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Abstract

The cardiometabolic disorder (CMD) is a syndrome caused by
coalescing of cardiovascular, endocrine, pro-thrombotic, and
inflammatory health risks. Together, these risks confer a hazard
as health-threatening as coronary artery disease or type2 dia-
betes, whether an individual has a diagnosis of coronary dis-
ease or diabetes, or not. CMD is most often defined by three or
more of five clinically assessed risk components, notably
obesity, insulin resistance, hypertension, hypertriglyceridemia,
and depressed high-density lipoprotein cholesterol.

Evidence currently suggests that worldwide CMD is expanding
at a pandemic rate, and it is known that people living with spinal
cord injuries (SCI) qualify for the diagnosis at more than 50% of
the prevalence of a non-disabled cohort. A recent evidence-
based guideline warned of the current state of CMD following
SCIl and recommended early lifestyle intervention incorporating
exercise and prudent nutrition as a first-line disease counter-
measure. This monograph will define the CMD following SCI,
explore its underlying pathophysiology, and provide evidence
that recommends exercise for CMD health hazards after SCI.
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Cardiometabolic disease after spinal cord
injury

An accelerated trajectory of all-cause cardiovascular dis-
ease (CVD) is notable among chronic health risks

observed after SCI [1] and is reported to accelerate all-
cause cardiovascular morbidity and mortality [2]. The
source for this excessive risk has been attributed, in part,
to CVD risk factors that resemble those established in
the non-disabled population [3]. However, the athero-
genic dyslipidemia observed after SCI deviates from the
routine clinical pattern of elevated total cholesterol
(TC) and elevated low-density lipoprotein cholesterol
and instead reports low levels of the cardioprotective
high-density lipoprotein cholesterol (HDL-C) and an
exaggerated postprandial hypertriglyceridemia [4,5].
Post-SCI dyslipidemia is also associated with marked
physical deconditioning [1,6,7] and systemic inflamma-
tion [8—10], which have known linkage with rapidly
developing neurogenic obesity [11], insulin resistance
[9], and type 2 diabetes mellitus [12]. When compared
with non-disabled cohorts, excessive risks for these
health hazards have all been reported after SCI [1].
They have also been linked with diminished resting and
exercise energy expenditure [13] and a daily nutrient
intake of the SCI population that is excessive in total
calories relative to the daily need [14].

The hazards of cardiometabolic disease (CMD) and
standards for disease identification and management
after SCI have recently been defined in an evidence-
based guideline [15]. The cardiometabolic condition is
an interrelated disorder of cardiovascular, renal, meta-
bolic, pro-thrombotic, and inflammatory health hazards
(Figure 1), which is recognized as a distinct disease
entity by most of the world’s medical authorities [1,7].
While still lacking a fully unified diagnosis, the American
Heart Association and the National Institutes of Health
(NIH) National Heart L.ung Blood Institute (NHLBI)
define CMD as the co-occurrence of any three medical
hazards described in Table 1. This definition is similar
but not identical to the diagnoses of the World Health
Organization, the American Diabetes Association, the
World Heart Federation, and others [16].

While physical deconditioning is not included among the
five archetypical diagnostic criteria of obesity, insulin
resistance, dyslipidemia, and hypertension, it is still
highlighted universally as a cause for CMD after SCI [17].
Exercise conditioning is thus a favored treatment
approach [18—20]. Reconditioning exercise is especially
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Interrelated cardiometabolic risks. From: Leiter et al. Cardiometabolic Risk in Canada: A Detailed Analysis and Position Paper by the Cardiometabolic

Risk Working Group. Position Statement. 27(2), E1-E33, 2011.

important for those with SCI, where fitness levels are well
below those of the non-disabled population [21], and at
the lowest end of the human fitness continuum [22]. Low
levels of resting metabolism after SCI are sometimes a
lifestyle choice that comes about from exercise abstention
[23] but can also result from diminished resting meta-
bolism of paralyzed muscles, altered sublesional fuel ho-
meostasis, and diminished sympathetic nervous system
activity accompanying cord injuries below the first
thoracic vertebrae. Deconditioning can also ensue limited
exercise options and opportunities, transportation bar-
riers, financial obstacles, need for specially adapted
equipment, and architectural barriers to the use of exer-
cise engagement [23]. Notwithstanding the cause(s),
physical deconditioning contributes to the decline in
health and function experienced throughout the lifespan
and is associated with other secondary complications,
including prevalent pain [7,15].

Cardiometabolic pathophysiology after
spinal cord injuries

Adipose tissue has recently been identified as the pri-
mary mediator of cardiometabolic pathophysiology in
humans (Figure 2), and is especially abundant in persons
with SCI [11,25]. More than just sarcopenic obesity
[26], neurogenic obesity in SCI is the result of motor
paralysis, sympathetic blunting, neurogenic anabolic
dysfunction, neurogenic osteoporosis, and blunted
satiety resulting in a profound reduction in total energy
expenditure that can rarely be matched through

decreased energy intake without intentional and fairly
extreme dietary restriction [11,27]. In the simplest
terms, adipose tissue accumulates as total daily energy
intake exceeds total daily energy expenditure, which
comprises basal/resting metabolic rate, the thermic
effect of food, and the thermic effect of activity [28—
30]. A recent systematic review of resting metabolic
rate after SCI demonstrated significant disparities be-
tween estimated and measured metabolic rate,
furthering the notion that indirect calorimetry should be
used to determine metabolic needs for those with SCI,
particularly as it relates to dietary intervention
[14,28,31,32]. The resulting positive energy balance
translates to relative body fat (% BF) of 22—44% in
persons with SCI, while body mass index (BMI) varied
between 17 and 27 kg;/m2 [25,33], well below the World
Health Organization’s definition of obesity at 30 kg/m2
[34]. Whether using the American Society of Exercise
Physiologists’ (ASEP) definition of obesity as > 22% BF
for men and >35% BF for women [35,36] or the SCI-
corrected body mass index (BMISCI) suggested by
SCI clinicians [1,37,38], the prevalence of obesity in
persons with SCI falls between 67 and 97%, well above
that of the non-SCI population [11,25,39].

Adipose tissue and its associated macrophages produce
many pro-inflammatory cytokines, including tumor ne-
crosis factor-a¢  (TNFa), interleukin-6  (IL-6),
interleukin-1 b (IL-1b), monocyte chemoattractant pro-
tein 1 (MCP-1), and nuclear factor kappa-light-chain-
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Pathophysiology of obesity and metabolic syndrome. Environmental factors influence gene expression inducing the gain of adipose tissue (AT). When
subcutaneous adipose tissue capacity is reached, free-fatty acids (FFA) mobilize and are deposited in visceral and ectopic fat (e.g., liver, skeletal muscle,
and heart). FFA deposition in muscle inhibits insulin-mediated glucose uptake (i.e., insulin resistance, IR), reducing lipolysis and increasing non-esterified
FFA flux to the liver, resulting in hepatic IR (enhancing gluconeogenesis) and hepatic lipogenesis and atherogenic dyslipidemia. Hepatic glucagon
resistance to amino acid (AA) production reduces ureagenesis, resulting in hyper-aminoacidemia and glucagon resistance (GR); increased glucagon
production from pancreatic a-cells accelerates hepatic gluconeogenesis. FFA deposit in the pancreas where B-cell dysfunction is caused by lipotoxicity;
hyperglycemia, and insulin resistance (IR) results. Hyperinsulinemia stimulates sodium reabsorption and increased sympathetic nervous system activity,
contributing to hypertension (HTN). AT becomes more IR and releases pro-inflammatory adipokines, decreasing the anti-inflammatory adiponectin.
Triglycerides and toxic metabolites in the liver induce lipotoxicity, mitochondrial dysfunction,and endoplasmic reticulum stress, resulting in hepatic
damage, apoptosis, and fibrosis (nonalcoholic liver disease, NAFLD). The damaged hepatocytes release dipeptidyl peptidase 4 (DPP4), which stimulates
AT macrophage inflammation, promoting further IR. Adapted from Godoy- Matos et al., Diabetology & Metabolic Syndrome, 2020,12,60. https://doi.org/
10.1186/513098-020-00570-y, licensed under a Creative Commons Attribution 4.0 International License: https://creativecommons.org/licenses/by/4.0/.

Table 1

CMD diagnosis for persons with and without SCI [11].

Waist circumference®

Three of more of: e Men >40 inches (102 cm)
e Women >35 inches (88 cm)
Plasma TG e > 150 mg/dL (1.7 mmol/L)
HDL-C cholesterol e Men <40 mg/dL (1.03 mmol/L)
e Women <50 mg/dL (1.29 mmol/L)
Elevated blood pressure e > 130/85 mmHg or use of medication for hypertension
Fasting glucose e > 100 mg/dL (5.6 mmol/L) or use of medication for hyperglycemia

& NOTE: Use of waist circumference is not validated in persons with SCI. Substitute definitions of obesity using a: > 22% body fat when using 3- or
4-compartment modeling or b) BMI >22 kg/m?.
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enhancer of activated B cells (NFKkB), as well as several
hormones including angiotensinogen, angiotensin II and
the adipokines leptin, adiponectin, and resistin that
modulate systemic inflammation, insulin resistance, hy-
pertension, appetite, energy metabolism, and lipid
metabolism, respectively [11,40]. TNF-a and IL-6 sup-
press insulin receptor substrates 1 and 2 (IRS-1, IRS,2)
and glucose transporter-4 (GLUT4) and upregulate
suppressor of cytokine signaling-3 (SOCS3), causing in-
sulin resistance [11,41,42]. TNF-a, IL-6, and IL-1b also
activate NFkB, which further blocks phosphorylation of
IRS-1 and IRS-2, limiting the phosphoinositide 3-kinase
(PI3K) cascade required to activate GLUT4 migration to
the cell membranes [11,43]. TNF-a, IL-1B, and NFkB
also induce pancreatic B-cell apoptosis in the later stages
of type 2 diabetes mellitus, reducing the endogenous
production of insulin [44]. Obesity-induced hyperten-
sion in SCI is mediated by the renin-angiotensin-
aldosterone system, sympathetic nervous system activa-
tion, natriuretic peptide catabolism, leptin resistance,
and renal compression caused by visceral adipose
tissue [11,45—49]. Under conditions of insulin resis-
tance, visceral adipose tissue contributes to lipolysis,
hypertriglyceridemia and the accelerated production of
non-esterified free-fatty acids (NEFA), increasing he-
patic production of apolipoprotein-B (apo-B), low-
density lipoprotein (LDL-c) and very-low-density lipo-
protein (VLDL-C); conversely apolipoprotein-A (apo-A)
production is slowed, reducing high-density lipoprotein
(HDL-c). Additionally, cholesteryl ester transfer protein
(CETP) activity is increased, promoting the exchange of
triglycerides ('T'G) with cholesterol esters between lipo-
proteins, rendering much of the remaining HDL-c
dysfunctional [11,50]. In short, unprecedented % BF in
persons with SCI largely contributes to obesity-related
metabolic dysfunction, with multiple studies demon-
strating metabolic syndrome prevalence is greater than
50% [25,39,51], well above that noted in the non-
SCI population.

Recent recommendations for exercise
reconditioning in adults with SCI

Exercise is a fundamental element for maintaining
physical capacity and cardiovascular and metabolic
health in persons of all ages and health states. The
unified American College of Sports Medicine (ACSM)
and WHO guidelines [52] prescribe exercise and pro-
vide physical activity guidelines for supporting health
and wellness in the non-disabled population, which are
also recommended for individuals with SCI “to the best
of their abilities”. The latter inclusive language en-
courages everyone with an SCI - even those with
extensive impairments - to make best efforts to avoid
sedentary behaviors. These guidelines are in substan-
tial agreement with both the ACSM Guidelines for
Exercise Testing and Prescription [53] and the Physical
Activity Guidelines for Adults with SCI that were
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established for SCI Action Canada [54]. They are also
similar to the Physical Fitness for Special Populations
(PFSP) “Physical Fitness for Individuals with Spinal
Cord Injury” recommendations of the American Phys-
ical Therapy Association [cited in Ref. [15]].

The earliest exercise programs for persons with SCI
primarily focused on enhancing cardiorespiratory fitness
and aerobic power using arm, wheelchair, or electrical
stimulation hybrid training [55—58]. Not surprisingly,
more recent activities have used more intense exercise
protocols incorporating high-intensity interval training
(HIT'T) [18,59] and circuit resistance training
(CRT) [60—63], which broaden the benefits of condi-
tioning and better match the lifestyle needs of persons
with SCI.

Most recent studies undertaking exercise conditioning
of persons with SCI report improved fitness as evidence
by enhanced physical capacity, muscular strength, and
functional performance [59,64]. Others report increased
anaerobic power [60], an element of fitness deemed
necessary to sustain function when wheeling uphill on
ramps, crossing rocky or high-friction terrain, or
performing in selected sports and recreation activ-
ities [65]. Fewer studies find reduced body fat
mass [66], unless also incorporating dietary modifica-
tions of lowered caloric intake and less saturated
fat [67]. As recent evidence reports that the three CMD
component risks of obesity, insulin resistance, and low
HDL-C are most commonly found in persons with early
SCI [9,68], incorporation of moderate-intense exercise
intensities best target the component risks comprising
medical hazards of those with SCI.

Exercise as a countermeasure to
cardiometabolic risks after SCI

Evidence supports the adoption of exercise is a practical
approach for mitigating CMD and its risks for persons
with SCI, and should be recommended by health care
professionals following SCI as a non-pharmacological
intervention [37]. Recent guidelines for physical exer-
cise after SCI have addressed the benefit of activity
countermeasures for cardiometabolic risk [15,54].
Participation should include at least 30 min of
moderate-to vigorous-intensity aerobic exercise 3 times
per week [54] or at least 150 minutes of moderate-
intensity exercise per week as can be tolerated [15].
Exercise sessions can be fulfilled by 30—60 min
performed 3—5 days per week or by exercising for at
least 3, 10-min sessions per day [15]. This volume of
physical exercise addressed by current guidelines is
associated with 532—1064 kcal per week of
energy expenditure.

A critical factor in the mitigation of CMD with exercise
is targeting an increase in energy expenditure to promote
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a negative energy balance and decrease adipose tissue.
To promote adipose tissue loss and prevent weight
regain, The American College of Sports Medicine rec-
ommends 250—300 min per week of moderate-intensity
activity with an energy expenditure equivalent to
approximately 2000 kcal per week [69]. However, the
ability to increase exercise energy expenditure is
innately reduced after SCI. With the current SCI exer-
cise guidelines of 150 min per week, persons with SCI
are often unable to achieve recommended moderate-
intensity exercise of 10.5 mL O,/kg/min. This exercise
intensity is equivalent to an energy expenditure of
532 kcal per week and would take about seven weeks to
lose one pound of adipose tissue (equal to 3500 kcal).
Therefore, consideration should be made to double SCI
exercise guidelines and adopt recommendations to
achieve 300 min of exercise per week to expend over
1000 kcal. This is supported by a recent study that re-
ported improvements in body composition and
decreased CMD risk factors after functional electrical
stimulation (FES) leg cycling for 300 min per week [70].

Following an exercise session, energy expenditure re-
mains elevated and does not immediately return to a
pre-activity level, a concept referred to as excess post-
exercise oxygen consumption [20]. In individuals with
SCI, excess post-exercise oxygen consumption is
elevated for up to 30 min, as reported by two studies
using FES cycling and arm crank exercise [71,72].
Further, compared to a reliance on glucose oxidation
during an exercise session, with post-exercise recovery,
there is a shift in substrate partitioning to an increased
dependence on fat oxidation. Exercise modalities
involving interval or resistance training that incorporates
intermittent high-intensity contraction rely on muscle
glycogen depletion during exercise to increase post-
exercise fat oxidation. Following FES exercise [73] and
circuit resistance training [61], post-exercise shifts to
fat oxidation may be a consequence of the vastly
glycolytic nature of these exercise modes [20]. The in-
fluence of physical exercise on fat as a fuel is significant,
as energy stored as fat has been reported to predict
cardiovascular disease risk factors after SCI independent
of activity and fitness levels [74].

Accordingly, the low rates of exercise energy expendi-
ture after SCI necessitate a compound intervention
approach with a strong emphasis on high-volume exer-
cise plus caloric restriction following a healthy dietary
pattern to promote a negative energy balance that mit-
igates the CMD component risk factors.

Conclusions

CMS risk factors are disturbingly prevalent in individuals
with SCI and pose health hazards that challenge health
and function throughout the lifespan. An overweight or
obese body habitus, insulin resistance, and low levels of

cardioprotective HDL-C are the most common of these
hazards and occur more often than reported in the non-
disabled population. Heightened surveillance for risk,
and adoption of healthy living recommendations specif-
ically directed toward significant risks for weight control
and glycemic management, should be incorporated as a
priority for disease prevention. While physical fitness is
not included among the five guideline risks of CMD,
moderate-intense exercise should be considered an
essential component of this plan. Best practice would also
incorporate calorie-adjusted nutrition to achieve optimal
body mass and insulin sensitivity and preserve activity,
health, and independence throughout the lifespan.
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