Gary L Bowlin

Gary L Bowlin
  • Ph.D. Biomedical Engineering
  • Chair at University of Memphis

About

229
Publications
75,354
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
18,752
Citations
Current institution
University of Memphis
Current position
  • Chair
Additional affiliations
August 1997 - May 2013
Virginia Commonwealth University
Position
  • Professor (Full)

Publications

Publications (229)
Article
Full-text available
Background Neutrophils use both the production of reactive oxygen species (ROS) and a specialized process called NETosis to defend the body from material deemed foreign. While these neutrophil behaviors are critical in preventing infection, a dysregulated response can lead to tissue damage and fibrosis at host-biomaterial interfaces. It was hypothe...
Article
Cardiovascular disease, arteriosclerosis, is characterized by the thickening of blood vessel (arteries) walls restricting blood flow and is a global health problem. One treatment option is a surgical procedure utilizing an autologous or synthetic vascular graft to bypass or replace the diseased arterial segment. The goal of this study was to fabric...
Article
Full-text available
Pulmonary fibrosis, severe alveolitis, and the inability to restore alveolar epithelial architecture are primary causes of respiratory failure in fatal COVID-19 cases. However, the factors contributing to abnormal fibrosis in critically ill COVID-19 patients remain unclear. This study analyzed the histopathology of lung specimens from eight COVID-1...
Article
Full-text available
Fibrosis, or scar tissue development, is associated with numerous pathologies and is often considered a worst-case scenario in terms of wound healing or the implantation of a biomaterial. All that remains is a disorganized, densely packed and poorly vascularized bundle of connective tissue, which was once functional tissue. This creates a significa...
Article
Honey has been used by a wide variety of cultures across the world and for thousands of years to prevent infection and improve wound healing. Recently, Manuka honey has been demonstrated to be a potent antibacterial and anti‐inflammatory therapeutic and has been incorporated into an array of wound dressings, as well as being ingested for its anti‐i...
Article
The ideal “off the shelf” tissue engineering, small-diameter (SD) vascular graft hinges on designing a scaffold to act as a template that facilitates transmural ingrowth of capillaries to regenerate an endothelized neointimal surface. Towards this goal, we explored two types of near-field electrospun (NFES) polydioxanone (PDO) architectures, as SD...
Chapter
Neutrophils rapidly accumulate at sites of inflammation, including biomaterial implantation sites, where they can modulate the microenvironment toward repair through a variety of functions, including superoxide generation, granule release, and extrusion of neutrophil extracellular traps (NETs). NETs are becoming increasing implicated as a central p...
Article
During the acute inflammatory response, the release of neutrophil extracellular traps (NETs) is a pro-inflammatory, preconditioning event on a biomaterial surface. Therefore, regulation of NET release through biomaterial design is one strategy to enhance biomaterial-guided in situ tissue regeneration. In this study, IgG adsorption on electrospun po...
Article
Full-text available
SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations ha...
Article
Full-text available
The implantation of a biomaterial quickly initiates a tissue repair program initially characterized by a neutrophil influx. During the acute inflammatory response, neutrophils release neutrophil extracellular traps (NETs) and secrete soluble signals to modulate the tissue environment. In this work, we evaluated chloroquine diphosphate, an antimalar...
Article
Full-text available
Near-field electrospinning (NFES) and melt electrowriting (MEW) are the process of extruding a fiber due to the force exerted by an electric field and collecting the fiber before bending instabilities occur. When paired with precise relative motion between the polymer source and the collector, a fiber can be directly written as dictated by preprogr...
Article
Tissue injury initiates a tissue repair program, characterized by acute inflammation and recruitment of immune cells, dominated by neutrophils. Neutrophils prevent infection in the injured tissue through multiple effector functions, including the production of reactive oxygen species (ROS), the release of granules, the phagocytosis of invaders, and...
Chapter
In situ tissue engineering aims to use acellular biomaterials and the body as a bioreactor to stimulate the regenerative capacity of autologous cells, tissues, and organs. Electrospinning is a popular fabrication technique for creating these biomaterials because it is a versatile, cost-effective approach that generates fibrous structures to mimic t...
Article
Full-text available
Manuka honey, a topical wound treatment used to eradicate bacteria, resolve inflammation, and promote wound healing, is a focus in the tissue engineering community as a tissue template additive. However, its effect on neutrophil extracellular trap formation (NETosis) on a tissue engineering template has yet to be examined. As NETosis has been impli...
Article
Tissue engineering is an interdisciplinary field that integrates medical, biological, and engineering expertise to restore or regenerate the functionality of healthy tissues and organs. The three fundamental pillars of tissue engineering are scaffolds, cells, and biomolecules. Electrospun nanofibers have been successfully used as scaffolds for a va...
Article
Aneurysmal subarachnoid hemorrhage is a common complication caused by an intracranial aneurysm that can lead to hemorrhagic stroke, brain damage, and death. Knowing this clinical situation, the purpose of this study was to develop a controlled-release stent covered with a core-shell nanofiber mesh, fabricated by emulsion electrospinning, for the tr...
Article
Manuka honey, a wound treatment used to eradicate bacteria, resolve inflammation, and promote wound healing, is a current focus in the tissue engineering community as a tissue template additive. However, Manuka honey's effect on neutrophils during the inflammation-resolving phase has yet to be examined. This study investigates the effect of 0.5% an...
Article
Full-text available
Electrospinning is a popular method for creating random, non-woven fibrous templates for biomedical applications, and a subtype technique termed near-field electrospinning (NFES) was devised by reducing the air gap distance to millimeters. This decreased working distance paired with precise translational motion between the fiber source and collecto...
Article
Full-text available
Neutrophils, the first cells that interact with surface-adsorbed proteins on biomaterials, have been increasingly recognized as critical maestros in the foreign body response for guided tissue regeneration. Recent research has shown that small diameter (SD) fibers of electrospun tissue regeneration templates, which have a high surface area to volum...
Article
Full-text available
A large body of in vivo and in vitro evidence indicates that Manuka honey resolves inflammation and promotes healing when applied topically to a wound. In this study, the effect of two different concentrations (0.5% and 3% v/v) of Manuka honey on the release of cytokines, chemokines, and matrix-degrading enzymes from neutrophils was examined using...
Article
Full-text available
Recent work has shown that Manuka honey, an increasingly popular wound additive with potent antibacterial properties, also has anti-inflammatory properties. However, little research has been done examining its effect on neutrophils. This study investigates the hypothesis that Manuka honey reduces neutrophil superoxide release and chemotaxis and red...
Article
Multi-layered vascular scaffolds may be considered advantageous in regenerating vascular tissues due to the nature of mimicking the native structure of a blood vessel. However, there are currently limited small-diameter vascular scaffolds integrating the specific features of native tunica intima (anti-thrombus and rapid endothelialization) and tuni...
Article
Blends of arabinoxylan ferulate (AXF) and gelatin (GEL) at 1:1, 2:1 and 4:1 mass ratios were electro-spun into composite fibrous mats as a wound-healing drug delivery platform. The composite fibers were characterized in terms of morphology, tensile properties, pore size, porosity and molecular composition. The composite fibers showed excellent cyto...
Article
Full-text available
Over the past few decades, there has been a resurgence in the clinical use of honey as a topical wound treatment. A plethora of in vitro and in vivo evidence supports this resurgence, demonstrating that honey debrides wounds, kills bacteria, penetrates biofilm, lowers wound pH, reduces chronic inflammation, and promotes fibroblast infiltration, amo...
Article
Full-text available
Upon interaction, neutrophils can potentially release neutrophil extracellular traps (NETs) on the surface of an implanted electrospun template, which may be a significant preconditioning event for implantable biomaterials of yet unknown consequences. In this study, we investigated the potential of polydioxanone templates as a delivery vehicle for...
Chapter
Electrospun fibrous meshes are promising vehicles for sustained, localized delivery of therapeutic agents to specific target tissues. Their large surface area to volume ratio facilitates a high loading efficiency, and the versatility of methods for drug attachment and/or encapsulation allows for loading with many types of drug molecules. Additional...
Article
Full-text available
Although electrospun templates are effective at mimicking the extracellular matrix (ECM) of native tissue due to the tailorability of parameters such as fiber diameter, polymer composition, and drug loading, these templates are often limited with regards to cell infiltration and the tailorability of the microenvironments within the structures. Thus...
Article
Full-text available
Despite considerable recent progress in defining neutrophil functions and behaviors in tissue repair, much remains to be determined with regards to its overall role in the tissue integration of biomaterials. This article provides an overview of the neutrophil’s numerous, important roles in both inflammation and resolution, and subsequently, their r...
Article
Mounting evidence indicates that neutrophils, first responders to an implanted biomaterial, prime the microenvironment for recruited immune cells by secreting factors and releasing neutrophil extracellular traps (NETs) through NETosis. In this study, we investigated the role of electrospun template architecture and composition in regulating NETosis...
Article
Full-text available
The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/po...
Article
Arabinoxylan ferulate (AXF) foams were fabricated via peroxidase catalyzed crosslinking reaction in the presence of hydrogen peroxide and studied as a potential wound dressing material. The AXF foam's rheological, morphological, porous and swelling properties were examined. AXF foams were found to be a viscoelastic material that proved to be highly...
Article
Full-text available
Electrospinning, a fabrication technique used to create non-woven, porous templates from natural and synthetic polymers, is commonly used in tissue engineering because it is highly tailorable. However, traditional electrospinning creates restrictive pore sizes that limit the required cell migration. Therefore, tissue engineering groups have sought...
Article
Full-text available
The key events of the earliest stages of bone regeneration have been described in vivo although not yet modeled in an in vitro environment, where mechanistic cell-matrix-growth factor interactions can be more effectively studied. Here, we explore an early-stage bone regeneration model where the ability of electrospun fibrinogen (Fg) nanofibers to r...
Article
The development of three-dimensional porous scaffolds with enhanced osteogenic and angiogenic potential would be beneficial for inducing early-stage bone regeneration. Previous studies have demonstrated the advantages of mineralized and non-mineralized acellular 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linked gelatin...
Article
Polyamidoamine (PAMAM) dendrimers have emerged as an important class of nanostructured materials and have found a broad range of applications. There is also an ongoing effort to synthesize higher-complexity structures using PAMAM dendrimers as enabling building blocks. Herein, we report for the first time the fabrication of electrospun nanocomposit...
Article
In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our understanding of breast development. Indeed, biol...
Article
Tissue engineering is a multidisciplinary field that has evolved in various dimensions in recent years. One of the main aspects in this field is the proper adjustment and final compatibility of implants at the target site of surgery. For this purpose, it is desired to have the materials fabricated at the nanometer scale, since these dimensions will...
Article
This work suggested the efficient use of MWCNTs to impart high mechanical properties to nanofibers and while maintaining the toxicity of the materials.•The mechanical properties of the nanofibers can be improved by introducing 2% of MWCNTs, above this point the mechanical property is reduced in nanofibers fabricated from Tecoflex® EG 80A.•The prese...
Article
Full-text available
The aim of this paper is to investigate the physico-chemical properties, degradation behaviour and cellular response of electrospun fibre-scaffolds of semi-crystalline PCL, PLLA and PDX blended with amorphous poly(methyl dioxanone) (PMeDX). Electrospun PCL/PMeDX and PLLA/PMeDX blend mats in varying weight ratios of the two components were fabricate...
Article
In the present study, we discuss the electrospinning of medical grade polyurethane (Carbothane™ 3575A) nanofibers containing multi-walled-carbon-nanotubes (MWCNTs). A simple method that does not depend on additional foreign chemicals has been employed to disperse MWCNTs through high intensity sonication. Typically, a polymer solution consisting of...
Article
Interactions between cells and the extracellular matrix (ECM) play a crucial role in regulating biological tissue function. Silk biomaterials from Bombyx mori (B. mori) silkworm silk are widely used in tissue engineering. As this silk fibroin (SF) contains no strong adhesion sites, we assessed whether the blending or coating of SF with collagen wou...
Article
Purpose: This work was aimed at developing a semi-interpenetrating network (sIPN) co-electrospun gelatin/insulin fiber scaffold (GIF) formulation for transbuccal insulin delivery. Methods: Gelatin was electrospun into fibers and converted into an sIPN following eosin Y-initiated polymerization of polyethylene glycol diacrylate (PEG-DA). The cyto...
Article
Osteochondral defects affect both the articular cartilage and the underlying subchondral bone, but poor osteochondral regeneration is still a daunting challenge. Although the tissue engineering technology provides a promising approach for osteochondral repair, an ideal biphasic scaffold is in high demand with regards to proper biomechanical strengt...
Article
Full-text available
Human bone is a tissue with a fairly remarkable inherent capacity for regeneration; however, this regenerative capacity has its limitations, and defects larger than a critical size lack the ability to spontaneously heal. As such, the development and clinical translation of effective bone regeneration modalities are paramount. One regenerative medic...
Article
A novel electrospun nanoyarn scaffold, aimed to improve cell infiltration and vascularization, as well as guide cell behaviors by its biomimetic structure, was fabricated for tissue engineering. Electrospun nanofibers were deposited and twisted into yarns in a water vortex before collecting on a rotating mandrel to form a nanoyarn scaffold. Field e...
Article
Full-text available
This article deals with an in-depth study of the thermal, mechanical and degradation behaviours of nanofibres from polydioxanone (PDX) and polyDL-3-methyl-1,4-dioxan-2-one (PMeDX) and a comparison with their blend films. Varying ratios of both polymers were blended and electrospun from solution. Electrospun fibres exhibited a melting transition at...
Chapter
Nanotechnology refers to manipulation of matter with at least one dimension sized from 1–100 nanometers and typically involves systems engineering at an atomic or molecular scale. Since the materials exhibit “quantum-effects” at nanoscale, it provides scientists an opportunity to exploit the unique physical, chemical and mechanical properties that...
Article
Nanocomposite fiber mats based on biodegradable polycaprolactone (PCL) and chitin nanofibril (n-chitin) were produced via electrospinning. The morphologies, thermal and mechanical properties as well as surface wettability of the fiber mats were studied by scanning electron microscopy, differential scanning calorimetry analysis, thermogravimetric an...
Article
Full-text available
The application of freeze-dried gelatin sponges as alternative bone grafting substitutes has many advantages, including the ability to swell, high porosity, tailorable degradation, and versatility to incorporate multiple components such as growth factors and nanofillers. The purpose of this study was to mineralize (M) and further characterize 1-Eth...
Article
Nanocomposite fiber mats based on biodegradable polycaprolactone (PCL) and chitin nanofibril (n-chitin) were produced via electrospinning. The morphologies, thermal and mechanical properties as well as surface wettability of the fiber mats were studied by scanning electron microscopy, differential scanning calorimetry analysis, thermogravimetric an...
Article
Full-text available
Amelogenin is a major enamel matrix protein onto which developing enamel forms. In the realm of tissue engineering, amelogenin has been studied and applied to periodontal and wound healing applications. This study introduces the first attempts of incorporating amelogenin within an electrospun scaffold. Amelogenin was extracted from porcine unerupte...
Article
Full-text available
Advanced biomaterials and sophisticated processing technologies aim to fabricate tissue-engineering scaffolds that can predictably interact within a biological environment at cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed prior to clinical translation....
Patent
The invention is directed to formation and use of electroprocessed collagen, including use as an extracellular matrix and, together with cells, its use in forming engineered tissue. The engineered tissue can include the synthetic manufacture of specific organs or tissues which may be implanted into a recipient. The electroprocessed collagen may als...
Article
In this work, we report a new nanofiber construct based on electrospun blends of gelatin and gelatin-dendrimer conjugates. Highly branched star-shaped polyamidoamine (PAMAM) dendrimer G3.5 was covalently conjugated to gelatin via EDC/NHS chemistry. Blends of gelatin and gelatin-dendrimer conjugates mixed with various loading levels of silver acetat...
Article
Full-text available
It is critically important to study head and neck squamous cell carcinoma tumorigenic mechanisms in order to gain a better understanding of tumor development, progression, and treatment. Unfortunately, a representative three-dimensional (3D) model for these evaluations has yet to be developed. The purpose of this study was to replicate tumor extrac...
Patent
High-pressure bleeding wounds (and other bleeding wounds) may be treated by applying direct pressure directly in the bleeding wound, such as by applying a back pressure in a confined space around and in the wound. Certain substances and articles may be inserted into the wound, and the wound may be enclosed with that substance or article (such as a...
Article
The ability to expand and direct both precursor and stem cells towards a differential fate is considered extremely advantageous in tissue engineering. Platelet-rich plasma (PRP) possesses a milieu of growth factors and cytokines, which have the potential to have either a differentiative or proliferative influence on the cell type tested. Here, we i...
Article
In the present study, the effects of air-flow impedance electrospinning and air-flow rates on silk-based scaffolds for biological tissues were investigated. First, the properties of scaffolds obtained from 7% and 12% silk concentrations were defined. In addition, cell infiltration and viability of MCF-10A breast epithelial cells cultured onto these...
Article
Full-text available
The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a prepa...
Article
For blood vessel tissue engineering, an ideal vascular graft should possess excellent biocompatibility and mechanical properties. For this study, a elastic material of poly (L-lactic acid-co-ϵ-caprolactone) (P(LLA-CL)), collagen and chitosan blended scaffold at different ratios were fabricated by electrospinning. Upon fabrication, the scaffolds wer...
Article
We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration o...
Article
The promise of tissue engineering is the combination of a scaffold with cells to initiate the regeneration of tissues or organs. Engineering of scaffolds is critical for success and tailoring of polymer properties is essential for their good performance. Many different materials of natural and synthetic origins have been investigated, but the chall...
Article
In this study, we investigated the effect of fiber and pore size of an electrospun scaffold on the polarization of mouse bone marrow-derived macrophages (BMMΦs) towards regenerative (M2) or inflammatory (M1) phenotypes. BMMΦs were seeded on Polydioxanone (PDO) scaffolds electrospun from varying polymer concentrations (60, 100, and 140 mg/ml). Highe...
Article
The oral mucosa is a promising absorption site for drug administration because it is permeable, highly vascularized and allows for ease of administration. Nanofiber scaffolds for local or systemic drug delivery through the oral mucosa, however, have not been fully explored. In this work, we fabricated electrospun gelatin nanofiber scaffolds for ora...
Article
Full-text available
One major limitation of electrospun scaffolds intended for bone tissue engineering is their inferior mechanical properties. The present study introduces a novel strategy to engineer stiffer scaffolds by stacking multiple layers and cold welding them under high pressure. Electrospun polydioxanone (PDO) and PDO:nanohydroxyapatite (PDO:nHA) scaffolds...
Article
Full-text available
This study aimed at examining the properties of blends of semi-crystalline polydioxanone (PDX) and amorphous poly(methyl dioxanone) (PMeDX). The authors show that low amounts of PMeDX, within 15 wt% acts as plasticizer to high molar mass PDX as confirmed by an increase in Young’s modulus of films. The plasticizing effect on blends increased with de...
Article
Full-text available
High-pressure bleeding wounds (and other bleeding wounds) may be treated by applying direct pressure directly in the bleeding wound, such as by applying a back pressure in a confined space around and in the wound. Certain substances and articles may be inserted into the wound, and the wound may be enclosed with that substance or article (such as a...
Chapter
Tissue engineering aims to restore function or replace damaged tissue through biological principles and engineering. Electrospinning is a scaffold fabrication technique that produces continuous nanofiber meshes that mimic the extracellular matrix (ECM) of native tissue. This chapter briefly introduces various tissues and their respective ECM struct...
Article
High-pressure bleeding wounds (and other bleeding wounds) may be treated by applying direct pressure directly in the bleeding wound, such as by applying a back pressure in a confined space around and in the wound. Certain substances and articles may be inserted into the wound, and the wound may be enclosed with that substance or article (such as a...
Article
Full-text available
Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the...
Chapter
Full-text available
Bone composition in the body is well known to be a multiphasic, heterogeneous and anisotropic in structure at all scales. There has been an increasing focus in bone tissue engineering because it presents a new approach for bone repair and regeneration. Scaffolds have been applied as structural supports in combination with cells in an attempt to eng...
Article
Platelet-rich plasma (PRP) has been gaining popularity in recent years as a cost-effective material capable of stimulating healing in a number of different clinical applications. As the clinical role of PRP has been growing so too has its prevalence in the fields of tissue engineering and regenerative medicine, particularly in the field of extracel...
Article
Full-text available
The current bone autograft procedure for cleft palate repair presents several disadvantages such as limited availability, additional invasive surgery, and donor site morbidity. The present preliminary study evaluates the mineralization potential of electrospun polydioxanone:nano-hydroxyapatite : fibrinogen (PDO : nHA : Fg) blended scaffolds in diff...
Article
The synthesis and characterization of polycaprolactone (PCL) and poly(dioxanone-methyl dioxanone) (P(DX-co-MeDX)) block copolymers in a range of compositions of the two segments and with varying methyl dioxanone units is herein reported. The thermal properties of the copolymers were studied by differential scanning calorimetry (DSC) which revealed...
Article
Full-text available
Basement membrane-rich extracellular matrices, particularly murine sarcoma-derived Matrigel, play important roles in regenerative medicine research, exhibiting marked cellular responses in vitro and in vivo, although with limited clinical applications. We find that a human-derived matrix from lipoaspirate fat, a tissue rich in basement membrane com...
Conference Paper
Chitin is the second most abundant biopolymer next to cellulose and possesses many favorable properties such as non-toxicity, high crystallinity, biocompatibility and biodegradability. Acid-treatment of chitin can dissolve regions of low lateral order, resulting in elongated rod-like nanocrystals, termed “whiskers”. Chitin whiskers (CWs) are an eme...
Article
The purpose of this study was to create seamless, acellular, small diameter bioresorbable arterial grafts that attempt to mimic the extracellular matrix and mechanical properties of native artery using synthetic and natural polymers. Silk fibroin, collagen, elastin, and polycaprolactone (PCL) were electrospun to create a tri-layered structure for e...
Article
Full-text available
Electrospun polycaprolactone (EPCL) is currently being investigated for use in tissue engineering applications such as vascular grafts. However, the effects of electrospun polymers on systemic immune responses following in vivo exposure have not previously been examined. The work presented evaluates whether EPCL in either a microfibrous or nanofibr...
Article
Electrospinning is often used to create scaffolding as a biomimetic of the extracellular matrix of tissues. A frequent limitation of this technique for three-dimensional tissue modeling is poor cell infiltration throughout the void volume of scaffolds. Here, we generated low-temperature electrospun silk scaffolds and compared these with conventiona...
Article
Chitin nanofibrils are prepared by treatment of commercial chitin in hydrochloric acid. It is found for the first time that the obtained chitin nanofibrils can be well dispersed in an organic solvent of 2,2,2-trifluoroethanol (TFE) due to its strong ability to form hydrogen bonds. Polycaprolactone (PCL), a water insoluble biodegradable polymer, is...
Article
Full-text available
Arteriosclerosis has accounted for three quarters of the deaths related to cardiovascular disease (CVD). Arteriosclerosis is a vascular disease that is characterized by a thickening of the arterial wall and subsequent decrease in the arterial lumen, eventually causing loss of circulation distal to the site of disease. Small diameter arteries (< 6 m...
Article
Full-text available
Introduction: Because tissue engineering scaffolds serve as a temporary environment until new tissue can be formed, their mechanical performance, thermal properties, and biocompatibility are critical for maintaining their functionality. The goal of this study was to electrospin scaffolds from copolymers containing varying amounts of 1,4-Dioxan-2-on...
Article
Electrospun non-woven structures have the potential to form bioresorbable vascular grafts that promote tissue regeneration in situ as they degrade and are replaced by autologous tissue. Current bioresorbable grafts lack appropriate regeneration potential since they do not have optimal architecture, and their fabrication must be altered by the manip...
Chapter
Tissue engineering is an interdisciplinary field aimed at the application of the principles and methods of engineering and life sciences toward the fundamental understanding of structure–function relationships in normal and pathological mammalian tissues and the development of biological substitutes to restore, maintain, or improve tissue functions...
Article
Full-text available
Bone tissue engineering is one of the emerging strategies for developing functionally viable bone substitutes. The recent trend in bone tissue engineering is to combine the benefits of a three-dimensional nanofibrous scaffold with biologically active molecules and responsive stem cells. Electrospinning is the most versatile of the scaffold fabricat...
Conference Paper
The architecture of the vascular wall is highly intricate and requires unique biomechanical properties in order to function properly. Native artery is composed of a mix of collagen, elastin, endothelial cells (ECs), smooth muscle cells (SMC), fibroblasts, and proteoglycans arranged into three distinct layers: the intima, media, and adventitia. Thro...
Article
Full-text available
Platelet-rich plasma (PRP) therapy has seen a recent spike in clinical interest due to the potential that the highly concentrated platelet solutions hold for stimulating tissue repair and regeneration. The aim of this study was to incorporate PRP into a number of electrospun materials to determine how growth factors are eluted from the structures,...
Article
Mast cells synthesize several potent angiogenic factors and can also stimulate fibroblasts, endothelial cells, and macrophages. An understanding of how they participate in wound healing and angiogenesis is important to further our knowledge about in situ vascular prosthetic regeneration. The adhesion, proliferation, and cytokine secretion of bone m...
Article
Full-text available
Electrospinning is a process that creates nanofibers through an electrically charged jet of polymer solution or melt. This technique is applicable to virtually every soluble or fusible polymer and is capable of spinning fibers in a variety of shapes and sizes with a wide range of properties to be used in a broad range of biomedical and industrial a...
Article
We describe the structural and functional properties of three-dimensional (3D) nerve guides fabricated from poly-ε-caprolactone (PCL) using the air gap electrospinning process. This process makes it possible to deposit nano-to-micron diameter fibers into linear bundles that are aligned in parallel with the long axis of a cylindrical construct. By v...
Article
Full-text available
Throughout native artery, collagen and elastin play an important role, providing a mechanical backbone, preventing vessel rupture, and promoting recovery under pulsatile deformations. The goal of this study was to mimic the structure of native artery by fabricating a multi-layered electrospun conduit composed of poly(caprolactone) (PCL) with the ad...

Network

Cited By