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ABSTRACT

First-arrival traveltime tomography has been widely used for
upper crustal velocity modeling, but it usually suffers from the
problem of complex surface topography. To overcome this prob-
lem, we have developed a new topography-dependent eikonal
tomography scheme that combines a developed accurate and ef-
ficient traveltime modeling method and introduces a flexible
and robust adjoint inversion scheme in the presence of irregular
topography. A surface-flattening scheme is used to handle the
irregular surface, where the real model is discretized by curvi-
linear grids and the irregular free surface is mathematically flat-
tened through the transformation from Cartesian to curvilinear
coordinates. Based on this parameterization, the forward trav-
eltime modeling is conducted by a monotone fast-sweeping

method that discretizes the factored topography-dependent
eikonal equation with a point-source condition. This algorithm
can circumvent the source-singularity problem and decrease the
numerical error in the vicinity of a point source in the curvilinear
system. Then, the gradient-based inversion is used to minimize
the misfit function, which is achieved by a matrix-free adjoint-
state method without cumbersome ray tracing and explicit es-
timation of the Fréchet derivative matrix in the curvilinear co-
ordinate system. The new tomographic scheme is evaluated
through numerical examples with different seismic structures
with complex topography, and then applied to a wide-angle pro-
file acquired in the northeastern Tibetan Plateau. The results val-
idate the effectiveness and efficiency of our tomography scheme
in constructing shallow crustal velocity models with irregular
topography.

INTRODUCTION

The seismic structure of the earth’s crust has been extensively
investigated by traveltime tomography, a technique widely used
in natural resource prospecting and exploration of the earth’s
interior during past decades (Aki et al., 1977; Korenaga et al.,
2000; Roecker et al., 2006; Rawlinson and Kennett, 2008; Koula-
kov, 2009; Huang and Bellefleur, 2011; Zhou et al., 2019). Trav-
eltime tomography is usually based on ray-tracing methods
(Thurber, 1983; Zhao et al., 1992; Xu et al., 2006; Zhou and Green-
halgh, 2008) or grid-based schemes (Vidale, 1988; Sethian and
Popovici, 1999; Rawlinson and Sambridge, 2004; Zhao, 2005;

Han et al., 2017). Grid-based solvers have proven to be consider-
ably faster than classic ray-tracing methods when many source-
receiver couples are considered. Problems such as shadow zones,
multipathing, and barrier penetration, which are common in ray-
tracing methods, also can be easily handled by grid-based solvers.
However, most of the available grid-based traveltime tomography
schemes have difficulty dealing with irregular topography.
In practice, an irregular free surface is a common situation in seis-

mic exploration, which makes the reconstruction of subsurface
structures rather difficult in oil/gas reservoir surveys and deep seis-
mic soundings (Reshef, 1991; Rajasekaran and McMechan, 1995;
Knapp et al., 2004). To date, several methods based on unstructured
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grids have been proposed to overcome this problem (Zhang and
Thurber, 2005; Lelièvre et al., 2011; Salcedo et al., 2020). Although
the traveltime inversion on unstructured grids could exactly de-
scribe the complex topography, they usually involve troublesome
parameterization, complex and time-consuming eikonal solvers,
and inversion schemes. However, the model discretization and for-
ward-modeling scheme based on structured grids often are more
convenient and straightforward, thus making the inversion on these
grids more feasible and useful for practical applications (Hole,
1992; Zhang et al., 1998; Huang and Bellefleur, 2012; Ma and
Zhang, 2015).
In view of this, a model expansion technique is sometimes

adopted to deal with irregular topography. But recent studies dem-
onstrate that the transition from an irregular free surface to an inner
discontinuity using a model expansion scheme may cause prob-
lems, such as physically unrealistic seismic raypaths and spurious
ray take-off angles (Ma and Zhang, 2015; Zhang et al., 2017; Guo
et al., 2019). To overcome these undesirable problems, Ma and
Zhang (2015) develop an alternative tomographic method making
use of the topography-dependent eikonal equation (TDEE) (Lan
and Zhang, 2013a, 2013b) and the back-projection inversion algo-
rithm (Hole, 1992). In this scheme, the irregular topographic surface
of the real model is mathematically flattened and preserved as a free
surface, as shown in Figure 1. However, in this approach, the Lax-
Friedrichs sweeping scheme used for approximating the viscosity
solution of TDEE (Lan and Zhang, 2013a, 2013b) is dissipative
and needs a much larger number of iterations to converge. More-
over, the back-projection inversion suffers from stability and
convergence problems and does not lend itself naturally to regulari-
zation (Rawlinson et al., 2010).
During inversion, the raypath is traced and approximated by a

series of ray segments in the computational grids (Hole, 1992),
which is highly complicated and unstable, especially in the curvi-
linear coordinate system (Ma and Zhang, 2015). To overcome these
difficulties, we introduce the new matrix-free gradient-based first-
arrival traveltime tomography method in curvilinear coordinates.
The first key ingredient is the computation of traveltimes by solving
the factored TDEE (FTDEE) with a fast-sweeping method (Fomel
et al., 2009; Luo and Qian, 2012; Huang et al., 2020; Zhou et al.,
2020). This new monotone method converges after a finite number
of iterations, independent of the mesh size, which makes it an effi-
cient and robust tool for calculating traveltimes in the presence of
an irregular free surface. Moreover, a factored form of TDEE can
capture source singularity and significantly improve the accuracy of
the solution, especially for areas around the source (Zhou et al.,
2020). The second key ingredient is the efficient computation of
the gradient of the misfit function with respect to model parameters
by a matrix-free adjoint-state method (Sei and Symes, 1994; Leung

and Qian, 2006; Taillandier et al., 2009; Noble et al., 2010;
Benaichouche et al., 2015; Waheed et al., 2016; Li et al., 2017;
Tavakoli et al., 2017; Sambolian et al., 2019) to avoid computation
and storage of Fréchet derivatives using intricate and unstable pos-
terior ray tracing in the curvilinear coordinate system (Ma and
Zhang, 2015). In addition, the cost of computing the gradient of
the objective function using the adjoint-state method is only twice
the cost of the forward problem. The amount of memory required is
governed by the size of the discretized model space and is indepen-
dent of the available data. These computational advantages make
the adjoint-state method promising for large-scale data sets.
In the following, we introduce the factorized TDEE solver used

for traveltime modeling. Then, the theory of the adjoint-state inver-
sion method in a curvilinear coordinate system, mainly developed in
this study, is presented. Next, we show a simple velocity model with
complex topography to illustrate the calculation of the gradient.
Later, several different numerical examples are shown to evaluate
the feasibility and accuracy of the method through synthetic trav-
eltime data sets and a field data set acquired in northeastern Tibet.
Finally, we draw some conclusions based on the analysis presented.

THEORY

Fast-sweeping method for TDEE

In a Cartesian coordinate system x ¼ ðx; zÞ, the eikonal equation
for isotropic media can be written as

�
∂TðxÞ
∂x

�
2

þ
�
∂TðxÞ
∂z

�
2

¼ 1

v2ðxÞ ; (1)

where Tðx; zÞ is the first-arrival traveltime through an isotropic
medium with velocity distribution vðx; zÞ.
To deal with irregular topography, we transform the Cartesian

coordinate ðx; zÞ to the curvilinear coordinate system ðq; rÞ (Fig-
ure 1) (for more details, see Lan and Zhang, 2013b). The 2D TDEE
in a curvilinear coordinate system can be formulated in a compact
form as

aðqÞ
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�
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∂q
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�
2

¼ 1

v2ðqÞ; q∈Ω;

(2)

with the point-source condition:

TðqsÞ ¼ 0: (3)

The computational domain is denoted by
Ω ⊂ R2, and an arbitrary point in Ω is denoted
by q ¼ ðq; rÞ ∈ R2. The parameters (a, b, and
c) are topography-dependent. It is easy to dem-
onstrate that a; b > 0 and c2 < ab (see the proof
in Appendix A); therefore, TDEE is an elliptical
anisotropic eikonal equation, which belongs to a
class of convex Hamilton-Jacobian equations
mathematically (Qian et al., 2007).
Recently, Zhou et al. (2020) introduce an ef-

ficient fast-sweeping method for solving the fac-
tored equation 2, which was originally developed

Figure 1. Schematic diagrams illustrating surface treatments. Surface-flattening scheme
(Ma and Zhang, 2015): The geologic model is discretized using a boundary conforming
grid and then undulated free surface is mathematically flattened by the transformation
from Cartesian to curvilinear coordinates.
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by Luo and Qian (2012). Here, we use it for forward modeling in the
tomographic scheme. The following is a brief introduction to it.
The numerical solution of the TDEE is factorized into two multi-

plicative factors. We assume that T is the function of two multipli-
cative factors,

T ¼ T0τ; (4)

where T0 is the known factor and τ is the evaluated factor. Then, we
have

∇T ¼ ∇T0τ þ T0∇τ: (5)

Substituting it into TDEE, we have the FTDEE:

a

�
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∂τ
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�
2

¼ 1

v2
: (6)

The known factor T0 is chosen analytically such that the un-
known factor τ is smooth in the source neighborhood (Zhou et al.,
2021). Therefore, τ can be accurately computed to recover the trav-
eltime T, which eventually improves the accuracy of T compared to
the solution obtained by solving equation 1 directly (Lan et al.,
2018; Lan and Chen, 2018). A monotone fast-sweeping method
has been developed to solve the resulting FTDEE discretized with
the upwind finite-difference scheme, which treats the source singu-
larity successfully and produces a clear first-order algorithm.

Adjoint-state method for TDEE

We first define the cost function as the least-squares norm of
arrival time differences:

EðvÞ ¼ 1

2

Z
∂Ω

jTðv; rÞ − TobsðrÞj2dr; r ∈ ∂Ω; (7)

where the integration is taken over receivers r located on the acquis-
ition surface ∂Ω. The terms Tðv; rÞ and TobsðrÞ denote the calculated
traveltime for a particular medium with velocity distribution vðq; rÞ
and the observed traveltime from measurements, respectively.
Mathematically, the minimization of equation 7 is a nonlinear

problem, which is usually handled by local optimization methods.
In this method, the descent direction at the nth iteration in the vicin-
ity of the model vn is given as

dn ¼ −Pn∇EðvnÞ; (8)

where Pn is a preconditioned matrix and ∇EðvnÞ is the gradient ma-
trix of the cost function at vn.
The updated model vnþ1 is determined by the initial model vn and

model perturbation Δvn by the following expression:

vnþ1 ¼ vn þ Δvn ¼ vn þ αndn; (9)

where αn is the step length to update the model in the search direc-
tion, which can be estimated by the exact parabolic search method
(Liu et al., 2017).
Here, we calculate the gradient of the misfit function, equation 7,

in the framework of Lagrangian formalism (Leung and Qian, 2006;
Plessix, 2006). First, we define the perturbation of the velocity as
∂v, which causes a corresponding change in the arrival time ∂T.
Therefore, the change of the misfit function can be expressed as

∂E ¼
Z
∂Ω
ðT − TobsÞ∂Tdr: (10)

The perturbation in velocity is related to the perturbation of
arrival time obtained by differentiating equation 2:

ðaTq − cTrÞ∂Tq þ ðbTr − cTqÞ∂Tr ¼ −
1

v3
∂v; (11)

where Tq ¼ ∂T∕∂q and Tr ¼ ∂T∕∂r.
We rewrite the change of the misfit function through the La-

grange formulation as

∂L ¼
Z
∂Ω
ðT − TobsÞ∂Tdqþ

Z
Ω
λððaTq − cTrÞ∂Tq

þ ðbTr − cTqÞ∂Tr þ
1

v3
∂vÞdq: (12)

Integrating the second part of the right side with divergence theo-
rem leads to

∂L ¼
Z
∂Ω
ðT − TobsÞ∂Tdqþ

Z
∂Ω
ðn · LÞλ∂Tdq

þ
Z
Ω
∇ · ð−λLÞ∂Tdqþ

Z
Ω

λ

v3
∂vdq; (13)

where

LðqÞ ¼ ½aTq − cTr; bTr − cTq�: (14)

The term LðqÞ represents the group velocity vector along the ray-
path initiated from the source to the receiver (Qian et al., 2007; Luo
and Qian, 2012). For anisotropic TDEE, the group velocity vector has
a different direction from that of the phase velocity vector. For an iso-
tropic medium with a flat free surface, LðqÞ can be reduced to the
traveltime gradient ðTq; TrÞ, as described by Leung and Qian (2006).
We choose a multiplier λ that satisfies the following equation and

boundary condition:

∇ · ð−λðqÞLðqÞÞ ¼ 0; q ∈ Ω; (15a)

n · LðqÞλðqÞ ¼ Tobs − T; q ∈ ∂Ω; (15b)

where n is the normal vector perpendicular to the acquisition sur-
face ∂Ω in the computational domain. The gradient of the objective
function can be calculated by
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∂E
∂v

¼ ∂L
∂v

¼
Z
Ω

λ

v3
dq: (16)

The multiplier λ and equation 15a are also called the adjoint
solution and the topography-dependent adjoint-state equation, re-
spectively. In fact, equation 15a also can be obtained by a direct
transformation of the adjoint-state equation from Cartesian to curvi-
linear coordinates (see Appendix B). Like the eikonal solver, the
adjoint-state algorithm is a combination of a local finite-difference
operator to estimate λ and fast-sweeping method to propagate the

residuals Tobs − T back into the model (see Appendix C). By
replacing traveltime residuals with a fixed value c in equation 15b,
we could obtain a preconditioner Pn in equation 8 to speed up the
convergence of the algorithm, which will also reduce the computa-
tional cost and improve the resolution (Benaichouche et al., 2015;
Li et al., 2017).

NUMERICAL EXPERIMENTS

Gradient calculation with the adjoint-state method

We illustrate the key process of calculating the gradient of the
misfit function through a simple model with complex topography.
The irregular topography consists of two central hills separated by a
central valley and lateral valleys on both sides of the hills. The hori-
zontal extent of the model is 400 km. The wavy topography of the
model fluctuates between −3 and 4.2 km and the model depth is
20 km. We use the 800 × 40 boundary conforming cells with grid
spacing approximately 0.5 × 0.5 km to discretize the model. Up to
20 shots are fired virtually at equally spaced points on the surface,
which are recorded by 200 receivers evenly deployed on the irregu-
lar surface. For this acquisition, we consider the rays with large
source-receiver offset hitting the bottom of the velocity model.
The background seismic velocity gradually increases from 5.0 to
6.2 km/s with depth. A Gaussian anomaly with a maximum pertur-
bation of 0.6 km/s is embedded in the middle of the model
(Figure 2).
The background model is regarded as the initial model to start the

inversion. First, we just consider a single source-receiver pair, placed
on the surface at 145 and 255 km, respectively. First-arrival travel-
times are obtained by solving equation 2 on the true and initial mod-
els to get the observed traveltimes and residuals. After obtaining the
traveltime residuals, we could initialize the adjoint-state solution at
receivers by using equation 15b. Then, the fast-sweeping method is
used to calculate the adjoint-state solution for the whole model by
solving equation 15a. The adjoint-state solution of the first iteration
with first-arrival traveltimes and raypaths superimposed is shown in
Figure 3a. We see that the adjoint-state solution can be interpreted as
the back-propagation of traveltime residuals along the raypath from
the receiver to the source positions (Taillandier et al., 2009). Then, the
gradient of the misfit function for a single source is obtained by scal-
ing the adjoint-state field according to equation 16 (Figure 3b). Next,
a preconditioned gradient with source and receiver effects minimized
is shown in Figure 3c.
For all sources and receivers, the total gradient is the sum of all

source contributions. Even though the gradient is calculated by the
adjoint-state method, it also requires smoothing to prevent the in-
version from getting trapped into local minima and to suppress the
strong source signature in the computed gradient (Taillandier et al.,
2009; Waheed et al., 2016). If the gradient is not smoothed, this may
lead the algorithm to nonphysical updates. The smoothing is usually
performed as a filter in many classic tomography algorithms that are
based on ray-tracing methods. The gradient and the preconditioned
gradient before and after using a Gaussian smoother with a filter
length of 10 grid points (approximately 5 km) are shown in Figure 4,
and the horizontal and vertical profiles through the center of the
anomaly are shown in Figure 5. The source signature can be easily
observed in the computed gradient, as shown in Figure 4a. After
smoothing the gradient, the undesirable signature around the source
is significantly eliminated as shown in Figure 4c, although the

Figure 2. Velocity model with wavy topography used to illustrate
the computation of the gradient of the misfit function. (a) Exact
velocity model and (b) perturbation to be retrieved. The dashed con-
tours mark the location and shape of the positive Gaussian anomaly.

Figure 3. (a) Adjoint-state solution, (b) gradient, and (c) precondi-
tioned gradient for a single source-receiver pair obtained by the ad-
joint-state method. The posterior raypaths are shown with a gray
line for the source-receiver pair. The dark yellow star marks the seis-
mic source, whereas the black inverted triangle indicates the
receiver on the surface. For plotting, each image is normalized
to have a maximum value of one.
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maximum gradient is shallower than its true location. However,
from Figure 4b and 4d, we see that the gradient of multiple
source-receiver couples is significantly improved by precondition-
ing, and the maximum of the preconditioned gradient is nearly in
the center of the anomaly. We also observe that the preconditioner
scales and sharpens the image of the gradient effectively into an
actual model update (Figure 5).

Anomaly synthetic model

We validate our method with a series of models with complex
topography, including hill, valley, slow wavy, and sharp wavy
topography, as shown in Figure 6. For every numerical model, a
Gaussian-shaped positive perturbation with a maximum velocity
of 0.6 km/s and a negative anomaly with a minimum velocity of
−0.6 km/s is embedded in a gradient-velocity model varying from

Figure 4. (a and c) Gradient and preconditioned gradients for all
source-receiver couples, whereas (b and d) correspond to the gra-
dient and preconditioned gradients after using Gaussian smoothing
with a filter length of 10 grid points along both dimensions. The
dashed contours mark the location and shape of the positive Gaus-
sian anomaly. For plotting, each value is normalized to have a maxi-
mum value of one.

Figure 6. Synthetic models with two Gaussian anomalies and com-
plex topography: (a) hill, (b) valley, (c) slow wavy, and (d) sharp
wavy. The dashed contours mark the location and shape of the
Gaussian anomalies.

Figure 5. (a) The horizontal and (b) vertical pro-
files of normalized gradient (the red line), precon-
ditioned gradient (the blue line), and negative
perturbation (the black line) through the center
of the Gaussian anomaly. The first and second
rows denote the results without and with Gaussian
smoothing.
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5.0 to 6.2 km/s with depth. For inversion, the background model is
considered as the starting model. In view of the quality of results
and the cost of computation, we start the inversion by applying a
strong Gaussian smoother with a filter length of 20 grid points (ap-
proximately 10 km) along both dimensions on the gradient for each
iteration, and we gradually decrease the filter length (filter length: 5,
2.5, 1.25, and 0 km) after five iterations until traveltime residuals
converge. The inverted models are shown in Figure 6, whereas the
profiles across the centers of anomalies are presented in Figure 7.
We could see that the shape and strength of Gaussian anomalies are
essentially retrieved without the impact of complex topography,
whereas smearing effects are obvious due to insufficient ray cover-
age from several directions. Figure 8 shows the normalized travel-
time residuals versus the number of iterations: The traveltime
residuals gradually stabilize and converge after eight iterations
for all tests, which indicates the rapid convergence of the proposed
algorithm even under a dramatically undulating surface.

Complex synthetic model

The new method is also tested on a realistic-sized acquisition
setup using a complex synthetic model modified from Liu et al.

(2009). The entire profile has a length of 400 km and a depth of
15 km, which is characterized by large variations in velocity pattern
and topography (Figure 9a). We discretize the model into 800 × 30
boundary-conforming cells with grid spacing approximately
0.5 × 0.5 km. In this case, 20 shots and 200 receivers are evenly
deployed on the surface with an interval of 20 and 2 km, respec-
tively. The initial model with a constant vertical velocity gradient is
displayed in Figure 9b. The inversion result is shown in Figure 9c.
The comparison of Figure 9a–9c shows that long-wavelength fea-
tures of the whole model have been well recovered by inversion,
except on the edges where ray coverage is poor and becomes worse
with increasing depth. Figure 10 compares several velocity profiles
from the initial, inverted, and true velocity models at different lo-
cations along the vertical dimension of: 150, 200, and 300 km and
horizontal dimension of: −0.5 and −1.5 km. The agreement be-
tween the true model and the inverted model is significantly better
compared to the initial model. This synthetic model indicates that
our tomographic method is quite flexible in accommodating veloc-
ity variations and contrasting topographies.

Application to real data

With the purpose of applying our working
scheme to real data, we make use of a 430 km
wide-angle seismic profile between Jingtai and
Hezuo, which was deployed in the direction
N45°E from the eastern Tibetan Plateau to the
Qilian orogenic block in western China (Fig-
ure 11; Zhang et al., 2013; Ma and Zhang,
2015). In total, 11 shots are fired at different sites
along the profile with an average horizontal spac-
ing of 50 km. A set of 200 portable 3C digital
seismographic stations with a spacing of 2 km
is used to record the data. Pg-wave arrival (first
arrival) traveltimes are picked (with an estimated
error of approximately 0.05 s) from 11 common-
shot gathers.
In the considered area, topography varies

sharply and gradually decreases from just more
than 3.5 km to almost 1.5 km (Figure 10).
We discretize the upper-crust model using
860 × 460 boundary conforming cells adjusted
to the real topography, with a spacing size of ap-
proximately 0.5 km horizontally and vertically.
To start the computations, we use an initial model
with a linearly increasing velocity from 5.0 to
6.2 km/s. For comparison, in Figure 12 we show
the traveltime residuals from the initial and the
inverted models, in which the improvement in
the traveltime fit validates the accuracy and sta-
bility of the proposed method.
To confirm the main features of the result, we

conduct a checkerboard test to evaluate resolution
based on the identical surface topography and the
same distribution of sources and locations with
real acquisition geometry. We artificially add per-
turbations with a spatial scale of 25 × 13.33 km to
the background model with linearly increasing
velocity from 5.0 to 6.2 km/s, using the formula
0.3 × sin (x) × sin (z). The synthetic traveltimes

Figure 7. (a) The horizontal and (b and c) vertical profiles of true (the blue line) and
inverted (the red line) perturbations for models with (a1-c1) hill, (a2-c2) valley, (a3-c3)
wave, and (a4-c4) sin topography.
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are calculated from the checkerboard model, and the background
models with positive speed gradients are used as initial models to
start the inverse computation. As shown in Figures 13 and 14, the
comparison between the synthetic and inverted perturbations indi-
cates that the shallow velocity characteristics of checkerboard pertur-
bation within 10 km can bewell recovered, whereas the partial deeper
structure is only partially illuminated beneath 130–190 km and
250–320 km.
Then, the inverted velocity model is shown in Figure 15. This

compressional wave (P-wave) velocity model has obvious vertical
stratification and horizontal blocking characteristics. In the vertical
direction, it is clearly divided into two layers, namely the sedimen-
tary layer and the crystalline basement. According to Zhang et al.
(2013), we consider the boundary of the two layers to be at the iso-
line of 5.8 km/s. From south to north, this model reveals the geom-
etry of a sedimentary basin and fault, and matches the tectonic
division of the Qaidam-Kunlun-West Qinling belt, the central
and northern Qilian, and the Alax block along the profile. In the
following, we discuss the shallow velocity model beneath several
tectonic units.

1) The segment going from the south end up to approximately
120 km northward belongs to the Qaidam-Eastern Kunlun-West
Qinling terrain. The sedimentary layer can be divided into the
southern part with a P-wave velocity less than 5.3 km/s and
northern parts with a P-wave velocity of approximately
5.5 km/s. This is consistent with the widespread deposition
of Middle-Upper Carboniferous shallow-marine carbonate
rocks in southern and bedrock exposures scattered along its
northernmost edge (Zhang et al., 2013).

2) The segment between 120 and 330 km belongs to the central
Qilian orogenic belt. There are obvious differences in the struc-
ture of the south and north Maxianshan fault, which also can be
observed in receiver function (Ye et al., 2015) and Bouguer
gravity anomaly (Guo et al., 2016). Beneath the south, the sedi-
mentary layer shows an average velocity of approximately
5.0 km/s, which corresponds to the Linxia Basin. Beneath
the north, the sediment has a P-wave velocity of less than
4.4 km/s and becomes approximately 5.5 km/s further north.

3) The segment between 330 and 380 km belongs to the northern
Qilian block. We observe that there are 3–4 km thick sediments,
which cover the crystalline basement with a P-wave velocity of
5.8–6.0 km/s (Zhang et al., 2013).

4) The segment from approximately 380 km to the north end be-
longs to the Alashan depression. At the end of the profile, we
observe that the depression has a thicker
sediment layer with a P-wave velocity less
than 5.8 km/s, compared to the sediment be-
neath North Qilian block.

In Figure 15a, we display the results obtained
by Ma and Zhang (2015) using a conventional
method (Hole et al., 2001), in which the topog-
raphy is handled by the model expansion
method. From the comparison between the two
results, we see that the main velocity character-
istics are similar, whereas the proposed method is
better than the conventional method in the fol-
lowing respects: (1) The detachment beneath
Linxia Basin is more finely delineated in our

Figure 8. Normalized traveltime residual versus the number of iter-
ations after inverting the model with the two Gaussian anomalies
under the hill, valley, slow wavy, and sharp wavy topography.

Figure 9. (a) A synthetic model with complex topography, (b) initial
model, and (c) inverted model.

Figure 10. Velocity logs for the initial (red), inverted (blue), and true (black) velocity
models at different vertical locations of: (a) 150 km, (b) 200 km, and (c) 300 km, and
horizontal locations of: (d) −0.5 km and (e) −1.0 km, respectively.
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method than in conventional imaging; (2) the uplifted crystalline
basement within the Maxianshan fault is accurate in our imaging,
whereas the crystalline basement (isoline 5.8 km/s) in the previous
study is confusing; (3) the finer bedrock exposure in the northern
margin fault is delineated by isoline 5.8 km/s in our study, whereas
it is problematic in conventional imaging; and (4) the velocity char-
acteristics corresponding to the northern fault and Tianjingshan
fault are more visible in this study (Guo et al., 2016) (Figure 15c).
All of the details in the velocity pattern indicate that the P-wave

velocity model produced by our method should be more precise
in resolving the main features along this wide-angle profile. It
should be noted that currently we only use the first-arrival travel-
times. A more accurate high-resolution structure and comprehen-

Figure 11. Tectonic map of a wide-angle seismic profile in the
approximate direction N45°E going south–north from the
northeastern Tibetan Plateau to the Qilian block in western China.
The inset, on the top left corner, contains a rectangle drawn on a
map that allows locating the region crossed by the profile (eastern
margin of Tibet) (Zhang et al., 2013). The white triangles mark shot
points and small black triangles indicate receiver positions. The
gray line shows faults crossed by the seismic profile. Main tectonic
units from north to south: Alax, Alax depression; NQ, northern Qi-
lian block; SQ, south Qilian block; CQ, central Qilian block; QDM-
EKL-WQL, Qaidam-East Kunlun-West Qinling block; and SPGZ,
Songpan-Ganzi block.

Figure 13. Checkerboard resolution test. (a) Input checkerboard
model. (b) Inverted checkerboard model. The spatial scale of per-
turbation is 25 × 13.33 km. The black and white triangles denote
receiver and shot positions, respectively.

Figure 14. Horizontal profile (a) through the center of the first row of
true and inverted checkerboard perturbations, whereas vertical profiles
are located at (b) y = 159 km and (c) y = 312 km, respectively.

Figure 12. Distribution of first-arrival traveltime
residuals. The red and blue crosses denote the ini-
tial and final inverted traveltime residuals, respec-
tively. The top plate shows the elevation along the
profile with the tectonic units labeled. The black
and white triangles denote receiver and shot posi-
tions, respectively.
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sive geodynamic implications require joint use of the first-arrival
and reflected traveltimes.

CONCLUSION

In this paper, we have developed a new matrix-free eikonal
tomography scheme that allows modeling seismic velocity struc-
tures with irregular topography. To obtain first-arrival traveltimes,
we numerically solve the TDEE once formulated in curvilinear co-
ordinates using a factored fast-sweeping solver. The adjoint-state
method is introduced to obtain the gradient of nonlinear misfit func-
tion, which avoids using the cumbersome ray-tracing technique in
curvilinear coordinates. At present, we implement the precondi-
tioned steepest-descent method for the velocity model inversion,
and we could improve the optimizer using the preconditioned non-
linear limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) method or preconditioned truncated Newton method in
the next study.
The new tomography scheme has been evaluated through a series

of synthetic models and field data. The results support the effective-
ness and reliability of the proposed approach in different situations.
At this stage, our study is limited to first-arrival traveltimes, but its
extension to reflected wave and critical refractions is quite mean-
ingful in the exploration of subsurface environments where promi-
nent boundaries often prevail.
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APPENDIX A

THE PROOF OF SYMMETRIC POSI-
TIVE DEFINITE OF COORDINATE

FOR TDEE

We present a proof that coordinate transforma-
tion for TDEE can always be written as a sym-
metric positive definite matrix. The TDEE is
shown as follows:

aðqÞ
�
∂TðqÞ
∂q

�
2

−2cðqÞ∂TðqÞ
∂q

∂TðqÞ
∂r

þbðqÞ
�
∂TðqÞ
∂r

�
2

¼ 1

v2ðqÞ;

(A-1)

where coefficients aðqÞ, bðqÞ, and cðqÞ are topography-dependent
parameters, and they are functions of metric derivatives:

aðqÞ ¼ x2r þ z2r
J2

; bðqÞ ¼ x2q þ z2q
J2

; cðqÞ ¼ xqxr þ zqzr
J2

;

(A-2)

where xq denotes the partial derivative xq ¼ ∂xðq; rÞ∕∂q, and sim-
ilar nomenclature for other metric derivatives ðxr; zq; zrÞ. The term
J ¼ xqzr − xrzq in equation A-2 is the Jacobian of the transforma-
tion from Cartesian to curvilinear coordinates.
From the preceding definitions, we could conclude that aðqÞ and

bðqÞ are always greater than zero. In addition, we could get the
following inequality:

Figure 15. Upper crustal velocity model obtained from topography-dependent eikonal
tomography. (a) The velocity model obtained by the conventional Hole’s method (Ma
and Zhang, 2015). (b) The velocity model obtained by topography-dependent eikonal
tomography. (c) The crustal-scale structural features of the Maxianshan fault zone from
the deep seismic reflection profile (Guo et al., 2016), which coincides with the wide-
angle seismic profile in our study.
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aðqÞbðqÞ − cðqÞ2 ¼ ðx2r þ z2rÞ
J2

ðx2q þ z2qÞ
J2

−
�
xqxr þ zqzr

J2

�
2

¼ ðxrzq − xqzrÞ2
J4

> 0:

(A-3)

The transformation in equation A-1 also could be written as a
matrix formation:

∇TðqÞMðqÞ∇TðqÞt ¼ 1

v2ðqÞ ; (A-4)

where t is transport and MðqÞ ¼
�
aðqÞ − cðqÞ
−cðqÞbðqÞ

�
is a symmetric

matrix modeling the anisotropy. The characteristic equation of ma-
trix MðqÞ is

ðaðqÞ − λÞðbðqÞ − λÞ − cðqÞ2 ¼ 0: (A-5)

The discriminant term is

Δ ¼ ðaðqÞ þ bðqÞÞ2 − 4ðaðqÞbðqÞ − cðqÞ2Þ
¼ ðaðqÞ − bðqÞÞ2 þ cðqÞ2 > 0; (A-6)

so we could find two different roots of this quadratic equation as λ1
and λ2, which means two eigenvalues of matrix MðqÞ:

λ1 ¼
ðaðqÞ þ bðqÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaðqÞ − bðqÞÞ2 þ 4cðqÞ2

p
2

> 0;

(A-7)

λ2¼
ðaðqÞþbðqÞÞ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaðqÞ−bðqÞÞ2þ4cðqÞ2

p
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaðqÞþbðqÞÞ2þ4cðqÞ2−4cðqÞ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaðqÞ−bðqÞÞ2þ4cðqÞ2

p
2

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaðqÞþbðqÞÞ2−4aðqÞbðqÞþ4cðqÞ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaðqÞ−bðqÞÞ2þ4cðqÞ2

p
2

¼0: (A-8)

Because the λ1 and λ2 are positive, MðqÞ is always a symmetric
positive matrix and there are no assumptions on the curvilinear co-
ordinate transformation in practice.

APPENDIX B

DERIVATION OF THE TOPOGRAPHY-DEPEN-
DENT ADJOINT-STATE EQUATION FROM THE

CLASSIC ADJOINT-STATE EQUATION

In the Cartesian coordinate system ðx; zÞ and for isotropic media,
the adjoint-state equation takes the following form (Leung and
Qian, 2006; Huang and Bellefleur, 2012):

∂
∂x

�
−
∂T
∂x

λ

�
þ ∂

∂z

�
−
∂T
∂z

λ

�
¼ 0; (B-1)

where λðx; zÞ is the adjoint-state solution that can be read as back-
propagation of traveltime residuals along the raypaths to the source
position.
Using the coordinate transformation (Lan and Zhang, 2013b), we

also derive the adjoint-state equation in curvilinear coordinate sys-
tems ðq; rÞ as

∂
��

−z2rþx2r
J2

∂T
∂qþ

zrzqþxqxr
J2

∂T
∂r

�
·λ

�

∂q
þ
∂
��

−z2qþx2q
J2

∂T
∂rþ

zrzqþxqxr
J2

∂T
∂q

�
·λ

�

∂r
¼0:

(B-2)

By substituting topography-dependent coefficients ða; b; cÞ into
equation B-2, we obtain

∂
��

−a ∂T
∂q þ c ∂T

∂r

�
· λ

�

∂q
þ

∂
��

−b ∂T
∂r þ c ∂T

∂q

�
· λ

�

∂r
¼ 0;

(B-3)

which can be rewritten more concisely as

∂
∂q

ðαλÞ þ ∂
∂r

ðβλÞ ¼ 0; (B-4)

where

α ¼ −a
∂T
∂q

þ c
∂T
∂r

; (B-5a)

β ¼ −b
∂T
∂r

þ c
∂T
∂q

: (B-5b)

The α and β are the group velocity in the horizontal and vertical
directions in the computational domain, respectively. Equation B-4
is the same as equation 15a, which is a so-called topography-depen-
dent adjoint-state equation. When the surface is flat, equation B-4
can be reduced to the classic adjoint-state equation B-1.

APPENDIX C

CALCULATION OF TOPOGRAPHY-DEPENDENT
ADJOINT-STATE EQUATION

For a computational cell centered at ðqi; rjÞ, discretizing equa-
tion B-4 using a first-order finite-difference approximation in the
conservative form yields

αiþ1
2;j
λiþ1

2;j
− αi−1

2;j
λi−1

2;j

Δq
þ

βi;jþ1
2
λi;jþ1

2
− βi;j−1

2
λi;j−1

2

Δr
¼ 0;

(C-1)
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whereΔq andΔr define the computational grid spacing in the q and
r directions, respectively. The values of α and β are specified at
intermediate positions, leading to

αi�1
2
;j ¼ −ai�1

2
;j

�
∂T
∂q

�
i�1

2
;j
þ ci�1

2
;j

�
∂T
∂r

�
i�1

2
;j
; (C-2a)

βi;j�1
2
¼ −bi;j�1

2

�
∂T
∂r

�
i;j�1

2

þ ci;j�1
2

�
∂T
∂q

�
i;j�1

2

: (C-2b)

Comparing with the isotropic adjoint tomography, in which the
group velocity is the same as the phase velocity, we face more com-
plexity in the calculation of α and β on the interface. The spatial
gradient maps need to be calculated on the horizontal q and vertical
interfaces r, respectively. These stencils lead us toward the approx-
imations of α on the horizontal interfaces as (Tavakoli, 2017)

αi−1
2
;j ¼ −

ai−1;j þ ai;j
2

Ti;j − Ti−1;j

Δq

þ ci−1;j þ ci;j
2

Ti−1;jþ1 þ Ti;jþ1 − Ti−1;j−1 − Ti;j−1

4Δr
;

(C-3a)

αiþ1
2
;j ¼ −

aiþ1;j þ ai;j
2

Tiþ1;j − Ti;j

Δq

þ ciþ1;j þ ci;j
2

Tiþ1;jþ1 þ Ti;jþ1 − Tiþ1;j−1 − Ti;j−1

4Δr
;

(C-3b)

and β on the vertical interfaces as

βi;j−1
2
¼ −

bi;j−1 þ bi;j
2

Ti;j − Ti;j−1

Δr

þ ci;j−1 þ ci;j
2

Tiþ1;j−1 þ Tiþ1;j − Ti−1;j−1 − Ti−1;j

4Δq
;

(C-4a)

βi;jþ1
2
¼ −

bi;jþ1 þ bi;j
2

Ti;jþ1 − Ti;j

Δr

þ ci;jþ1 þ ci;j
2

Tiþ1;jþ1 þ Tiþ1;j − Ti−1;jþ1 − Ti−1;j

4Δq
:

(C-4b)

Let us introduce the following notation:

α�
iþ1

2
;j
¼

αiþ1
2
;j � jαiþ1

2
;jj

2
; α�

i−1
2
;j
¼

αi−1
2
;j � jαi−1

2
;jj

2
;

(C-5a)

β�
i;jþ1

2

¼
βi;jþ1

2
� jβi;jþ1

2
j

2
; β�

i;j−1
2

¼
βi;j−1

2
� jβi;j−1

2
j

2
:

(C-5b)

Then, the values of λ on the interface, λi�1∕2;j and λi;j�1∕2, are
determined according to the propagation of characteristics. In the
case αiþ1∕2;j > 0, the characteristic for determining λ goes from
the left side of the interface to the right side, and this means that
the value λi;j can be used to define λiþ1∕2;j. Otherwise, we use λiþ1;j

to determine λiþ1∕2;j.
Next, equation B-1 becomes

ðαþ
iþ1

2
;j
λi;j þ α−

iþ1
2
;j
λiþ1;jÞ − ðαþ

i−1
2
;j
λi−1;j þ α−

i−1
2
;j
λi;jÞ

Δq

þ
ðβþ

i;jþ1
2

λi;j þ β−
i;jþ1

2

λi;jþ1Þ − ðβþ
i;j−1

2

λi;j−1 þ β−
i;j−1

2

λi;jÞ
Δr

¼ 0;

(C-6)

or equivalently,

�αþ
iþ1

2
;j
− α−

i−1
2
;j

Δq
þ

βþ
i;jþ1

2

− β−
i;j−1

2

Δr

�
λi;j

¼
αþ
i−1

2;j
λi−1;j − α−

iþ1
2
;j
λiþ1;j

Δq
þ

βþ
i;j−1

2

λi;j−1 − β−
i;jþ1

2

λi;jþ1

Δr
:

(C-7)

This equation expresses λi;j as a function of its neighboring val-
ues λi�1;j and λi;j�1. Based on this local scheme, the fast-sweeping
method can be used as a global scheme to solve this equation, which
is similar to the one described in Leung and Qian (2006) to solve the
adjoint-state equation for the isotropic case. In general, a single iter-
ation is enough to converge. However, for a complex model with an
irregular surface and heterogeneous velocity, rays are oscillating
and more iterations are needed until λ converges.
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