Gautam Bisht

Gautam Bisht
Pacific Northwest National Laboratory | PNNL · Atmospheric Sciences and Global Change Division

About

103
Publications
26,726
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,178
Citations

Publications

Publications (103)
Preprint
Full-text available
Compound riverine and coastal flooding is usually driven by complex interactions among meteorological, hydrological, and ocean extremes. However, existing efforts of modeling this phenomenon often rely on models that do not integrate hydrological processes across atmosphere-land-river-ocean systems, leading to substantial uncertainties that have no...
Article
Full-text available
Sea‐level rise (SLR) poses a severe threat to the coastal environment through seawater intrusion into freshwater aquifers. The rising groundwater table also exacerbates the risk of pluvial, fluvial, and groundwater flooding in coastal regions. However, current Earth system models (ESMs) commonly ignore the exchanges of water at the land‐ocean inter...
Article
The hydrologic flows across the river–aquifer interface play an important role in groundwater dynamics and biogeochemical reactions within the subsurface; however, little is known about the effects of river–aquifer interactions on land surface processes. In this study, we developed a fully coupled three‐dimensional (3D) land surface and subsurface...
Preprint
Full-text available
The Energy Exascale Earth System Model (E3SM) Land Model (ELM) is a state-of-the-art land surface model that simulates the intricate interactions between the terrestrial land surface and other components of the Earth system. Originating from the Community Land Model (CLM) version 4.5, ELM has been under active development, with added new features a...
Article
Full-text available
Coastal zone compound flooding (CF) can be caused by the interactive fluvial and oceanic processes, particularly when coastal backwater propagates upstream and interacts with high river discharge. The modeling of CF is limited in existing Earth System Models (ESMs) due to coarse mesh resolutions and one‐way coupled river‐ocean components. In this s...
Article
Full-text available
Earth system models (ESMs) are progressively advancing towards the kilometer scale (“k-scale”). However, the surface parameters for land surface models (LSMs) within ESMs running at the k-scale are typically derived from coarse-resolution and outdated datasets. This study aims to develop a new set of global land surface parameters with a resolution...
Article
Full-text available
Climate change can alter wetland extent and function, but such impacts are perplexing. Here, changes in wetland characteristics over North America from 25° to 53° North are projected under two climate scenarios using a state-of-the-science Earth system model. At the continental scale, annual wetland area decreases by ~10% (6%-14%) under the high em...
Article
Full-text available
Streamflow variability plays a crucial role in shaping the dynamics and sustainability of Earth's ecosystems, which can be simulated and projected by a river routing model coupled with a land surface model. However, the simulation of streamflow at large scales is subject to considerable uncertainties, primarily arising from two related processes: r...
Article
Full-text available
The lateral transport of water in the subsurface is important in modulating terrestrial water energy distribution. Although a few land surface models have recently included lateral saturated flow within and across grid cells, it is not a default configuration in the Climate Model Intercomparison Project version 6 experiments. In this work, we devel...
Poster
Full-text available
Earth system models (ESMs) and land surface models (LSMs) are progressively advancing towards the kilometer scale (k-scale). The parameters for LSMs within ESMs being run at the k-scale are typically derived from coarse-resolution datasets or outdated datasets. We developed a new set of global land surface parameters with a resolution of 1 km for m...
Article
Full-text available
Solar radiation‐topography interaction plays an important role in surface energy balance over the Tibetan Plateau (TP). However, the impacts of such interaction over the TP on climate locally and in the Asian regions remain unclear. This study uses the Energy Exascale Earth System Model (E3SM) to evaluate the regional and teleconnected impacts of s...
Article
Full-text available
Flow direction modeling consists of (a) an accurate representation of the river network and (b) digital elevation model (DEM) processing to preserve characteristics with hydrological significance. In part 1 of our study, we presented a mesh‐independent approach to representing river networks on different types of meshes. This follow‐up part 2 study...
Article
Full-text available
Light-absorbing particles (LAP) deposited on seasonal snowpack can result in snow darkening, earlier snowmelt, and regional climate change. However, their future evolution and contributions to snowpack change relative to global warming remain unclear. Here, using Earth System Model simulations, we project significantly reduced black carbon depositi...
Preprint
Radiation-topography interaction plays an important role in the surface energy balance over the Tibetan Plateau (TP). However, the impacts of such interaction over the TP on climate locally and in the Asian regions remain unclear. This study uses the Energy Exascale Earth System Model (E3SM) to evaluate the regional and teleconnected impacts of rad...
Preprint
Full-text available
Streamflow variability plays a crucial role in shaping the dynamics and sustainability of Earth's ecosystems, which can be simulated and projected by river routing model coupled with land surface model. However, the simulation of streamflow at large scales is subject to considerable uncertainties, primarily arising from two related processes: runof...
Preprint
Full-text available
Earth system models (ESMs) are progressively advancing towards the kilometer scale (k-scale). However, the surface parameters for Land Surface Models (LSMs) within ESMs running at the k-scale are typically derived from coarse resolution and outdated datasets. This study aims to develop a new set of global land surface parameters with a resolution o...
Article
Full-text available
This paper provides an overview of the United States (US) Department of Energy's (DOE's) Energy Exascale Earth System Model version 2 (E3SMv2) fully coupled regionally refined model (RRM) and documents the overall atmosphere, land, and river results from the Coupled Model Intercomparison Project 6 (CMIP6) DECK (Diagnosis, Evaluation, and Characteri...
Preprint
Full-text available
Earth system models (ESMs) are progressively advancing towards the kilometer scale (k-scale). However, the surface parameters for Land Surface Models (LSMs) within ESMs running at the k-scale are typically derived from coarse resolution and outdated datasets. This study aims to develop a new set of global land surface parameters with a resolution o...
Preprint
Full-text available
The vertical structure of vegetation canopies creates micro-climates, which can substantially affect ecosystem responses to climate change. However, the land components of most Earth System Models, including the Energy Exascale Earth System Model (E3SM), typically neglect vertical canopy structure by using a single layer big-leaf representation to...
Article
Full-text available
The lateral transport of water in the subsurface is important in modulating the terrestrial water-energy distribution. Although few land surface models have recently included lateral saturated flow within and across grid cells, it is not a default configuration in the Climate Model Intercomparison Project version 6 experiments. In this work, we dev...
Preprint
Inland wetlands are important ecosystems sustained by excessive water. Climate change can alter wetland extent and functions, but such impacts are unclear because hydroclimatic changes influence wetland processes in different ways. Here we project future changes in wetland characteristics over North America under low and high emission scenarios, us...
Article
Full-text available
Seasonal snow has crucial impacts on climate, ecosystems, and humans, but it is vulnerable to global warming. The land component (ELM) of the Energy Exascale Earth System Model (E3SM) mechanistically simulates snow processes from accumulation, canopy interception, compaction, and snow aging to melt. Although high-quality field measurements, remote...
Article
Full-text available
With the highest albedo of the land surface, snow plays a vital role in Earth's surface energy budget and water cycle. Snow albedo is primarily controlled by snow grain properties (e.g., size and shape) and light-absorbing particles (LAPs) such as black carbon (BC) and dust. The mixing state of LAPs in snow also has impacts on LAP-induced snow albe...
Article
Full-text available
This work documents version two of the Department of Energy's Energy Exascale Earth System Model (E3SM). E3SMv2 is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolu...
Preprint
Full-text available
This paper provides an overview of the United States (US) Department of Energy's (DOE's) Energy Exascale Earth System Model version 2 (E3SMv2) fully coupled Regionally Refined Model (RRM) and documents the overall atmosphere, land, and river results from the Coupled Model Intercomparison Project 6 (CMIP6) DECK (Diagnosis, Evaluation, and Characteri...
Article
Full-text available
Coastal backwater effects are caused by the downstream water level increase as a result of elevated sea level, high river discharge and their compounding influence. Such effects have crucial impacts on floods in densely populated regions but have not been well represented in large-scale river models used in Earth system models (ESMs), partly due to...
Preprint
Full-text available
Light-absorbing particles (LAP) such as black carbon and dust deposited on seasonal snowpack can result in snow darkening, earlier snowmelt, and regional climate change. However, the future deposition and surface radiative forcing of LAP in snow and their contributions to snowpack change remain unclear. Here, using Earth System Model simulations, w...
Article
Full-text available
Topographic heterogeneity and lateral subsurface flow at the hillslope scale of ≤1 km may have outsized impacts on tropical forest through their impacts on water available to plants under water-stressed conditions. However, vegetation dynamics and finer-scale hydrologic processes are not concurrently represented in Earth system models. In this stud...
Preprint
Full-text available
Seasonal snow has crucial impacts on climate, ecosystems and humans, but it is vulnerable to global warming. The land component (ELM) of the Energy Exascale Earth System Model (E3SM), mechanistically simulates snow processes from accumulation, canopy interception, compaction, snow aging to melt. Although high-quality field measurements, remote sens...
Article
Full-text available
The Earth's land surface features spatial and temporal heterogeneity over a wide range of scales below those resolved by current Earth system models (ESMs). State-of-the-art land and atmosphere models employ parameterizations to represent their subgrid heterogeneity, but the land–atmosphere coupling in ESMs typically operates on the grid scale. Com...
Article
Full-text available
Floodplain inundation links river and land systems through significant water, sediment, and nutrient exchanges. However, these two‐way interactions between land and river are currently missing in most Earth System Models. In this study, we introduced the two‐way hydrological coupling between the land component, E3SM Land Model, and the river compon...
Preprint
Full-text available
Coastal backwater effects are caused by the downstream water level increase as the result of elevated sea level, 10 high river discharge and their compounding influence. Such effects have crucial impacts on floods in densely populated regions but have not been well represented in large-scale river models used in Earth System Models (ESMs), partly d...
Article
Full-text available
Understanding the influence of land surface heterogeneity on surface water and energy fluxes is crucial for modeling earth system variability and change. This study investigates the effects of four dominant heterogeneity sources on land surface modeling, including atmospheric forcing (ATM), soil properties (SOIL), land use and land cover (LULC), an...
Article
Full-text available
Understanding the influence of land surface heterogeneity on surface water and energy fluxes is crucial for modeling earth system variability and change. This study investigates the effects of four dominant heterogeneity sources on land surface modeling, including atmospheric forcing (ATM), soil properties (SOIL), land use and land cover (LULC), an...
Article
Full-text available
Runoff is a critical component of the terrestrial water cycle, and Earth system models (ESMs) are essential tools to study its spatiotemporal variability. Runoff schemes in ESMs typically include many parameters so that model calibration is necessary to improve the accuracy of simulated runoff. However, runoff calibration at a global scale is chall...
Preprint
Full-text available
Topographic heterogeneity and lateral subsurface flow at the hillslope scale of ≤ 1 km may have outsized impacts on tropical forest through their impacts on water available to plants under water stressed conditions. However, vegetation dynamics and finer‐scale hydrologic processes are not concurrently represented in Earth system models. In this stu...
Preprint
Full-text available
With the highest albedo of the land surface, snow plays a vital role in Earth’s surface energy and water cycles. Snow albedo is greatly affected by snow grain properties (e.g., size and shape) and light absorbing particles (LAPs) such as black carbon (BC) and dust. The mixing state of LAPs in snow also has large impacts on LAP-induced snow albedo r...
Article
Full-text available
Sub-grid topographic heterogeneity has large impacts on surface energy balance and land-atmosphere interactions. However, the impacts of representing sub-grid topographic effects in land surface models (LSMs) on surface energy balance and boundary conditions remain unclear. This study analyzed and evaluated the impacts of sub-grid topographic repre...
Preprint
Full-text available
The Earth's land surface features spatial and temporal heterogeneity over a wide range of scales below those resolved by current Earth system models. State-of-the-art land and atmosphere models employ parameterizations to represent their subgrid heterogeneity, but the land-atmosphere coupling in ESMs typically operates on the grid scale. Communicat...
Article
Full-text available
In tropical forests, both vegetation characteristics and soil properties are important not only for controlling energy, water, and gas exchanges directly but also determining the competition among species, successional dynamics, forest structure and composition. However, the joint effects of the two factors have received limited attention in Earth...
Article
Watershed delineation and flow direction representation are the foundations of streamflow routing in spatially distributed hydrologic modeling. A recent study showed that hexagon-based watershed discretization has several advantages compared to the traditional Cartesian (latitude-longitude) discretization, such as uniform connectivity and compatibi...
Preprint
Full-text available
Runoff is a critical component of the terrestrial water cycle and Earth System Models (ESMs) are essential tools to study its spatio-temporal variability. Runoff schemes in ESMs typically include many parameters so model calibration is necessary to improve the accuracy of simulated runoff. However, runoff calibration at global scale is challenging...
Article
Full-text available
Topography exerts significant influences on the incoming solar radiation at the land surface. A few stand-alone regional and global atmospheric models have included parameterizations for sub-grid topographic effects on solar radiation. However, nearly all Earth system models (ESMs) that participated in the Coupled Model Intercomparison Project (CMI...
Preprint
Full-text available
Topography exerts significant influences on the incoming solar radiation at the land surface. A few stand-alone regional and global atmospheric models have included parameterizations for sub-grid topographic effects on solar radiation. However, nearly all Earth System Models (ESMs) that participated in the Coupled Model Intercomparison Project (CMI...
Article
Full-text available
The Community Land Model (CLM) is an effective tool to simulate the biophysical and biogeochemical processes and their interactions with the atmosphere. Although CLM version 5 (CLM5) constitutes various updates in these processes, its performance in simulating energy, water and carbon cycles over the contiguous United States (CONUS) at scales which...
Article
Changes in carbon dioxide (CO 2 ) concentration and nitrogen (N) availability can affect land surface processes by regulating physiological (e.g., stomatal opening and closure) and phenological (e.g., leaf area index) responses, which in turn influence terrestrial water cycle dynamics. In this study, we apply the Community Land Model version 5 to i...
Article
Full-text available
Water exchange between the surface and subsurface is important for both water resource management and environmental protection. In this paper, we develop coupled surface and subsurface flow simulation capability in a parallel subsurface flow and reactive transport code PFLOTRAN. We sequentially couple the diffusion wave-based surface flow with the...
Article
Full-text available
Abstract This paper documents the biogeochemistry configuration of the Energy Exascale Earth System Model (E3SM), E3SMv1.1‐BGC. The model simulates historical carbon cycle dynamics, including carbon losses predicted in response to land use and land cover change, and the responses of the carbon cycle to changes in climate. In addition, we introduce...
Article
Full-text available
Abstract In this study, we use the Community Land Model Version 5 (CLM5) to investigate how irrigation modulates hydrologic and biogeochemical dynamics in the Upper Columbia‐Priest Rapids (UCPR) watershed, a typical semiarid watershed located in the northwestern United States dominated by cropland. To our knowledge, this constitutes the first appli...
Article
Full-text available
The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and pr...
Article
Full-text available
Abstract Evapotranspiration (ET) plays an important role in land‐atmosphere coupling of energy, water, and carbon cycles. Following deforestation, ET is typically observed to decrease substantially as a consequence of decreases in leaf area and roots and increases in runoff. Changes in ET (latent heat flux) revise the surface energy and water budge...
Article
Full-text available
Abstract Over the past several decades, the land modeling community has recognized the importance of nutrient regulation on the global terrestrial carbon cycle. Implementations of nutrient limitation in land models are diverse, varying from applying simple empirical down‐regulation of potential gross primary productivity under nutrient deficit cond...