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1. Introduction

We consider a sequence S̃n of positive linear operators (see [15, 13]) which are
known in the literature as Phillips operators. These operators can also be con-
sidered as genuine Szász-Mirakjan-Durrmeyer operators in the same meaning
as the genuine Bernstein-Durrmeyer operators (see e. g. [14]) and the genuine
Baskakov-Durrmeyer operators (see e. g. [11]), i. e., they commute, preserve
linear functions and commute with an appropriate differential operator.

In [6, Theorem 2] Z. Finta and V. Gupta proved a strong converse inequal-
ity of type B in the terminology of K. G. Ivanov and Z. Ditzian [4] for the
Phillips operators. They use a general theorem developed by V. Totik [17,
Theorem 1] where a direct and a strong converse result of type B is proved
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for positive linear operators satisfying certain conditions. In [7] Z. Finta also
proved a general converse result of type B under certain conditions for the
considered operators involving some general weight functions and applied his
results (among others) to the Phillips operators. In [6, 7] estimates for the
difference of Phillips operators and the classical Szász-Mirakjan operators are
used extensively.

The aim of our paper is to establish a direct and a strong converse result
of type A with explicit constants for the Phillips operators. To do so, we
proceed in a similar way as H.-B. Knoop and X. L. Zhou in [12] for the
Bernstein operators. A crucial step in this method is an appropriate strong
Voronovskaja type theorem similar to [4, Lemma 8.3] and good estimates
for the norms of weighted derivatives. In the proof of the strong converse
inequality of type A we take advantage of a nice representation for the iterates
of the operators (see Theorem 3.1) which is specific for the Phillips and the
Szász-Mirakjan-Durrmeyer operators.

Let us mention that we first used a different approach to establish a strong
converse inequality of type A based on the strong converse result of type B
in [6] and especially using Theorem 3.1 and (16) to estimate ∥S̃nf − f∥ by

K∥S̃Knf − f∥, K being a constant greater than 1. However, the constants
appearing in the result of the present paper are much better.

Let f ∈ C[0,∞) be a real valued continuous function on [0,∞) satisfying
an exponential growth condition, i. e.,

f ∈ C�[0,∞) := {f ∈ C[0,∞) : ∣f(t)∣ ≤ Me�t, t ∈ [0,∞)}

with some constants M > 0 and � > 0. Then the Phillips operators S̃n,
n > �, are defined by

(1) S̃n(f, x) = n

∞∑

k=1

sn,k(x)

∫ ∞

0

sn,k−1(t)f(t)dt+ e−nxf(0),

where

sn,k(x) =
(nx)k

k!
e−nx, k ∈ ℕ0, x ∈ [0,∞).

Throughout this paper f will mostly be considered as a function in CB [0,∞),
the space of real valued continuous bounded functions on [0,∞) endowed with
the norm ∥f∥ = supx≥0 ∣f(x)∣. We also need the space

W 2
∞(') = {g ∈ CB [0,∞) : g′ ∈ ACloc[0,∞), '2g′′ ∈ CB [0,∞)},

where here and in what follows '(x) =
√
x, x ∈ [0,∞).

We point out that n is considered as a natural number in [6, 7], but in our
statements here n may be considered also as an arbitrary positive number.
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The Phillips operators are closely related to the Szász-Mirakjan operators [16]
defined by

(2) Sn(f, x) =

∞∑

k=0

sn,k(x)f

(
k

n

)
,

to its Kantorovitch variants

Ŝn(f, x) = n

∞∑

k=0

sn,k(x)

∫ k+1

n

k
n

f(t)dt

and the Durrmeyer version

Sn(f, x) = n

∞∑

k=0

sn,k(x)

∫ ∞

0

sn,k(t)f(t)dt.

All these operators preserve constants and S̃n and Sn also preserve linear
functions and interpolate f at 0.

The operators S̃n and Sn are connected in the same way as the operators
Sn and Ŝn, i. e.,

(Snf)
′ = Ŝnf

′ and (S̃nf)
′ = Snf

′(3)

if f ∈ C1
�[0,∞) = {f ∈ C1[0,∞) : f, f ′ ∈ C�[0,∞)}. For the proof of

(S̃nf)
′ = Snf

′ see (19).

The paper is organized as follows. In Section 2 we give some basic and
auxiliary results such as the moments, the image of the Phillips operators
for monomials and some identities which will be used throughout the paper.
Section 3 is devoted to the proof of the commutativity results. It turns out
that the commutativity of the Phillips operators can be derived as a corollary
from a nice representation of S̃n(S̃m) as a Phillips operator. The strong
Voronovkaja type result is proved in Section 4. In Section 5 we prove a direct
and a strong converse result of type A for the Phillips operators with explicit
constants.

2. Basic results

In this section we collect some elementary and basic results which will be used
throughout this paper. First we list some identities for the basis functions sn,k
which follow directly from their definition. For the sake of simplicity in the
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notation we set sn,k(x) = 0 for k < 0. The identities we shall need are:

∞∑

k=0

sn,k(x) = 1,(4)

∫ ∞

0

sn,k(t)dt =
1

n
,(5)

s′n,k(x) = n[sn,k−1(x) − sn,k(x)],(6)

'(x)2s′n,k(x) = (k − nx)sn,k(x),(7)

'(x)4s′′n,k = [(k − nx)2 − k]sn,k(x),(8)

'(x)2sn,k(x)sn,k+1(t) = sn,k+1(x)'(t)
2sn,k(t).(9)

We will also need the second moment of the original Szász-Mirakjan operators
Sn given by

(10) Sn((t− x)2, x) =
x

n
.

In our first lemma we state an explicit formula for the moments and the im-
ages of the Phillips operators for monomials. Note that there exists a formula
for the image of the monomials by the Phillips operators given in [2, p. 1504],
where the coefficients are given in terms of a recursion formula. By com-
paring the moments of the Phillips operators with the functions Hn,m in [9,
Lemma 4.10], case c = 0, one can see that apart from a factor (−1)m the func-
tionsHn,m are exactly the moments of the Phillips operators. In [9] a recursion
formula and other representations are proved but now we are able to give an
explicit formula. The same connection holds true for the functions Hn−1,m

in [3, Lemma 6.4] and the moments of the genuine Bernstein-Durrmeyer op-
erators as well as for the functions Hn+1,m in [9, Lemma 4.10], case c = 1 for
the genuine Baskakov-Durrmeyer operators.

Throughout this paper we denote by e�(t) = t� , � ∈ ℕ0, the �-th monomial
and define f�,x(t) = (t− x)�, � ∈ ℕ0.

Lemma 2.1. For the images of the operators S̃n for the monomials we

have

S̃n(e0, x) = 1,

S̃n(e� , x) =

�∑

j=1

(
� − 1

j − 1

)
�!

j!
nj−�xj , � ∈ ℕ.
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The moments of the operators S̃n are given by

S̃n(f0,x, x) = 1,

S̃n(f1,x, x) = 0,

S̃n(f�,x, x) =

[�2 ]∑

j=1

(
�− j − 1

j − 1

)
�!

j!
nj−�xj , � ≥ 2,

where
[
�
2

]
denotes the integer part of �

2 .

Proof. The identity S̃n(e0, x) = 1 follows directly from (4) and (5). As S̃n

interpolates at 0 we can use (3) and the image of Sn for the monomials given
in [10, Satz 4.1] to calculate for � ∈ ℕ

∫ x

0

Sn(�e�−1, u)du = �

�∑

j=1

(
� − 1

j − 1

)
(� − 1)!

(j − 1)!
nj−� ⋅ 1

j
xj

=

∫ x

0

(S̃n(e� , u)
′du

= S̃n(e� , x).

For calculating the moments we follow the lines of [10, (4.6) in Korollar 4.4].

By using the binomial formula, the image of the monomials for S̃n, appropriate
transformations for the summation indices and interchanging the order of
summation we get

S̃n(f�,x(t), x) =

�∑

�=0

(
�

�

)
(−x)�−� S̃n(e� , x)

= (−x)� +

�∑

�=1

(
�

�

)
(−x)�−�

�∑

j=1

(
� − 1

j − 1

)
�!

j!
nj−�xj
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= (−x)� +

�∑

�=1

(
�

�

)
(−1)�−�

�∑

j=�−�+1

(
� − 1

j + � − �− 1

)
�!

(j + � − �)!
nj−�xj

= (−x)� +

�∑

j=1

xjnj−�

�∑

�=�−j+1

(
�

�

)
(−1)�−�

(
� − 1

j + � − �− 1

)
�!

(j + � − �)!

= (−x)� +

�−1∑

j=1

xjnj−�

j−1∑

�=0

(
�

� + �− j + 1

)

×(−1)j−1−�

(
� + �− j

�

)
(� + �− j + 1)!

(� + 1)!

= (−x)� +

�−1∑

j=1

xjnj−�(−1)j−1 �!

(j − 1)!

× 1

�− j

j−1∑

�=0

(−1)�
(
j − 1

�

)(
� + �− j

� + 1

)

=

[�2 ]∑

j=1

(
�− j − 1

j − 1

)
�!

j!
nj−�xj .

For the last equality we have used [8, (3.48)]. □

3. Commutativity results

In contrast with the Szász-Mirakjan operators, the Phillips operators have the
very nice property of commutativity S̃m(S̃nf) = S̃n(S̃mf). Another impor-
tant property is the commutativity with an appropriate differential operator.
This is a crucial step to establish a strong converse result of type A in the
terminology of [4].

In our first theorem we prove a nice identity for S̃m(S̃nf). An analo-
gous result was proved by Abel and Ivan in [1] for the operators Sn. From
Theorem 3.1 the commutativity then follows as a corollary as well as a nice
representation for iterates of S̃n.

Theorem 3.1. For all f ∈ C�[0,∞), m > �, n > �, mn
m+n > � we have

(11) S̃m(S̃nf) = S̃ mn
m+n

.
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Proof. As S̃n(f, 0) = f(0), the proposition is equivalent to

m

∞∑

j=1

sm,j(x)

∫ ∞

0

{
sm,j−1(t)n

∞∑

k=1

sn,k(t)

∫ ∞

0

sn,k−1(y)f(y)dy

}
dt

+f(0)

⎧
⎨
⎩m

∞∑

j=1

sm,j(x)

∫ ∞

0

sm,j−1(t)e
−ntdt+ e−mx

⎫
⎬
⎭

=
mn

m+ n

∞∑

l=1

s mn
n+m

,l(x)

∫ ∞

0

s mn
n+m

,l−1(y)f(y)dy + e−
mn

n+m
xf(0).

(12)

Since

m

∞∑

j=1

sm,j(x)

∫ ∞

0

sm,j−1(t)e
−ntdt = m

∞∑

j=1

sm,j(x)
mj−1

(n+m)j

= e−mx
∞∑

j=1

(
m2

n+mx
)j

j!

= e−mx
(
e

m2

n+m
x − 1

)
,

we get that (12) is equivalent to

mn

∫ ∞

0

⎧
⎨
⎩f(y)

∞∑

j=1

∞∑

k=1

sm,j(x)sn,k−1(y)

∫ ∞

0

sm,j−1(t)sn,k(t)dt

⎫
⎬
⎭ dy

=
mn

m+ n

∞∑

l=1

s mn
n+m

,l(x)

∫ ∞

0

s mn
n+m

,l−1(y)f(y)dy.

(13)

We denote the left-hand side of (13) by
∫∞
0

f(y)Tm,n(x, y)dy. From

∫ ∞

0

sm,j−1(t)sn,k(t)dt =
mj−1nk

(m+ n)j+k
⋅ (k + j − 1)!

(j − 1)!k!

we get

Tm,n(x, y) = mn

∞∑

j=1

∞∑

k=1

sm,j(x)sn,k−1(y)
mj−1nk

(m+ n)j+k
⋅ (k + j − 1)!

(j − 1)!k!

= mne−mx−ny
∞∑

j=1

m2j−1xj

(m+ n)jj!(j − 1)!

×
∞∑

k=1

n2k−1yk−1

(m+ n)kk!(k − 1)!
⋅ (k + j − 1)!.

(14)
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For the inner sum of the right-hand side of (14) we can write

∞∑

k=1

n2k−1yk−1

(m+ n)kk!(k − 1)!
⋅ (k + j − 1)! =

n

m+ n

∞∑

k=0

( n2

m+ny)
k

k!(k + 1)!
⋅ (k + j)!

=: T (y).

From

zjeaz =

∞∑

k=0

akzk+j

k!

and the Leibniz formula we obtain

dj−1

dzj−1

(
zjeaz

)
=

∞∑

k=0

(j + k)!akzk+1

k!(k + 1)!

=

j−1∑

l=0

(
j − 1

l

)
j!

(l + 1)!
zl+1aleaz.

Substituting z = 1 and a = n2

m+ny in the above equation we derive

T (y) =
n

m+ n
e

n2

m+n
y
j−1∑

l=0

(
j − 1

l

)
j!

(l + 1)!

(
n2

m+ n
y

)l

.

Inserting this expression in (14) we get

Tm,n(x, y) =
n2m

m+ n
e−mxe−nye

n2

m+n
y

∞∑

j=1

m2j−1xj

(m+ n)jj!(j − 1)!

×
j−1∑

l=0

(
j − 1

l

)
j!

(l + 1)!

(
n2

m+ n
y

)l

=
n2m

m+ n
e−mxe−nye

n2

m+n
y

∞∑

l=0

1

(l + 1)!l!

(
n2

m+ n
y

)l

×
∞∑

j=l+1

m2j−1xj

(m+ n)j
⋅ 1

(j − 1− l)!
.

Since

∞∑

j=l+1

m2j−1xj

(m+ n)j
⋅ 1

(j − 1− l)!
=

m2l+1xl+1

(m+ n)l+1

∞∑

j=0

(
m2x
m+n

)j

j!

=
m2l+1xl+1

(m+ n)l+1
e

m2

m+n
x,



Margareta Heilmann and Gancho Tachev 307

we get

Tm,n(x, y) =
mn

m+ n
e−

mn
m+n

xe−
mn

m+n
y

∞∑

l=0

(
mn
m+nx

)l+1

(l + 1)!

(
mn
m+ny

)l

(l)!

=
mn

m+ n

∞∑

l=1

s mn
n+m

,l(x)s mn
n+m

,l−1(y).

So, in view of (13), we have proved our proposition. □

Corollary 3.1. For all f ∈ C�[0,∞), m > �, n > �, mn
m+n > � we have

(15) S̃m(S̃nf) = S̃n(S̃mf)

and for l ∈ ℕ, m
l > �

(16) S̃l
m = S̃m

l
.

We point out that (16) is essential for the derivation of a strong converse
result of type A.

As an appropriate differential operator we will use

(17) D̃2f := '2D2f

where D denotes the ordinary differentiation of a function with respect to its
variable.

Our second commutativity result is

Theorem 3.2. Let f ∈ C�[0,∞) and f ′, f ′′ ∈ C�[0,∞). Then the oper-

ators S̃n, n > �, and D̃2 commute, namely

(18) (D̃2 ∘ S̃n)f = (S̃n ∘ D̃2)f.

Proof. On using (6) we compute the first derivative of S̃nf .

D(S̃n(f, x)) = −ne−nxf(0) + n

∞∑

k=1

n [sn,k−1(x)− sn,k(x)]︸ ︷︷ ︸
s′
n,k

(x)

∫ ∞

0

sn,k−1(t)f(t)dt

= −ne−nxf(0) + n

∞∑

k=0

nsn,k(x)

∫ ∞

0

sn,k(t)f(t)dt

− n

∞∑

k=1

nsn,k(x)

∫ ∞

0

sn,k−1(t)f(t)dt
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= −ne−nxf(0) + n2e−nx

∫ ∞

0

e−ntf(t)dt

− n

∞∑

k=1

sn,k(x)

∫ ∞

0

n [sn,k−1(t)− sn,k(t)]︸ ︷︷ ︸
s′
n,k

(t)

f(t)dt

= ne−nx

⎧
⎨
⎩
−f(0) +

⎛
⎜⎝−e−ntf(t)dt∣∞0︸ ︷︷ ︸

=f(0)

+

∫ ∞

0

e−ntf ′(t)dt

⎞
⎟⎠

⎫
⎬
⎭

− n

∞∑

k=1

sn,k(x)

⎧
⎨
⎩
sn,k(t)f(t)∣∞0︸ ︷︷ ︸

=0 as k≥1

−
∫ ∞

0

sn,k(t)f
′(t)dt

⎫
⎬
⎭

= n

∞∑

k=0

sn,k(x)

∫ ∞

0

sn,k(t)f
′(t)dt

= Sn(f
′, x).

Thus we proved that

(19) D(S̃n(f, x)) = Sn(f
′, x).

Now from [10, (3.1)] we get for the second derivative

D2(S̃n(f, x)) = D(Sn(f
′, x))

= n

∞∑

k=0

sn,k(x)

∫ ∞

0

sn,k+1(t)f
′′(t)dt.

Finally, on using (9) and observing that (D̃2f)(0) = 0 we get

D̃2(S̃n(f, x) = '(x)2D(Sn(f
′, x))

= n

∞∑

k=1

sn,k(x)

∫ ∞

0

sn,k−1(t)(D̃
2f)(t)dt

= S̃n(D̃
2f, x).

Theorem 3.2 is proved. □

As an immediate consequence of Theorem 3.2 we get the following corollary
which improves significantly the constant in the result of [6, Lemma 5].

Corollary 3.2. For f ∈ W 2
∞(') there holds

∥D̃2(S̃nf)∥ ≤ ∥D̃2f∥.
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Remark 3.1. For sufficiently smooth functions we get from Theorem 3.2

via induction

(D̃2)l ∘ S̃n = S̃n ∘ (D̃2)l.

It is easy to verify that

(D̃2)l = D̃2l := Dl−1'2lDl+1.

Such an identity is not true in the case of the corresponding appropriate

differential operators for the genuine Bernstein-Durrmeyer and Baskakov-

Durrmeyer operators.

4. Strong Voronovskaja type theorem

In order to derive a strong converse inequality of type A we need an appro-
priate strong Voronovskaja type result. We formulate our results in terms of
a positive constant c which will be choosen later to get a good constant in the
strong converse inequality.

Theorem 4.1. Let g ∈ CB[0,∞), '2g′′′, '3g′′′ ∈ CB [0,∞) and n > 0.
Then
∥∥∥∥S̃ng − g − 1

n
'2g′′

∥∥∥∥

≤
√
6

2
⋅ 1
n
max

{
4

3

√
1 + 2c ⋅ 1√

n
∥'3g′′′∥,

√
1 + 2c

c
⋅ 1
n
∥'2g′′′∥

}
,

where c denotes an arbitrary positive constant.

Proof. We apply the operators S̃n to the Taylor expansion of g

g(t) = g(x) + g′(x)(t − x) +
1

2
g′′(x)(t− x)2 +

1

2

∫ t

x

g′′′(u)(t− u)2du

and use Lemma 2.1 to derive

(20)

∣∣∣∣S̃n(g, x)− g(x)− 1

n
(D̃2g)(x)

∣∣∣∣ ≤
1

2
S̃n

(∣∣∣∣
∫ t

x

g′′′(u)(t− u)2du

∣∣∣∣ , x
)
.

Case 1: x ≥ 1
cn . We have

(21) S̃n

(∣∣∣∣
∫ t

x

g′′′(u)(t− u)2du

∣∣∣∣ , x
)

≤ ∥'3g′′′∥S̃n

(∣∣∣∣
∫ t

x

(t− u)2

'(u)3
du

∣∣∣∣ , x
)
.



310 Commutativity, direct and strong converse results...

As ∣t−u∣
u ≤ ∣t−x∣

x we now observe that

S̃n

(∣∣∣∣
∫ t

x

(t− u)2

'(u)3
du

∣∣∣∣ , x
)

=

∞∑

k=1

sn,k(x)n

∫ ∞

0

sn,k−1(t)

∣∣∣∣
∫ t

x

(t− u)2

u
3
2

du

∣∣∣∣ dt+ e−nx

∣∣∣∣
∫ x

0

u
1
2 du

∣∣∣∣

≤
∞∑

k=1

sn,k(x)n

∫ ∞

0

sn,k−1(t)
∣t− x∣ 32

x
3
2

∣∣∣∣
∫ t

x

∣t− u∣ 12 du
∣∣∣∣ dt+

2

3
e−nxx

3
2

≤ 2

3
⋅ 1

x
3
2

S̃n

(
∣t− x∣3, x

)
.

(22)

Now using the Cauchy-Schwarz inequality we get the estimate

S̃n

(
∣t− x∣3, x

)
≤

√
S̃n ((t− x)2, x) ⋅

√
S̃n ((t− x)4, x)

=

√
2x

n
⋅
√

12x

n2

(
x+

2

n

)
,

(23)

where we have used Lemma 2.1 for the moments. For x ≥ 1
cn (22) and (23)

imply

S̃n

(∣∣∣∣
∫ t

x

(t− u)2

'(u)3
du

∣∣∣∣ , x
)

≤ 4
√
6

3

√
1 + 2c n−3/2.

Thus for the case x ≥ 1
cn we have

(24) S̃n

(∣∣∣∣
∫ t

x

g′′′(u)(t− u)2du

∣∣∣∣ , x
)

≤ 4
√
6

3

√
1 + 2cn−3/2∥'3g′′′∥.

Case 2: x ≤ 1
cn . We have

'(x)2S̃n

(∣∣∣∣
∫ t

x

g′′′(u)(t− u)2du

∣∣∣∣ , x
)

≤ ∥'2g′′′∥'(x)2S̃n

(∣∣∣∣
∫ t

x

(t− u)2

'(u)2
du

∣∣∣∣ , x
)
.

(25)

Proceeding in a similar way as in Case 1 we get

'(x)2S̃n

(∣∣∣∣
∫ t

x

(t− u)2

'(u)2
du

∣∣∣∣ , x
)

≤ S̃n

(∣∣∣∣∣t− x∣
∫ t

x

∣t− u∣du
∣∣∣∣ , x

)

≤ 1

2
S̃n

(
∣t− x∣3, x

)

≤ '(x)2
√
6

√
1 + 2c

c
n−2.
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Thus we obtained for the case x ≤ 1
cn

(26) S̃n

(∣∣∣∣
∫ t

x

g′′′(u)(t− u)2du

∣∣∣∣ , x
)

≤
√
6

√
1 + 2c

c
n−2∥'2g′′′∥.

Substitution of (24) and (26) into (20) proves the proposition. □

5. Direct and strong converse result

Our direct and converse results will be formulated in terms of the following
K-functional

(27) K2
'(f, �

2) := inf {∥f − g∥+ �2∥D̃2g∥ : g ∈ W 2
∞(')}.

The corresponding second order Ditzian-Totik modulus of smoothness is given
by

(28) !2
'(f, �) = sup

0<ℎ≤�
∥Δ2

ℎ'f∥,

where

Δ2
ℎ'(x)f(x) =

{
f(x+ℎ'(x))−2f(x)+f(x−ℎ'(x)), if x± ℎ'(x) ∈ [0,∞),

0, otherwise.

It is known thatK2
'(f, �

2) and !2
'(f, �) are equivalent (see [5, Theorem 2.1.1]),

i.e., there exists an absolute constant C > 0 and �0 such that

C−1!2
'(f, �) ≤ K2

'(f, �
2) ≤ C!2

'(f, �), 0 < � ≤ �0.

Our main results are

Theorem 5.1. For every f ∈ CB[0,∞) and n > 0 there holds

∥S̃nf − f∥ ≤ 2K2
'

(
f,

1

n

)
.

Theorem 5.2. For every f ∈ CB [0,∞) and n > 0 the following inequal-

ity holds true

(29) K2
'

(
f,

1

n

)
≤ 92.16 ∥S̃nf − f∥.

As a consequence of Theorems 5.1 and 5.2 we get the following equivalence
result.
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Corollary 5.1. For f ∈ CB[0,∞), n > 0 we have the following equiva-

lences

1

2
∥S̃nf − f∥ ≤ K2

'

(
f,

1

n

)
≤ 92.16 ∥S̃nf − f∥,

C1 ∥S̃nf − f∥ ≤ !2
'

(
f,

1√
n

)
≤ C2 ∥S̃nf − f∥,

where C1, C2 > 0 are absolute constants.

Proof of Theorem 5.1. Let g ∈ W 2
∞(') be arbitrary and x be fixed. From

the Taylor expansion

g(t)− g(x) = g′(x)(t− x) +

∫ t

x

g′′(s)(t − s)ds, t ∈ [0,∞),

we see that

(30) ∣S̃n(g, x)− g(x)∣ ≤ S̃n

{∣∣∣∣
∫ t

x

g′′(u)(t− u)du

∣∣∣∣ , x
)
.

It is known (see [5, (9.6.1)]) that

'(x)2
∣∣∣∣
∫ t

x

g′′(u)(t− u)du

∣∣∣∣ ≤ ∣t− x∣
∣∣∣∣
∫ t

x

'(u)2g′′(u)du

∣∣∣∣

≤ ∥'2g′′∥(t− x)2.

From (30) and the second moment S̃n((t − x)2, x) = 2x
n (see Lemma 2.1) we

get

∣S̃n(g, x)− g(x)∣ ≤ 2

n
∥'2g′′∥.

This gives

∣S̃n(f, x) − f(x)∣ ≤ ∣S̃n(f − g)(x)∣+ ∣g(x)− f(x)∣+ ∣S̃n(g, x)− g(x)∣

≤ 2(∥f − g∥+ 1

n
∥'2g′′∥).

Taking the infimum of the right-hand side term over all g ∈ W 2
∞(') we obtain

the statement of the theorem. □

For the proof of Theorem 5.2 we will need three further estimates which are
proved in the next lemmas. Note that Lemma 5.1 improves upon the constant
in [6, Lemma 6] and Lemma 5.2 gives an explicit value for the constant in [6,
Lemma 7].

Lemma 5.1. For f ∈ CB [0,∞), n > 0 we have

∥D̃2(S̃nf)∥ ≤ 2n ∥f∥.



Margareta Heilmann and Gancho Tachev 313

Proof. From (8) we have

(31) '(x)2
∣∣∣D̃2S̃n(f, x)

∣∣∣ ≤ ∥f∥
{ ∞∑

k=0

(k − nx)2sn,k(x) +

∞∑

k=1

ksn,k(x)

}
.

For the second moment of the Szász-Mirakjan operator Sn we make use of
(10). As Sn preserves linear functions we derive from (31)

∣∣∣D̃2S̃n(f, x)
∣∣∣ ≤ 2n ∥f∥. □

Lemma 5.2. For every g ∈ W 2
∞(') and n > 0 we have

∥'3D3(S̃ng)∥ ≤ 1.47
√
n ∥D̃2g∥.

Proof. From (19) and [10, (3.1)] we have

'(x)4D3(S̃n(g, x)) = '(x)4D2(Sn(g
′, x))

= '(x)4n

∞∑

k=0

s′n,k(x)

∫ ∞

0

sn,k+1(t)D
2g(t)dt

= n

∞∑

k=0

(k − nx)sn,k+1(x)

∫ ∞

0

sn,k(t)(D̃
2g(t))dt ,

(32)

where we have used (7) and (9). On using (5) we get

∣∣∣'(x)4D3(S̃n(g, x))
∣∣∣ ≤ ∥D̃2g∥

∞∑

k=0

(∣k + 1− nx∣+ 1)sn,k+1(x)

=∥D̃2g∥
{ ∞∑

k=0

(∣k−nx∣+1)sn,k(x)− e−nx(1+nx)

}

≤∥D̃2g∥
{
n
√
Sn((t−x)2, x)+1−e−nx(1+nx)

}

= ∥D̃2g∥
{
'(x)

√
n+ 1− e−nx(1 + nx)

}
.

(33)

The maximum of 1−e−nx(1+nx)√
x

is attained for nx ∈ [3.2, 3.25], hence we have

the estimate

1− e−nx(1 + nx)√
nx

≤ 1− e−3.25(1 + 3.2)√
3.2

< 0.47.

Inserting this bound into (33) we get

∣∣∣'(x)3D3(S̃n(g, x))
∣∣∣ ≤ 1.47

√
n ∥D̃2g∥. □
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Lemma 5.3. For every g ∈ W 2
∞(') we have

∥'2D3(S̃ng)∥ ≤ 2n ∥D̃2g∥.

Proof. Making again use of (19) and [10, (3.1)], combined with (6), we get

'(x)2D3(S̃n(g, x)) = '(x)2D2(Sn(g
′, x))

= '(x)2n
∞∑

k=0

s′n,k(x)

∫ ∞

0

sn,k+1(t)g
′′(t)dt

= '(x)2n

∞∑

k=0

n[sn,k−1(x)−sn,k(x)]

∫ ∞

0

n

k+1
sn,k(t)D̃

2g(t)dt.

Applying (5) we deduce the result as follows:

∣'(x)2D3((S̃n(g, x))∣ ≤ ∥D̃2g∥n
{ ∞∑

k=1

nxsn,k−1(x)

k + 1
+

∞∑

k=0

nxsn,k(x)

k + 1

}

≤ ∥D̃2g∥2n
∞∑

k=0

sn,k(x)

= 2n ∥D̃2g∥.
□

Proof of Theorem 5.2. Since

(34) K2
'

(
f,

1

n

)
≤ ∥S̃nf − f∥+ 1

n
∥D̃2(S̃nf)∥ ,

we have to estimate 1
n∥D̃2(S̃nf)∥.

Let N ∈ ℕ. From Lemma 5.1 we obtain the estimate

1

n
∥D̃2(S̃nf)∥ ≤ 1

n
∥D̃2[S̃n(f − S̃N

n f)]∥+ 1

n
∥D̃2[S̃n(S̃

N
n f)]∥

≤ 2N∥f − S̃nf∥+
1

n
∥D̃2(S̃N+1

n f)∥.
(35)

We now apply the strong Voronovskaja–type result of Theorem 4.1 to the
function g = S̃N+1

n f to obtain

1

n
∥D̃2(S̃N+1

n f)∥

≤ ∥S̃N+2
n f − S̃N+1

n f∥+ ∥S̃N+2
n f − S̃N+1

n f − 1

n
D̃2(S̃N+1

n f)∥

≤ ∥f − S̃nf∥

+

√
6

2n
max

{
4
√
1+2c

3
√
n

∥'3(S̃N+1
n f)′′′∥,

√
1+2c

c
⋅ 1
n
∥'2(S̃N+1

n f)′′′∥
}
.

(36)
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From Corollary 3.1, Lemma 5.2 and Lemma 5.3 we obtain the estimates

∥'3(S̃N+1
n f)′′′∥ = ∥'3(S̃ n

N
S̃nf)

′′′∥ ≤ 1.47

√
n

N
∥D̃2(S̃nf)∥

∥'2(S̃N+1
n f)′′′∥ = ∥'2(S̃ n

N
S̃nf)

′′′∥ ≤ 2
n

N
∥D̃2(S̃nf)∥.

The latter estimates together with (35) and (36) imply

1

n
∥D̃2(S̃nf)∥ ≤ (2N + 1)∥f − S̃nf∥

+

√
6

2n
∥D̃2(S̃nf)∥max

{
4 ⋅ 1.47

3
⋅
√
1 + 2c√
N

, 2

√
1 + 2c

c
⋅ 1

N

}
.

(37)

In order to get a good constant we now choose N = 16 and c = 625
9604 . With

this choice we have

max

{
4 ⋅ 1.47

3
⋅
√
1 + 2c√
N

, 2

√
1 + 2c

c
⋅ 1

N

}
=

9
√
2 ⋅ 67
200

.

Substituting this into (37) leads to

(38)
1

n
∥D̃2(S̃nf)∥ ≤ 33∥f − S̃nf∥+

1

n

9
√
2 ⋅ 6 ⋅ 67
400

∥D̃2(S̃nf)∥.

Note that 9
√
2⋅6⋅67
400 < 1, so (38) is equivalent to

1

n
∥D̃2(S̃nf)∥ ≤ 6600

200− 9
√
3 ⋅ 67

∥f − S̃nf∥.

Together with (34) we end up with the estimate

K2
'

(
f,

1

n

)
≤ 6800− 9

√
3 ⋅ 67

200− 9
√
3 ⋅ 67

∥S̃nf − f∥ ≤ 92.16∥S̃nf − f∥.

Theorem 5.2 is proved. □
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