
Galit Katarivas Levy- Doctor of Engineering
- Research Associate at Ben-Gurion University of the Negev
Galit Katarivas Levy
- Doctor of Engineering
- Research Associate at Ben-Gurion University of the Negev
About
26
Publications
13,342
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
979
Citations
Introduction
Current institution
Publications
Publications (26)
Additive manufacturing (AM) is a rapidly growing technology that enables the fast production of complex and near-net-shaped (NNS) components. Among the many applicable AM methods (particularly powder bed technologies), electron-beam melting (EBM) is gaining increased interest mainly in aerospace and medical industries, due to its inherent advantage...
Ti6Al4V alloy is considered as a favourable material for additive manufacturing (AM) and in
particular for selective laser melting (SLM), due to the inherent difficulties relating to casting and plastic forming of this alloy. However, the significantly increased solidification rate
associated with the SLM process results in a modified micro-structu...
Ti6Al4V alloy is considered as a favourable material for additive manufacturing (AM) and in particular for selective laser melting (SLM), due to the inherent difficulties relating to casting and plastic forming of this alloy. However, the significantly increased solidification rate associated with the SLM process results in a modified micro-structu...
Osteoporosis is a skeletal disease characterized by bone loss and bone microarchitectural deterioration. The combination of smart materials and stem cells represents a new therapeutic approach. In the present study, highly porous scaffolds are prepared by combining the conducting polymer PEDOT:PSS with collagen type I, the most abundant protein in...
This study aims at evaluating the effect of microstructure imperfections on the corrosion fatigue performance of an ER70S-6 alloy produced by wire arc additive manufacturing (WAAM) process, in a 3.5% NaCl solution. For reference, a regular ST-37 alloy with relatively similar chemical composition was considered as a counterpart alloy. This was justi...
Porous coatings on prosthetic implants encourage implant fixation. Enhanced fixation may be achieved using a magneto-active porous coating that can deform elastically in vivo on the application of an external magnetic field, straining in-growing bone. Such a coating, made of 444 ferritic stainless steel fibres, was previously characterised in terms...
There is currently an interest in “active” implantable biomedical devices that include mechanical stimulation as an integral part of their design. This paper reports the experimental use of a porous scaffold made of interconnected networks of slender ferromagnetic fibers that can be actuated in vivo by an external magnetic field applying strains to...
Porous coatings on prosthetic implants encourage implant fixation. Enhanced fixation may be achieved using a magneto-active porous coating that can deform elastically in vivo on application of an external magnetic field, straining in-growing bone. Such coating, made of 444 ferritic stainless steel fibres, was previously characterised in terms of it...
There is currently an interest in “active” implantable biomedical devices that include mechanical stimulation as an integral part of their design. This paper reports the experimental use of a porous scaffold made of interconnected networks of slender ferromagnetic fibres that can be actuated in vivo by an external magnetic field applying strains to i...
Current additive manufacturing (AM) processes are mainly focused on powder bed technologies, such as electron beam melting (EBM) and selective laser melting (SLM). However, the main disadvantages of such techniques are related to the high cost of metal powder, the degree of energy consumption, and the sizes of the components, that are limited by th...
Zinc-based alloys hold promise as next generation biodegradable implants. Although zinc implants exhibit excellent biocompatibility in vivo, they have been found to inhibit cell attachment and viability under in vitro conditions. In order to clarify the cell response disparity and improve the biocompatibility of zinc implant materials, Zn-1Mg and Z...
Increasing interest in biodegradable metals (Mg, Fe, and Zn) as structural materials for orthopedic and cardiovascular applications mainly relates to their promising biocompatibility, mechanical properties and ability to self-remove. However, Mg alloys suffer from excessive corrosion rates associated with premature loss of mechanical integrity and...
In the last decade, iron and magnesium, both pure and alloyed, have been extensively studied as potential biodegradable metals for medical applications. However, broad experience with these material systems has uncovered critical limitations in terms of their suitability for clinical applications. Recently, zinc and zinc-based alloys have been prop...
Porous Mg scaffolds are considered as potential bone growth promoting materials. Unfortunately, the high rate of biocorrosion inherent to Mg alloys may cause a premature loss of mechanical strength, excessive evolution of hydrogen gas, and a rapidly shifting surface topography, all of which may hinder the ability of native cells to attach and grow...
Bioresorbable magnesium alloys are currently being investigated as implant materials to address the problems associated with traditional metallic implants. However, the use of magnesium in vivo has been limited due to its rapid corrosion in the presence of body fluids. This can result in the liberation of large amounts of hydrogen gas and alkalisat...
Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer...
The effect of heat treatment temperature (150, 350, and 550 °C) on corrosion of biodegradable EW10X04 Mg alloy coated with Nd was tested in PBS solution. The Microstructurewas examined by SEM, XRD, and XPS analysis and corrosion resistancewas evaluated by immersion test,potentiodynamic polarization and EIS analysis. Comparatively the complex micros...
Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer...
The effect of diffusion coating of Nd on the corrosion performance of Mg-1.2%Nd-0.5%Y-0.5%Zr-0.4%Ca alloy (EW10X04) used as a new structural material for biodegradable implants was evaluated in a simulated physiological electrolyte. The initial Neodymium layer with a thickness of 1μm was obtained by PVD process in an Electron Gun Evaporator. This w...
The aim of the this study is to evaluate the in vivo behavior of Mg-1.5%Nd-0.5%Y-0.5%Zr implants with and without 0.4%Ca in comparison with inert Ti-6Al-4V reference implants. This was carried out by implanting cylindrical disks at the back midline of Wister male rats within the subcutaneous layer of the skin for up to 12 weeks. The degradation of...
The effect of 0.4% Ca on the in vitro corrosion behavior of Mg–1.2% Nd–0.5% Y–0.5% Zr was evaluated in a simulated physiological
environment in the form of 0.9% NaCl solution saturated with Mg(OH)2 at ambient temperature and at 37°C. The microstructure examination was carried out using optical microscopy, scanning electron
microscopy, transmission...