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Abstract

Congenital cardiac ion channelopathies refer to a set of inherited conditions characterized by abnormalities in the
structure and/or function of ion channels, their associated proteins or other signalling components, predisposing affected
individuals to life-threatening ventricular tachyarrhythmias and therefore sudden cardiac death. This is a literature
review focusing on the progress of clinical research on congenital cardiac ion channelopathies in Hong Kong, from case
reports in the 1990s to population-based studies in the 2020s. Locally, patients with Brugada syndrome, long QT
syndrome and catecholaminergic polymorphic ventricular tachycardia have been studied. Leveraging the power of
linked electronic health records data in the public sector, the epidemiology, clinical characteristics, genetics,
genotypeephenotype relationship and predictive factors of arrhythmic events have received attention. Future efforts
should focus on multidisciplinary collaborations between clinicians, scientists and data scientists the use of genomic
data combined with clinical data for personalised risk prediction. With the Government's drive for innovations and
recent announcement of the Strategic Development of Genomic Medicine in Hong Kong, future efforts should be
focused on the development of a national registry linking the databases and standardizing the data fields and reporting
in different centres in Hong Kong, other cities in the Greater Bay Area and the wider mainland. Eventually the goal is to
incorporate the vast amount of genomic information with clinical details to achieve personalised risk prediction through
multidisciplinary collaborations.

Keywords: Ion channelopathies, Brugada syndrome, Long QT syndrome, Catecholaminergic polymorphic ventricular
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Introduction

C ongenital cardiac ion channelopathies refer to
a set of inherited conditions characterized by

abnormalities in the structure and/or function of ion
channels, their associated proteins or other signalling
components, in turn leading to abnormalities in

depolarization, repolarization and/or calcium
handling and predisposing affected individuals to
life-threatening ventricular tachyarrhythmias and
therefore sudden cardiac death. This is a literature
review focusing on the progress of clinical research
on congenital cardiac ion channelopathies in Hong
Kong, from case reports in the 1990s to population-
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based studies in the 2020s. Locally, the epidemiology,
clinical characteristics, genetics, genotypeephen
otype relationship and predictive factors of arrhy
thmic events of Brugada syndrome (BrS), long QT
syndrome (LQTS) and catecholaminergic poly-
morphic ventricular tachycardia (CPVT) have been
studied. Recent studies have included population-
based studies, leveraging the power of linked data
from electronic health records (EHRs) in the public
sector to facilitate the development of predictive
models and economic analysis of healthcare resource
utilisation and costs.

Brugada syndrome

BrS is characterized by coved- (type 1) or saddle-
shaped (type 2) ST segment elevation in the right
precordial leads in the absence of overt structural
abnormalities [1e3]. Its diagnosis is established
based on clinical, electrocardiographic and genetic
findings [4,5]. Currently, its management is difficult
and complex because of uncertainties in risk pre-
diction for adverse arrhythmic events [6e8], which
is more marked for asymptomatic patients with low-
risk features [9,10]. Better understanding of the
electrophysiological mechanisms can lead to more
accurate risk prediction [11e14]. Defects in depo-
larization and/or repolarization can increase the
propensity for developing ventricular arrhythmic
events [15,16]. These can be detected non-invasively
by electrocardiography [17]. Different types of ECG
markers can be used for risk prediction and they can
be broadly divided into depolarization or repolari-
zation markers [18]. Examples of depolarization
markers are QRS durations and fragmented QRS,
which reflect conduction speed and dispersion of
conduction, respectively [19]. Repolarization indices
such as QT intervals and Tpeak-Tend intervals reflect
the duration of total ventricular repolarization and
dispersion of ventricular repolarization, respectively
[20,21]. Indices reflecting dynamic changes in con-
duction or repolarization such as action potential or
conduction velocity restitution [22,23], as well as
those including features of both depolarization and
repolarization defects [24e27], can further improve
risk prediction.
The first cases of BrS in Hong Kong were reported

in the 2000s [28e35]. Additional rare cases and sin-
gle-centre studies subsequently emerged in 2016
[36,37], gradually expanding to multi-centre and
then territory-wide studies [38e40]. The latter have
enabled the identification of significant predictors
for future arrhythmic events, where risk prediction
was improved by combining both non-negative
matrix factorization (NSF) and random survival

forest (RSF) [39]. Our team recently evaluated the
performance of published risk scores using local
Hong Kong data [5,41e45], and developed our own
risk scores that are specific for the Chinese popu-
lation [46]. We found that the score developed by
Sieira et al. showed the best performance with an
area under the curve (AUC) of 0.806 (95% CI:
0.747e0.865) using receiver operating characteristic
(ROC) analysis. Using the parameters and original
weighting of the score by Sieira et al., we then
included additional variables that were found to be
significant predictors on univariable Cox regression,
which were arrhythmias other than ventricular
tachyarrhythmias, early repolarization pattern in
the peripheral leads, aVR sign, S-wave in lead I, QTc
�436 ms. Our score showed the best performance
with an AUC of 0.86. Furthermore, we developed
seven additional models using machine learning
(random survival forest, Ada boost classifier,
Gaussian naïve Bayes, light gradient boosting ma-
chine, RSF, gradient boosting classifier and decision
tree classifier). OF these, RSF and gradient boosting
classifier models showed improvements compared
to the score-based models [46].
Our other contributions include i) comparing the

clinical characteristics and outcomes between BrS
patients presenting at paediatric/young (�25 years
old) and adult ages (>25 years old) [47], ii) identi-
fication of atrial electrophysiological abnormalities
[48], iii) predictions of incident atrial fibrillation
using P-wave parameters [49], iv) identification of
novel pathogenic or likely pathogenic SCN5A var-
iants not reported outside of Hong Kong
region (c.674G > A, c.2024e11T > A, c.2042A > C,
c.4279G > T, c.5689C > T, c.429del) [50], v) linking
increased visit-to-visit temporal variability in
repolarization indices from serial ECGs to higher
likelihood of arrhythmic events [51], vi) the use of
automated ECG analysis from raw XML data [52]
and vii) extraction of latent features between risk
factors [53] for risk prediction. Further details can
be found from our reviews on the different ma-
chine learning methodologies [54] and different
predictive risk models in BrS [4]. Possibilities for
future works in BrS locally are i) application of
electroanatomical mapping as already performed
in overseas centres [55,56], ii) the integration of
Hong Kong datasets with other cities in the Greater
Bay Area and wider China in large multi-centre
cohorts which is led by our team in collaboration
with leading researchers in mainland China [40],
and iii) clarifying genotypeephenotype relation-
ships. This will achieve the goal of personalised
care for accurate individualised risk prediction
[57,58].
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Long QT syndrome

Long QT syndrome (LQTS) is defined as an
abnormally long QT interval on the ECG, which is
due to reduced repolarizing currents or increased
depolarizing currents [59]. Congenital LQTS now
has 17 subtypes identified. Whilst the clinical and
genetic characteristics of LQTS have been exten-
sively studied in Western populations [60,61], the
study of congenital LQTS in Chinese subjects fol-
lowed later in large case series [62]. Clinical
assessment and evaluation of ECG including ECG
indices can aid risk stratification [63]. The contri-
butions from our Hong Kong team include i) lead-
ing the first population-based study of congenital
LQTS patients, where we applied RSF to enhance
risk prediction of arrhythmic events [64], ii)
comparing the clinical characteristics and outcomes
between congenital LQTS patients presenting at
paediatric/young (�25 years old) and adult ages
(>25 years old) [65], iii) identification of novel
pathogenic or likely pathogenic variants not re-
ported outside of Hong Kong region (KCNQ1,
KCNH2, SCN5A, CACNA1C, CAV3 and AKAP9
mutations corresponding to LQTS subtypes 1, 2, 3, 8,
9 and 11) [64], and iv) identification of possible
pathogenic variants in genes not classified in the
LQTS 1 to 17 subtypes [66,67].

Catecholaminergic polymorphic ventricular
tachycardia

CPVT is characterized by bidirectional VT and is
usually revealed during exercise or moments of
increased distress [68]. CPVT is most frequently
caused by mutations in genes encoding for the
ryanodine receptor 2 (RyR2) [69] or calsequestrin 2
(CASQ2) [70,71]. Calcium handling abnormalities,
which in turn can lead to abnormal repolarization,
and/or conduction, explain the increased propensity
to ventricular arrhythmias [72e74]. For Chinese
CPVT patients, descriptions came from only small
case series [71,75]. Our contributions include i) the
detailed characterization and descriptions and out-
comes and identification of a novel genetic variant
not reported outside (c.14861C > G) Hong Kong
[76e79] and ii) the healthcare resource utilization of
CPVT patients in the public sector [80]. Recently,
our team has critically analysed and combined all of
the published evidence on Chinese patients with
CPVT in a systematic review and meta-analysis [81].
Future coordinated efforts to establish a national
registry linking Hong Kong, other cities in the
Greater Bay Area, and the wider mainland China
will improve risk stratification for the betterment of
CPVT patients from China.

Comparisons of genetic testing, healthcare
resource utilization and costs between BrS,
LQTS and CPVT in Hong Kong

There is shift from a deterministic to probabilistic
view on the results of genetic testing [82]. Up to 4%
of individuals from a Caucasian background
and 8% of individuals from non-Caucasian back-
grounds carry rare (<0.5% allelic frequency) non-
synonymous variants in genes that encode for car-
diac ion channels [83]. Thus, distinguishing be-
tween background noise and pathogenic mutations
is needed, and the pathogenicity must be inter-
preted. The yield of genetic testing generally in-
creases with stronger phenotypes [84]. By contrast,
the yield is lower in idiopathic cases. To determine
whether novel mutants identified are pathogenic,
functional and computational studies can be per-
formed [83].
In Hong Kong, genetic testing has been used to

identify mutations in patients who presented with
sudden cardiac death or their family members as
part of cascade screening [85]. More recent studies
have applied next generation sequencing to ach-
ieve genome-wide searches of possible variants
[86]. A review of the published studies reveals
variations in clinical practice regarding the use of
genetic tests for different cardiac ion channelo-
pathies in Hong Kong and other territories [87].
This can be explained by different levels of
expertise in hospitals and the availability of bud-
gets for genetic testing, to which a lack of agree-
ment between the guidelines published by
different societies also contribute [88]. In BrS,
combining the published studies, the rate of ge-
netic testing is 59.4% with an overall yield of 26.3%.
Some centres achieved a testing rate of 100%,
which reflects the expertise available and possibly
a research-driven culture to advance clinical
knowledge. Similarly, most large cohort studies on
LQTS reported testing rates at, or close to, 100%
with yields of 98e100% [60,89]. Regarding CPVT, a
large international cohort has reported a testing
rate of 81% with a yield of 49% [90]. Future sys-
tematic reviews and meta-analyses are needed to
evaluate the variations in clinical practice for ge-
netic testing in LQTS and CPVT carefully and
comprehensively. Locally in Hong Kong, the
highest rate of genetic testing is seen in CPVT
(88%) [77,78], followed by LQTS (39%) [64,65] and
BrS (10%) [47] (Table 1). The yields are different
[91], with the highest yield found in LQTS (81%),
followed by CPVT (57%) and BrS (34%). The novel
genetic variants identified by local teams are
shown in Table 2.
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Through the linkage of EHRs in the territory,
attendances data were recently analysed by our
team, enabling the quantification of patient-level
and population-level healthcare resource

utilisation and the attendance costs of congenital
cardiac ion channelopathies. Published costs for
BrS [92], LQTS [93] and CPVT [80] are summarized
(Table 3).

Table 1. Number of cases, genetic testing, yield of testing, and number of novel mutations identified for patients with Brugada syndrome (BrS), long
QT syndrome (LQTS) or catecholaminergic polymorphic ventricular tachycardia (CPVT) from Hong Kong, China.

Disease Number of Cases identified
between 2000 and 2020 a

Genetic Testing
Performedb

Yieldc Novel Mutations
Identifiedd

BrS 550 55/550 (10%) 19/55 (34%) 6
LQTS 134 52/134 (39%) 42/52 (81%) 15
CPVT 16 14/16 (88%) 8/14 (57%) 1
a Electronic health records were searched using International Classification of Diseases (ICD)-9 coding. Some cases were likely missed

due to under-coding and inaccurate coding.
b Variation in practice between different hospitals.
c Methods of genetic testing changed over time.
d Not all novel mutations identified have pathogenicity confirmed.

Table 2. Novel genetic variants identified in Hong Kong for Brugada syndrome (BrS), long QT syndrome (LQTS) or catecholaminergic polymorphic
ventricular tachycardia (CPVT).

Disease Gene and Mutation Region in
Genome

Coding Effect Mutation type Location in Protein
Subunit

BrS [50] SCN5A, c.429del Exon 4 p.Asn144Thrfs*57 Deletion DI-S1 (truncation)
SCN5A, c.674G > A Exon 6 p.Arg225Gln Missense DI-S4
SCN5A, c.2024e11T > A Exon 14 Acceptor splice site

abolition and creation
of cryptic splice site

Missense DI-DII

SCN5A, c.2042A > C Exon 14 p.His681Pro Missense DI-DII
SCN5A, c.4279G > T Exon 24 p.Ala1427Ser Missense DIII-S5/S6
SCN5A, c.5689C > T Exon 28 p.Arg1897Cys Missense C-terminus

LQTS [64,67] KCNQ1, c.31G > A Exon 1 p.Glu11Lys Missense N-terminus
KCNQ1, c.782A > G Exon 6 p.Glu261Gly Missense/splicing S4/S5
KCNQ1, c.1018T > C Exon 7 p.Phe340Leu Missense S5-pore-S6
KCNQ1, c.1032G > A Intron 7 p.Ala344¼ Synonymous/splicing S5-pore-S6
KCNQ1, c.1831G > A Exon 16 p.Asp611Asn Missense C-terminus
KCNH2, c.211G > T Exon 2 p.Gly71Trp Missense N-terminus
KCNH2, c.1738G > A Exon 7 p.Asp580Ala Missense S5-pore-S6
KCNH2, c.2233_2365del133 Exon 9 Deletion C-terminus
SCN5A, c.1201T > C Exon 10 p.Ser401Pro Missense DI-S6
ANK2, c.1627G > A Exon 15 p.Val 543Met Missense Membrane-binding

domain
CACNA1C, c.1186G > C Exon 8 p.Val396Leu Missense DI-S6
CACNA1C, c.2188T > A Exon 15 p. Cys730Ser Missense DII-S6
CACNA1C, c.2276C > T Exon 16 p.Ala759Val Missense DII-S6
CAV3, c.277G > A Exon 2 p.Ala92Thr Missense Membrane-spanning

domain
AKAP9, c.6065A > G Exon 29 p.Gln2022Arg Missense Coiled coil domain

CPVT [76,78] RyR2, c.14861C > G Exon 105 p.Ala4954Gly Missense Cytoplasmic domain

Table 3. Healthcare resource utilisation and costs for patients with Brugada syndrome (BrS), long QT syndrome (LQTS) or catecholaminergic
polymorphic ventricular tachycardia (CPVT) from Hong Kong, China. Median values for individual patient-level costs in US Dollars are provided.

Disease Accident and
Emergency
Costs

Accident and
Emergency
Annualized Costs

Inpatient
Costs

Inpatient
Annualized
Costs

Specialist
Outpatient
Costs

Specialist
Outpatient
Annualized Costs

BrS [92] 949 (474e1818) 110 (52e224) 58724 (16279e247625) 6812 (1982e32414) 5353 (2524e11089) 557 (326e1001)
LQTS [93] 790 (316e1739) 69 (30e183) 101579 (23599e590953) 10270 (2248e64006) 6118 (3212e13613) 675 (393e1329)
CPVT [80] 711 (395e1146) 66 (40e95) 151754 (37679e496022) 10521 (5240e66887) 10554 (6615e14110) 747 (546e1105)
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Concluding remarks

Cardiac ion channelopathies are rare but important
causes of SCD in Hong Kong. The most prevalent
condition is BrS, followed by LQTS and CPVT. Local
teams have conducted a number of studies defining
the epidemiology and investigating the clinical char-
acteristics, predictive factors of arrhythmic events and
forecasting prognosis enhanced by machine learning
models. With the Government's drive for innovations
and recent announcement of the Strategic Develop-
ment of Genomic Medicine in Hong Kong, future ef-
forts should be focused on the development of a
national registry linking the databases and standard-
izing the data fields and reporting in different centres
inHongKong, other cities in theGreater BayArea and
the wider mainland China. Eventually the goal is to
incorporate the vast amount of genomic information
with clinical details to achieve personalised risk pre-
diction through multidisciplinary collaborations.
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