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1. Introduction

For viscoelastic fluids such as polymer melts and solutions, the transient uniaxial extensional

viscosity is a function of both the rate of stretching and the total deformation or strain imposed.

Knowledge of the resulting material function is of great importance in governing the dynamics and

stability of polymer processing operations such as fiber-spinning, film-blowing and blow molding.

Filament stretching rheometers provide one of the few ways of unambiguously measuring the transient

elongational response of ‘mobile’ polymeric fluids that are viscous (1 ≤ η ≤ 1000 Pa.s) but not rigid

enough to test in the extensiometers commonly employed for extremely viscous melts such as

polyethylene and polypropylene (Hosstetler & Meissner, 1994).  However, even in these filament

stretching devices the deformable nature of the free-surface of the test fluid and the no-slip boundary

conditions pinning the liquid bridge to the endplates preclude truly homogeneous kinematics and it is

essential to combine experimental measurements with computational rheometry in order to understand the

dynamical characteristics of the device.

In the present work, we combine experimental measurements on polymer solutions and polymer

melts in a temperature-controlled Filament Stretching Rheometer (FISER) with time-dependent finite-

element numerical simulations using single and multi-mode formulations of the Giesekus model. During

the imposed uniaxial elongation, numerical calculations are able to quantitatively simulate the measured

stress growth in the materials.  However, experiments and calculations show that the dynamical response

of the fluid filament is strongly dependent on the exact form of the transient extensional viscosity.  We

show that even if a non-Newtonian fluid exhibits some strain-hardening, this can be insufficient to

stabilize the contraction in the filament radius as the sample is exponentially elongated.  Effects such as

elastic recoil in parts of the filament result in a localized rate of thinning or ‘necking’ that is enhanced

beyond that of a strain-independent Newtonian filament, and the elongating fluid thread can ‘neck down’

and break in a finite time.  This qualitative difference compared with strongly strain-hardening elastic

fluids can be understood in terms of a modified Considère analysis commonly employed for describing

necking in tensile tests of solid polymer samples.  Finally, following cessation of stretching at a finite

strain, the tensile stresses in the elongated column rapidly relax and experiments and simulations show
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that viscoelastic filaments undergo capillary-driven break-up at a rate that is greatly enhanced due to the

fluid viscoelasticity. The dynamics of this filament failure are manifested in industrial processing

operations through heuristic concepts such as ‘spinnability’ and ‘tackiness’ and are intimately connected

to the transient uniaxial elongational stress growth of the polymeric material. Filament stretching devices

are also natural platforms to probe such effects since they can monitor both the radial profile of the

thinning filament and the resulting tensile force; they thus offer the possibility of extending our

understanding of instability mechanisms such as necking and peeling of viscoelastic materials.

2. Operational Characteristics of Filament Stretching Devices

The basic operation of a filament stretching device is shown in Figure 1. Several variants of the

basic configuration have been published (Tirtaatmadja & Sridhar, 1993; Spiegelberg et al. 1996; van

Nieuwkoop et al. 1996). A small cylindrical plug of fluid (a liquid bridge) is generated between two flat

disks of radius R0 and stabilized against gravitational sagging by capillarity. The initial aspect ratio is

denoted Λ0 0 0= L R .

      

Rmid (t)

R(z,t)

V E L E t= +( ˙ )exp( ˙ )0

z

r0

F tz ( )

Λ0
0

0

=
L

R

L(t)

R0

L
0

Figure 1   Schematic diagram of a filament stretching extensional rheometer (FiSER).

At time t = 0, the upper plate is set in motion and the resulting midpoint radius of the filament

R tmid ( )  and tensile force F tz ( ) exerted by the elongating column are measured. The endplate velocity
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profile ˙ ( )L tp  is chosen such that the midpoint of the fluid filament decreases exponentially with a

constant stretching rate ε̇0  given by

ε̇0
2= −

R
d R

d tmid

mid (1)

Selection of this velocity profile is complicated by the no-slip pinning condition imposed by the rigid

endplates. Originally this selection was made ad hoc however recently several techniques for using open-

or closed-loop feedback have been developed (Anna et al. 1999; Orr & Sridhar, 1999).

The fundamental benefit of a filament stretching rheometer is that the transient response of the

same Lagrangian fluid element located at the column midplane is followed as a function of time, and that

it experiences a constant stretching history. By contrast in other rheometric devices such as Spinline

Rheometers, analysis of the kinematics and dynamical forces is complicated by the limited residence time

of fluid elements in the spin-line and the nonhomogeneous stretching history they experience. The total

Hencky strain experienced by the fluid elements at the midplane of a filament stretching device can be

directly computed by integrating (1) to give

ε ε= ′ = ( )



∫ ˙ ln ( )0 0

2

0
dt R R tmid

t
(2)

Numerical simulations show that filament stretching devices can quantitatively measure the

transient extensional stress growth function ∆τ ε+( ˙ , )0 t  of viscoelastic fluids (Sizaire & Legat, 1997;

Kolte & Hassager, 1997; Yao & McKinley, 1998). Results are typically represented in dimensionless

form in terms of the transient Trouton ratio Tr = +∆τ η ε( ˙ )0 0  as a function of the Hencky strain and the

Deborah number De = λ ε1 0˙ . The stress relaxation following cessation of uniaxial elongation can also be

measured (Spiegelberg & McKinley, 1997; Yao et al. 1998).

The characteristic forms of the tensile force response for a dilute polymer solution and an

entangled viscoelastic material such as a concentrated polymer solution or polymer melt are shown in

figure 2.
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Figure 2. Characteristic form of the response in the force and midpoint radius for a dilute polymer

solution (solid line) and a concentrated solution or melt (broken line).



McKinley, Anna, Tripathi & Yao PPS-15, June 1999

4

During the imposed stretching, the force F t t R tz mid( ) ( ) ( )= ×+∆τ π 2  passes through a maximum at short

times due to the exponential decrease in the area of the filament midplane and the (initially) small

polymeric stresses. For a Newtonian fluid, the force continues to decrease monotonically; however for a

strongly strain-hardening fluid it can increase again at later times. The approach to a steady-state uniaxial

extensional viscosity in a polymeric filament is indicated by a second local maximum in the force at

longer times. For a polymer melt, the initial growth in the force can be retarded due to the absence of a

solvent (instantaneous) viscosity, and experiments show that the filament fails (i.e. breaks) shortly after

force passes through a maximum. This failure of an elastic filament can be understand using a static

stability construction taken from solid mechanics as we discuss in §4.3

3. Experimental results from Filament Stretching Devices

We first focus on experimental results obtained in model fluids such as dilute polymer solutions. The

molecular/kinetic theory is best developed for such materials (Bird et al. 1987) and we can thus validate

the performance of the device by comparing experimental results with theoretical predictions.

3.1 Dilute Polymer Solutions

Here we focus on a set of ideal elastic fluids consisting of a dilute concentration (0.05 wt%) of a

monodisperse anionically-polymerized linear polystyrene chain dispersed in a low molecular weight

oligomeric styrene. We study an homologous series of fluids denoted SM-1, SM-2, SM-3 containing 0.05

wt% of monodisperse polystyrene of molecular weights 2 106× , 7 106×  and 20 106×  g / mol

respectively. These fluids were prepared by Professor Susan Muller of UC-Berkeley as part of an ongoing

round-robin study of the accuracy and reproducibility of the extensional stress growth measured by

various filament stretching rheometers (Anna et al. 1999). The dynamic, steady and transient shear

properties of these fluids have been thoroughly studied and coupled with intrinsic viscosity and light

scattering measurements indicate that they are well-described by the Zimm Bead-Spring model

incorporating hydrodynamic interactions. The dimensionless transient uniaxial stress growth measured in

the filament stretching device for Fluid SM-1 is shown in Figure 3 for a range of Deborah numbers 8 ≤
De ≤ 60. When plotted vs. the elapsed time of the experiment (scaled with the longest relaxation time

λZimm) the Trouton ratio is observed to grow increasingly rapidly at high De. However, if the results are

plotted as a function of the total Hencky strain  determined from eq. (2)), the material response is found to

resemble a single master curve in which the extensional viscosity is solely a function of the applied strain.

At low strains the stress is carried principally by the Newtonian solvent (the oligomeric styrene) and

Tr s≈ 3 0η η . Beyond a strain of ε ~ 2 , the stress climbs rapidly as the polymer chains elongate, and for

strains ε ≥ 6 , the Trouton ratio approaches a steady state corresponding to full elongation of the polymer

chains.
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Figure 3. Transient Trouton ratio for fluid SM-1 (0.05 wt% monodisperse polystyrene in oligomeric

styrene) for a range of Deborah numbers, De Zimm≡ λ ε̇0 . The results are plotted (a) as a function of

dimensionless time, t Zimmλ  where λZimm  = 3.70 s. and (b) as a function of the total Hencky strain ε
determined from equation (2).

3.2 Entangled polymer systems

In addition to measurement of the transient Trouton ratio for strongly strain-hardening dilute

polymer solutions, it is also possible to use filament stretching devices to measure the transient stress

growth in entangled systems such as concentrated polymer solutions and melts. Such fluids typically

exhibit less pronounced stress growth; but accurate measurement of the extensional properties is

nonetheless important in many polymer processing operations such as wet-spinning, roll-coating and

container-filling. We have investigated the ability of the FISER to make extensional viscosity

measurements in such materials using a concentrated solution (5 wt%) of high molecular weight

polystyrene in a mixture of Tricresyl Phosphate and Dioctyl Phthalate (TCP/DOP). This system was

chosen since extensive rheological characterization of the viscometric properties, together with

measurements of the local stress differences in a complex flow have recently been published (Li et al.

1998). The fluid is strongly shear-thinning and well-described by a multi-mode version of the Giesekus

constitutive model (Bird et al. 1987a). For such fluids, the need for comparison with numerical

simulations is more pronounced since the stress growth is more moderate and the kinematics of the device

are spatially nonhomogeneous. We have recently studied these effects in detail (Yao et al. 1998) and

show below in Figure 4 the experimentally measured stress growth and the numerically predicted values

obtained in a time-dependent simulation with a three-mode formulation of the Giesekus model. Excellent

agreement between the experiments and simulations is observed; however, in order to obtain agreement

with the predictions of ideal uniaxial elongation, it is essential that the force balance and kinematics of the

fluid elements near the midplane are analyzed correctly. Further details of this analysis are provided in

Kolte et al. 1997 and Yao et al. 1998.
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Figure 4. Transient Trouton ratio for a concentrated (5.0 wt%) polystyrene solution in DOP/TCP.

Symbols show the experimentally measured stress growth, and the lines indicate the results of numerical

simulation.

The FISER can also be used to measure the transient stress growth in polymer melts at room or

elevated temperatures by encasing part or all of the translation stage in a tubular convection oven. This

implementation is particularly useful for polymer melts of low to moderate viscosity such as nylon or

PET since they are not rigid enough to support themselves in devices such as the Meissner rheometer

(Meissner & Hostettler, 1994). Such an instrument is currently under construction in our laboratory and

we plan to report further on these developments in the future.

4. Filament Failure

In addition to providing quantitative information about the stress growth during uniaxial elongation,

devices such as FISER can be used to provide a means of investigating other poorly-understood

viscoelastic phenomena that are frequently encountered during processing operations such as ‘necking’

and ‘peeling’.

4.1 Cohesive Failure & Peeling

As the Deborah number De = λ ε1 0˙  of the  imposed stretching rate in the FISER is increased, the tensile

viscoelastic stresses in the filament increase steadily. This may occur either because the stretching rate

( ε̇0 ) of the deformation increases or because the longest relaxation time (λ1) of the fluid increases. For

the fluids SM–1, –2, –3 described in §3.1, the Zimm relaxation time scales as λZimm wM~ .1 5  (Larson,

1988; Anna et al. 1999) and increases thirty-fold as the molecular weight increases from 2 to
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20 106× g/mol. At such large stresses, elastic instabilities can arise during the stretching which lead to

complete decohesion of the fluid column from the endplate. This instability originates from the large

radial pressure-gradients that arise in the fluid near the rigid endplate as a result of the no-slip boundary

condition (Spiegelberg et al. 1996).

As an example of the consequences of this elastic end-plate instability, we show in Figure 5 the

dimensionless stress growth measured during elongation of the SM–1, –2 and –3 fluids at an identical

extension rate of ̇ε0
12= −s , together with video-images of the radial profile of the elongating fluid

column in the vicinity of the endplates.. The SM-1 fluid strain-hardens and smoothly approaches steady-

state, by contrast, in the SM-2 and SM-3 fluids, the column elongates and becomes progressively more

axially uniform until the bulk of the fluid is drained away from the endplate region. In order to elongate

further, the fluid column then undergoes a symmetry-breaking instability of the free-surface near the rigid

endplate. The rate of increase in the polymer stress  is reduced and ultimately the entire filament

decoheres from the endplate leaving a thin fluid film wetting the disk. The dynamics of this instability are

closely related to those arising in peel tests of pressure sensitive adhesives (Ferguson et al. 1997; Piau et

al. 1997) and filament stretching devices may be ideal for quantitative investigations of such phenomena.
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Figure 5  Elastic endplate instability and decohesion of strongly strain-hardening dilute polymer solutions

SM-2 and SM-3.

In addition to quantifying the forces arising during this viscoelastic decohesion, the spatial

dynamics of the instability can be readily imaged by constructing the lower disk of the filament stretching
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rheometer out of glass or plexiglass and imaging the free surface from below. Plan-view images of the

elastic endplate instability in a polyisobutylene/polybutene fluid are shown in figure 6 (Anna et al. 1997).

The initial bifurcation is approximately azimuthally-periodic with a typical wavenumber of m = 4 or 5. As

the instability proceeds, tip-splitting leads to a progressively finer structure. The initial periodic

disturbances has recently been simulated in a fully-three-dimensional time-dependent free-surface

viscoelastic flow simulation by Rasmussen & Hassager (1999).

1 mm
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(a) 0.31 wt% PIB 4.07

TIME

Figure 6. Plan view of the free surface perturbations during onset and growth of elastic end-plate

instability in a PIB/PB polymer solution. The instability is cohesive in nature and a thin fluid film remains

on the transparent plate through which the surface is imaged.

4.2 Elasto-capillary Thinning

Following the cessation of uniaxial elongation, the tensile stresses in the column rapidly and

nonlinearly relax (Spiegelberg et al. 1996). As we have indicated in Figure 2, during this time the radius

of the thin fluid column changes little for a strongly strain-hardening fluid such as a dilute polymer

solution; by contrast for a less-strongly strain-hardening material such as an entangled solution or melt the

radius may change very rapidly and the column breaks into two topologically distinct regions, each

connected to an end-plate. The dynamics of this drainage and ultimate breakage can also be explored

using the FISER.

Entov and co-workers (1990; 1997) have discussed the development of a Microfilament

Rheometer and methods for analyzing the dynamics, and we follow their formulation.  The slender fluid

column with radial profile R z t( , )  slowly drains due to the capillary pressure p R zc ~ ( )σ  (where σ is the

surface tension coefficient) which is largest in the ‘necked’ region near the middle of the filament

( R Rmid≈ ). This necking is resisted by either a viscous stress (in the case of a Newtonian fluid) or by an

elastic stress in a dilute polymer solution containing polymer chains that have previously been elongated

by the imposed stretching phase. As a result, analysis (Entov & Hinch, 1997) shows that the midpoint

radius of the filament evolves according to the following equations:

R R R t tmid c0 06= ( ) −σ µ ( ) for a Newtonian fluid (3)

and
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R R GR tmid Zimm0 0
1 3

3= ( ) −σ λ/
exp( ) for a bead-spring chain at intermediate times (4)

Here tc  is the critical time to breakup for a Newtonian fluid of viscosity µ whilst G is the elastic

modulus of the viscoelastic fluid. For the bead-spring chain, at short times (t Zimm≤ λ 2 ), the time-

constants of multiple modes contribute to the stretching resistance. At long times, finite extensibility of

the elongated polymer chains becomes important and the fluid filament fails like a Newtonian fluid of

highly anisotropic viscosity with the radius decreasing linearly with time: however the relevant viscosity

entering eq. (2) becomes the steady-state extensional viscosity η ε( ˙ )0  which can be dramatically larger

than the steady-shear viscosity η0 .

In Figure 7 we show a sequence of images summarizing the evolution of a Newtonian filament

(oligomeric styrene) and a viscoelastic filament (fluid M-1). The characteristic formation of an axially-

uniform cylindrical region connecting two fluid reservoirs can clearly be seen for the dilute polymer

solution. As a consequence of the strain-hardening in the fluid, the filament life-time is increased from

approximately 9 seconds to over 45 seconds. This stabilization of thin fluid filaments is directly

connected to the spinnability of various fluids (Larson, 1983).

The midpoint radius R t Rmid ( ) 0  is measured using a laser micrometer and the variation with

time is shown in Figure 8(a). The Zimm relaxation time scales as λZimm wM~ .1 5  and as the molecular

eight is increased, the rate of elasto-capillary drainage decreases dramatically. The slope of the data in

Figure 8(a) can be used to extract an independent measure of the dominant fluid relaxation during a string

extensional flow, and it is clear from Figure 8(b) that for this class of dilute polymer solutions the data

agrees extremely well with measurements from small-amplitude linear viscoelastic tests and with the

predicted scaling from kinetic theory. Experiments on more complex materials such as adhesives with

volatile solvents and telechelic polymer solutions (Winnik & Mheta, 1998) are currently underway and

such measurements can be used to understand processing characteristics of these viscoelastic fluids in

operations such as roll-coating which involve extensional flows and the creation of surface area followed

by elasto-capillary drainage.

4.3 ‘Necking’ Failure & the Considere criterion

For concentrated and entangled systems, numerical calculations show that the filament radius can

neck down far more rapidly than observed in §4.2 (Yao et al. 1998) Such a response as indicated

schematically in Figure 2. Indeed for sufficiently elastic materials, the filament may break even before

the cessation of stretching (Kolte & Hassager 1997).  This process can be understood in terms of the

Considère criterion that characterizes the necking failure of solid polymer samples undergoing uniaxial

extension (Coggswell, 1972; Malkin & Petrie, 1996). This static energy stability criterion is derived from

the principle of virtual work and states that if the tensile force in the elastic
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Figure 7   Video images of the filament breakup of (a) a Newtonian fluid (viscous styrene oligomer) and (b) a dilute

polymer solution containing 500ppm of monodisperse polystyrene (SM-1). The addition of viscoelasticity changes the

dominant balance of forces in the thinning filament from visco-capillary thinning in (a) to elasto-capillary thinning in

(b). The spatial evolution in the filament profile is changed and the time to breakup tb is increased from 8.6 s to 42.5 s.
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filament passes through a maximum then infinitesimal perturbations will grow spontaneously and a neck

will propagate. Since the dimensionless force is f t F Rz( ) ˙≡ ( )π η ε0
2

0 0  this condition can be rearranged

in terms of the Trouton ratio to give the following stability condition (valid for large De when elastic

effects are dominant)

d Tr
d
ln

ε > 0              for stable extension (5)
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i.e. it is not sufficient for the Trouton ratio to simply increase, it must increase at least exponentially fast

with the strain. For materials with a bounded extensional viscosity, this stability criterion is violated at a

critical strain εcrit , and the material will fail, regardless of how careful the sample preparation has been.

We have recently analyzed the implications of this stability criterion for the Doi-Edwards model for

entangled linear homopolymers and for the ‘Pom-Pom’ model of McLeish & Larson (1998) that

describes a series of prototypical branched molecules (McKinley & Hassager, 1999). In the rapid

stretching limit corresponding to De >> 1 analytical answers can be obtained in a number of model

stretcing flows such as transient uniaxial, biaxial and planar elongation. As an example, we find that in

transient uniaxial elongation the critical strain to failure for the ‘Pom-Pom’ model is

εcrit q= ( )ln 3 (6)

where q is the number of branched arms off the chain backbone. This result provides a rational

explanation for the well-known stabilization of film-blowing and fiber-drawing processes that arises

from the addition of small quantities of branched polymer such as LDPE. The Considère criterion can be

represented on a plot of the transient Trouton ratio predicted for the ‘Pom-Pom’ model as shown below

in Figure 9.
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Figure 9. Consequences of the Considère stability criterion on the transient stress growth as measured in

a melt tensiometer or filament stretching device, for a  branched material with q = 5 arms off the main

chain backbone. The arms have, on average, sa = 3 entanglements and the backbone has sb = 5

entanglements.
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The necking instability prevents the extensional viscosity from being measured beyond a critical strain.

For the ‘pom-pom’ model, in the rapid-stretching limit, the corresponding maximum value of the

Trouton ratio lies a fixed factor of q q2 3ln( )( ) above the linear viscoelastic envelope as shown in

Figure (9). This upper bound corresponds closely to the truncation in the transient stress growth data

frequently observed in branched polyethylene melts (cf. For example Meissner, 1985; Munstedt et al.

1998; Inkson et al. 1999). This suggests a method for rapidly estimating the characteristic level of

branching (q) in a particular polymeric material.

5 Conclusions

In this paper we have examined some recent developments in extensional rheometry of viscoelastic

liquids such as polymer melts and solutions. The Filament Stretching Rheometer (FISER) provides a

means of probing the stress growth during transient uniaxial elongation; whereas the microfilament

rheometer (MFR) developed by Entov & co-workers permits analysis of the subsequent relaxation

processes during cessation of stretching. In addition to enhancing our understanding of the rheology of the

test materials, analysis of the instabilities that arise in these devices such as the elastic endplate instability

and the rapid necking of the filaments can also be used to shed new light on poorly-understood

phenomena such as the ‘tackiness’ and ‘spinnability’ of various polymeric fluids.
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