Rm̂ =

exp(−i π2 Sm̂), with û =
1

√
2
(̂x + ŷ) and v̂ =

1
√

2
(̂x − ŷ). Because the terms besides

W AB in the Hamiltonian are rotationally-invariant, applying these rotations to
their entire respective chains leads to the listed conserved quantities.

W symmetry Eigenvalue of |ξ〉 Conserved quantity

R ẑ
⊗1 −1 6 ẑ

⊗1

1⊗ Rẑ −1 1⊗6 ẑ

Rû
⊗ Rû 1 6û

⊗6û

Rv̂ ⊗ Rv̂ 1 6v̂
⊗6v̂

√
R ẑ ⊗ R x̂

−i
√
6 ẑ ⊗6 x̂

0 T
0

0.4

0.8

Energy Gap (units of J)

1-Qubit 2-Qubit

Time

Figure 3. Energy gap to the first excited state during the dynamics of single
and two-qubit operations. These results were obtained by exact sparse-matrix
methods for chains of length 10 for single qubit operation, and 5 and 6 for the
two-qubit operation.

The ground state of this interaction term is

|ξ〉AB
=

1

2
(− |xx〉 + |xy〉 + |yx〉 + |yy〉)AB, (9)

for | j〉 ≡ |S j
= 0〉.

Again the argument is based on various conserved quantities that arise from symmetries
of the interaction, which are shown in table 1. The Haldane phase of two chains is not known
to be protected by these symmetries, but numerical calculation on chains of moderate length
confirms that the degeneracy is indeed maintained. This is implicitly shown in figure 3, which
also depicts the gap to the excited states.

To see that this operation implements a two-qubit unitary gate, we group the set
of conserved quantities according to the eigenvalue of |ξ〉 and start with the first two,
corresponding to −1. The joint eigenstates are product encoded states, and it is immediately
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clear, using the same analysis as the single qubit case, that the action of the dynamics is given
by an operator of the form

U AB
=


0 0 0 α

0 0 β 0
0 γ 0 0
δ 0 0 0

 , (10)

where α, β, γ, δ are complex numbers of unit magnitude. Now we consider the second pair of
conserved quantities and determine that their joint eigenstates are the (unnormalized) states
|01〉 ± |10〉 and |00〉 ± i|11〉. Working out the action of U AB on these states and using the
overall +1 eigenvalue of |ξ〉 fixes δ = −α and γ = β. Finally, the last conserved quantity has a
nondegenerate spectrum, and so does not require a partner to determine a basis for the encoded
states from its eigenstates, which happens to be the canonical Bell states. Again applying U AB

and using the overall eigenvalue −i of |ξ〉 as before gives α = −β. Thus,

U AB
=


0 0 0 −1
0 0 1 0
0 1 0 0
1 0 0 0

 (11)

up to an irrelevant overall phase, which is nothing other than (σ̄ x̂
⊗ σ̄ x̂) cphase.

2.2. Initialization and readout

To initialize and measure the encoded quantum information, we may appeal to a method
developed for a measurement-based precursor to the present scheme [12]. Here we again
adiabatically turn off the boundary spin coupling, but now do not turn on any local field. Instead,
after the coupling is off, the boundary spin is measured in the basis |Sz = m〉. A result m = 1
(m = −1) corresponds to a projection of the qubit onto |0〉 (|1〉), while m = 0 corresponds
to a π rotation around the ẑ-axis. This can be understood as a consequence of addition of
angular momentum; since the initial state has spin- 1

2 and the dynamics is adiabatic and preserves
rotational invariance, the output state also has spin-1

2 . But it is now more naturally expressed as
a combination of spin-1 and spin- 1

2 , and by using the Clebsch–Gordan coefficients for this case
we can quickly deduce the effect of measuring the spin-1 system.

Once the system is in the ground state, encoded qubits may be initialized via this procedure
by simply measuring until an |m| = 1 outcome is obtained. This produces either |0〉n or |1〉n and
the computation can begin. The problem of initialization is therefore reduced to preparing the
system in the ground state, which can be done either by preparing a ground state at some point
in the phase convenient to do so, e.g. the AKLT point, and then slowly altering the Hamiltonian
to any other point in the Haldane phase which is convenient to implement, e.g. the Heisenberg
antiferromagnet or by actively cooling the state at a fixed point in the phase. For instance, Kraus
et al [32] make use of the frustration-free property of the AKLT state to construct a Liouvillian
map acting on neighboring pairs of spins and a local Markovian environment whose output
converges to the AKLT ground subspace in a time which scales linearly with the chain length.

The procedure of [12] may also be used to read out the encoded qubit state after the
computation is complete. This process is indeterministic due to the m = 0 outcome, which can
be dealt with in one of two ways. Firstly, for outcome m = 0, the boundary spin can be recoupled
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(after turning on a local field S2
z ) and the measurement attempted again. Secondly, controlled-

not gates to several other encoded qubits could first be performed, and then the encoded qubits
measured simultaneously, taking as the outcome the majority of nonzero results.

3. Noise analysis and error correction

Relative to a ‘bare’ encoding of qubits in individual spins, the extra overhead in our scheme
brings with it several advantages. Some types of errors are avoided entirely, while some others
are suppressed. As already mentioned, the encoding is immune to noise and disorder which
respect the symmetry and which do not destroy the SPTO of the system; that is, the degeneracy
of the ground space is protected. This helps to avoid dephasing. The holonomic nature of the
gates makes them inherently resistant to timing errors and intensity fluctuations. Additionally,
logical gates are also resistant to spurious fields generated during the dynamics but having the
symmetry appropriate to the gate being performed. This is especially appealing because the
logical gates can be implemented by dynamically turning on and off control fields having fixed
orientation: errors in the field directions are then unknown quenched (systematic) errors which
can be made arbitrarily small by composite pulse sequences [33].

Apart from initialization and readout, the logical operations maintain the degeneracy and
gap of the energy spectrum, so we may hope that both leakage and logical errors can be
suppressed by operating the system at low temperatures. A full thermal stability analysis is
beyond the scope of this paper, but a simple analysis presented in section 3.1 shows that single-
site noise does not translate into logical error without an energy penalty [34]. Indeed, only
single-site noise on the boundary affects the logical information, and as such, noise in the bulk
can be dealt with by cooling the chain. Rotations of the bulk spin carry an energy cost increasing
with the amount of rotation; when using the encoded qubits in an active error-correction scheme,
these rotation errors are digitized, and small rotations only lead to digitized error with small
probability. Thus, the error rate decreases with decreasing energy of the noise. This limited
protection against single-site noise unfortunately does not extend to two sites, a fact which is to
be expected as the gate operations themselves involve only two sites.

Although the SPTO of our systems is not generically robust to perturbations which do not
have the D2 symmetry, numerical simulations on the Haldane phase have shown a robustness
of this phase to homogenous local fields. Specifically, prior work shows that the phase is
maintained for magnetic field perturbations of arbitrary direction affecting the entire chain
homogeneously, up to magnitude roughly equal to the excitation gap [35–37]. On the other
hand, direct numerical calculation shows that the ground state splitting is roughly proportional
to the local field strength for a field acting only on the boundary spin at the AKLT point, as
would be expected for a bare qubit implementation.

3.1. Symmetry and gap protection

Because we encode one qubit into a many body chain there are several possible locations for
error that must be accounted for. A complete summary of error mechanisms and the effect on
encoded quantum information is displayed in table 2. The main effects are either to produce an
error on the encoded information directly or to couple to states outside the qubit subspace which
we denote leakage error.
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Table 2. Error mechanisms and effects on encoded quantum information. Here
pL(`) are the logical(leakage) error probabilities, h is the perturbation, either to
the system Hamiltonian (Memory) or the gate Hamiltonian (Gate), and ‖ · ‖ is
the operator norm. The Haldane gap is 1 and we assume the time to perform
a gate is O(1/1). Relatively benign are the systematic errors can be corrected
using composite pulse sequences of length k yielding an effective logical error
pL = O((‖h‖/1)k) [33], and leakage errors which are correctable by cooling.
Other noise mechanisms yielding logical errors must be handled using quantum
error correction.

Error type Effect

Memory
D2-invariant Logically protected
Bulk pL = 0, p` ∼ (

||h||

1
)2

Boundary pL ∼
||h||

1

Gate
D2-invariant Logically protected
Quenched Systematic pL ∼

||h||

1

Stochastic pL ∼
||h||

1

Note that bulk and boundary perturbations of the system produce very different behavior,
due to the fact that noise in the bulk produces local excitations, incapable of immediately causing
logical errors as they cannot distinguish the logical states. Provided bulk excitations are cooled
at a rate faster than the dispersion, they will not propagate to the boundaries to cause logical
errors. In contrast, the boundary spin-1 particles are effectively free spin-1

2 degrees of freedom
susceptible to local energy shifts which translate into logical errors, albeit with an energy cost.

To gain more insight into why the bulk errors are relatively benign, consider the valence-
bond solid as a caricature of the Haldane phase ground state (which is exact at the AKLT
point) [28]. A half-infinite chain has the following form in the Schwinger representation [38]:

|vbs〉 =

(
αa†

0 +βb†
0

) ∏
j>1

(
a†

j b
†
j+1 − b†

ja
†
j+1

)
|vac〉 , (12)

where a†
j and b†

j are harmonic oscillator creation operators for modes a and b at site j with
the constraint a†a + b†b = 2 for every j , while α and β are complex coefficients for basis states
of the edge mode. Single spin rotations mix the creation operators linearly, and in particular a
ẑ-axis rotation by θ maps a† to a†eiθ/2 and b† to b†e−iθ/2. Letting C†

j, j+1 = (a†
j b

†
j+1 − b†

ja
†
j+1), it

is easy to work out that a rotation R j of site j produces the transformation

R jC
†
j, j+1 R†

j = cos
θ

2
C†

j, j+1 − i sin
θ

2

(
a†

j b
†
j+1 + b†

ja
†
j+1

)
. (13)

The second term produces an excited state from the vacuum, and thus rotation of a site in
the bulk of the chain leaves the encoded qubit unaffected while producing a linear superposition
of ground and excited states. Note that the weights in the superposition depend on the amount of
rotation. However, since the superposition does not depend on the encoded information, it can
therefore be corrected without damaging the qubit, e.g. by cooling. On the other hand, a rotation
of the boundary spin produces a superposition between the original encoded qubit in the ground
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state and a rotated version in the excited state. Again, the amount of rotation determines the
amplitude of the excited state, and so larger rotations cost more energy.

To estimate the leakage probability, note that the excited states are split from the ground
states by the Haldane gap. For a local perturbation h acting in the bulk the amplitude of coupling
to the excited states is ∼‖h‖ Tgate and since the three step holonomic gate time is Tgate =

3/1min = O(1/1), where 1min is the minimum gap during each step, then the probability to
leak into the excited states is p` ∼ (‖h‖/1)2. On the other hand, the edge modes are shifted in
energy by a local perturbation without gap protection implying a logical error over a gate time
scaling like pL ∼‖h‖/1.

3.2. Quantum error correction

While the hardware protected quantum gates we have described reduce error rates due to
environmental noise and control error, software based quantum error correction is needed to
achieve fully fault tolerant quantum computation. In some ways our gate mechanism constrains
the type of architecture and choice of QECC. Firstly, because we rely on adiabatically turning
interactions on and off, our architecture is likely to allow only nearest neighbor interactions
between qubits. It may be possible that a nonlocal coupling could be engineered using, for
example, an optical mode in a fiber [39]; however, such interactions are typically weak and
could prove difficult to wire in a scalable system. Secondly, since our qubits are degenerate by
design, there is no bias toward any particular local Pauli errors. This is unlike the situation with
many physical realizations of qubits which are nondegenerate, such as hyperfine split ground
states of trapped ions or atoms, superconducting phase qubits, etc, which are inherently more
resilient against bit flip errors in the energy basis versus phase errors. This being the case, it
is reasonable to chose QECCs, and a concatenation method which is unbiased toward X or Z
error. Some particular QECCs and architectures are well suited to this very situation [1].

One suitable code is the Bacon–Shor 9 qubit QECC embedded in a two-dimensional (2D)
spatial architecture. It was shown in [40] that ‘padding’ a 2D array with ancilla qubits in
between data qubit provides sufficient room to perform fault tolerant swapping of information
even when restricted to nearest neighbor interactions. Assuming an adversarial local error model
and equal error rates for memory and gate errors, the threshold for fault-tolerant computing in
that architecture is pth = 1.3 × 10−5. This can be improved using other software style strategies
such as concatenated dynamical decoupling pulses [2]. These thresholds are about a factor of 10
worse than a nonlocally corrected architecture. The Bacon–Shor code has the advantage of low
latency (i.e. overall faster performance) relative to other CSS codes such as the 7 qubit QECC
and does not require cat state verification of ancilla. Furthermore, this code also accommodates
measurement-free QEC with only a small reduction in the threshold [41] which would obviate
the need for fitting high efficiency detectors within the lattice of chains.

An illustration of an architecture using a 2D array of parallel chains of encoded qubits is
shown in figure 4. Here the chains are depicted with real spin- 1

2 boundary spins, which could
however be removed with some minor changes to the protocol. As stated above, except at the
AKLT point, the ground state manifold suffers a small degeneracy splitting which decreases
exponentially with the chain length. The splitting translates into a small timing error in logical
gates and opens up a zero energy leakage channel to the other edge mode. Both could be
corrected with QEC, but another possibility is to use both edge modes as qubits and process
them by manipulating both ends of the chains.
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Figure 4. A potential architecture for fault tolerant computing using an array of
vertical Haldane chains. Each short Haldane chain consists of eight bulk spin-1
particles (big dots) and one boundary spin- 1

2 (small dots), and has a degenerate
ground subspace which defines a physical qubit. The 3 × 3 sub array of blue
chains are data qubits and the red chains in between are ancilla qubits which
provide room for fault tolerant swapping between data qubits and for rounds of
error diagnosis and correction. Entropy can be dumped into the environment by
resetting the ancilla, either by measurement or cooling. Qubits are measured by
adiabatically decoupling one boundary spin, measuring that spin and if a result
of Sz

= ±1 is obtained succeeding, otherwise recoupling the boundary spin to
the chain and trying again. The figure illustrates a logical qubit encoded in a
9 qubit Bacon–Shor quantum error correction code (QECC). A transversal
logical X gate is depicted on the left column with the green ovals representing
a gate acting on the boundary spins that have been adiabatically dragged away
from their Haldane chains. Two cphase gates between level 0 data and ancilla
qubits are also depicted.

Because each qubit is a collective degree of freedom of a spin chain, it might be thought
that a local error model is not appropriate. However, all the chains are separated in space far
enough to have negligible interactions between chains. Any correlated errors within a spin chain
effectively act as either a leakage error when they occur in the bulk of the chain which can then
propagate to the boundaries to create a logical error, or directly as a logical error at the boundary.

Leakage errors require special care during error correction because once such an error
occurs in one chain, subsequent gates between chains that are even perfect with the logical
subspace can propagate error in the leakage subspace. This has shown not to be disastrous,
however, provided one can perform leakage reduction at the lowest level of concatenation (i.e.
at the level of the physical chains) [42]. An appealing hardware strategy for leakage reduction is
to bathe the spin chains in a cold environment that removes excitations without requiring active
monitoring of the system. Such a procedure does not restore the quantum information, but rather
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reduces leakage errors to standard logical qubit errors which can be corrected using quantum
error correction.

4. Discussion

We have presented a new architecture for quantum computation in which the primitive
information carriers are degenerate ground states of strongly correlated spin chains and gates
are implemented by adiabatic holonomies. The hardware requirements of our model are fairly
modest, as its information processing properties arise from it being a D2 SPTO system with a
degenerate ground state, not specific parameters in the Hamiltonian. Such SPTO spin chains can
be realized using two-body nearest-neighbor couplings, as for example in the spin-1 Heisenberg
antiferromagnet. Spatial variations in the precise nature of the couplings are allowed, provided
they maintain the symmetry, making the system robust to modest disorder. Because the gate
operations occur on the boundary, the couplings in the bulk of the chain can be fixed. By making
use of strong few body interactions in the encoding of each logical qubit (but not between logical
qubits), the symmetry protected holonomic mechanism reduces some memory error and logical
gate error rates without introducing new error channels outside the assumptions of the standard
fault tolerant threshold theorems [1].

This hardware assisted approach should make it easier to reach the thresholds needed for
fault tolerant quantum computation. We envisage a variety of potential implementations for this
scheme, including ultracold polar molecules [43], trapped atoms [44] or quantum dots [45].

While our symmetry protected scheme enjoys many benefits it is, as we have pointed out,
subject to logical errors due to local non-D2 symmetric perturbations. That being the case
one may ask whether it would not be simpler and equally advantageous to simply encode
each logical qubit in a degenerate subspace of a single particle, e.g. a spin-1 particle subject
to a local Hamiltonian H1 = −1(Sz)2 which provides for a gap 1 to logical errors, and to
perform holonomic gates on those degenerate degrees of freedom. A universal holonomic gate
set with such an encoding seems difficult10, and notwithstanding, would not be as robust for the
following reasons. Firstly, consider how one protects the degeneracy which defines the qubit
encoding. In our spin chain scheme, the encoding is protected by a phase which is robust to
a large family of perturbing Hamiltonians, i.e. those which preserve the discrete symmetry
group D2. The single-particle implementation would need to be protected against perturbations
generating a continuous Lie group and any unwanted rotation in the direction of the field in
H1 would generate a logical error. Quite generally, nature abhors a symmetry and we make use
of many body interactions in order to provide for it, in a way that single particle interactions
cannot. Secondly, one needs to provide for protected gates to process the quantum information.
In the spin chain model the gates are performed by manipulating the boundary spins and are
fully protected by the SPTO. In a single particle encoding any holonomic gate would require
much more restrictive control of the Hamiltonian because there is less freedom in the allowed
perturbations.

We conclude with some potential directions for future work. First, one could ask whether
a similar scheme is possible in chains of spin-1

2 particles, rather than spin-1. While it
is possible to construct a spin- 1

2 Hamiltonian in the Haldane phase by using alternating

10 A direct approach to find holonomic single logical qubit gates with this encoding seems to only work for rotations
about one axis.
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ferromagnetic–antiferromagnetic couplings [46], a direct mapping of the two-body couplings
required for two-qubit gates presented here will lead to three-body couplings in the spin- 1

2

model. More exotic SPTO systems of spin- 1
2 chains may provide alternative schemes with only

two-body interactions.
Another natural question is whether a genuine 2D SPTO system [47] can be used for

such a holonomic scheme that protects both single- and two-qubit gates explicitly. Our scheme
constructed from 1D chains produces well-defined qubits on the ends; a 2D SPTO system
is characterized by gapless 1D boundary systems but without naturally defined qubits. The
symmetry associated with this mode is a highly nonlocal operator and as such would be more
resilient to local errors on the boundary. It would be worthy to investigate whether quantum
information could indeed be encoded and be manipulated using nonlocal operators akin to string
operations used as logical operations in surface codes and in the 2D quantum compass model.
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