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ABSTRACT

Plant biotechnology is the deliberate application of biotechnology tools such as protoplast fusion,
DNA extraction, plant bioinformatics, PCR and cloning in creating plants with new, improved and
desired traits for human benefit. Protoplasts are often referred to as plant cells which the cell wall
has been removed and it has many applications in plant biotechnology. Protoplast fusion has been
used for centuries but plant biotechnology is a new technology that gives more realistic results in
any plants research. The application of plant biotechnology in protoplast fusion will produce new
product in plants with wider applications and more realistic results. In this article different
application of protoplast fusion in plant biotechnology was reviewed such as production of useful
metabolites, target site mutagenesis, introduction and establishment of disease resistance plants,
improvement of food nutrition content, nitrogen-fixation symbioses, production of herbicide resistant
plants, insect pest Control and plant-parasitic nematode control in plant for the benefit of humans.
The knowledge of protoplast fusion can be use by plant biotechnologist to improve plants trait for
human benefits. The application of plant biotechnology is important to any nation’s food security
and development.
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1. INTRODUCTION

Protoplasts are often referred to as plant cells
which the cell wall has been mechanically or
enzymatically removed. In theory it is assumed
that protoplasts are totipotent, which means they
have the ability to dedifferentiate and regenerate
into various organs [1] Protoplast fusion has
become a very important technique in producing
crops with useful agronomic traits and which can
also be sold on commercial scale. In the past few
decades there have been an increased in
research using protoplast fusion due to public
antagonism with genetically modified crops [2,3].
Protoplast technology is promising technique that
can be exploited by breeders to increase
germplasm accessibility and can also bring about
improvement in different crop varieties [4]. Plant
protoplast can be used as versatile cell-based
experimental system which can analyze gene
expression during a transient time period [5,6,7]
and macromolecules like proteins, RNA and DNA
can be delivered into protoplasts using various
techniques such as microinjection and PEG-
calcium fusion electroporation [8,9].

A biotechnology technique which uses DNA
analysis has shown significant advancement for
the past year and it has been used continuously
in characterizing somatic hybrids. simple
sequence repeat (SSR) has been used
extensively for somatic hybrids characterization
analysis as a biotechnology technique [10,11].
Gancle et. al., 2006 [12] Studied the use of
proteomics as better tool in regulation and
inheritance rules in somatic hybridization.
Eeckhaut et. al., 2013 [7] Suggest the use of next
generation sequencing which is cheaper and
faster as a tool in somatic hybrid genome
screening and stability studies for future scientist.
High resolution melting analysis which is also
another tool that can be use for screening
technique based upon insertions, single
nucleotide polymorphisms (SNPs) induce
alteration or deletion of  double stranded DNA
dissociation behavior [13,14]. PCR–RFLP
(restriction fragment length polymorphism) and
Cyclase-associated proteins (CAPS) analysis has
also been found as efficient and reliable tools in
cytoplasmic genome characterization [7].

This article, aimed at reviewing biotechnology
application of protoplast fusion such as
production of useful metabolites, target site

mutagenesis, improvement of food nutrition
content, introduction and establishment of
disease resistance plants, nitrogen-fixing
symbioses, production of herbicide resistant
plants, insect pest Control and plant-parasitic
nematode control for the benefit of mankind.

2. PLANT BIOTECHNOLOGY APPLICA-
TIONS

2.1 Production of Useful Metabolites

Useful metabolite such as anticancer agents,
functional proteins, enzymes and antiviral
proteins are found in the cell walls of plants,
between cell membrane and the cell walls
[15,16,17,18,19].

The major challenge is that the accumulations of
these metabolites are usually very low. The use
of protoplast fusion allows large amount of the
metabolite to the released into the culture [20].
To avoid the regeneration of the cell wall,
immobilization matrix together with an inhibitor
makes the production of the metabolite to be
more efficient [20,21,22].

Catharanthus roseus protoplasts isolated from
callus culture was entrapped in alginate gel to
study the extracellular production of enzymes
(peroxidase and alpha-galactosidase). However,
free protoplasts extracellular production of these
enzymes was higher than the protoplasts
immobilized in 0.7–2.5% alginate gel beads. The
use of agarose gel was suggested because of
high mass transfer ability and a neutral electric
charge instead of the alginate gel as the negative
charge of the alginate inhibited the secretion of
these enzymes [23].

Enzymes production using protoplasts have been
investigated through the efficient production of
chitinase by Wasabia japonica protoplasts
(isolated from callus culture) entrapped in
artificial cell walls (alginate gel) as both elicitor
and immobilization matrix. The productivity of
chitinase by immobilized protoplasts (2.0 U/mL at
5 days) was much higher than that of cells
immobilized in alginate gel (0.36 U/mL at 5
days). The productivity of chitinase by
immobilized protoplasts (2.0 U/mL at 5 days) was
much higher than that of cells immobilized in
alginate gel (0.36 U/mL at 5 days). Cell wall
regeneration of immobilized protoplasts was
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detected under a light microscope on the third
day of cultivation. This implies that the inhibition
of cell wall regeneration is necessary for long-
term production with protoplasts. 2, 6
dichlorobenzonitrile (2, 6-D; molecular weight =
172.02) was used to inhibit synthesis of the
cellulose cell wall in the case of chitinase
production by immobilized W. japonica
protoplasts. 2, 6-D (2.0 mg/L) maintained active
protoplasts for over 30 days without cell wall
regeneration when added to the broth[24].

Callus culture protoplasts of C. roseus
immobilized in alginate gels rich in guluronic acid
to study the production of secondary metabolite
of indole alkaloids (ajmalicine, catharanthine, and
tryptamine), which are synthesized through many
enzyme reaction steps. Protoplasts immobilized
in alginate produced extracellular ajmalicine
much higher than protoplasts immobilized in
agarose. Addition of 30 mM CaCl2 to the broth,
maintained the active protoplast for 15 days with
neither cell wall regeneration nor inhibition of
indole alkaloid production [25].

The advantage of using protoplasts to produce
useful metabolites is because the product are
released readily into the culture medium which
has benefits of increasing overall productivity and
facilitating downstream processing in situations
where the cell wall limits the secretion of useful
products. The major challenge is that protoplasts
are very fragile and is difficult for long-term
production and the cell walls of active protoplasts
easily regenerate [26].

2.2 Target Site Mutagenesis

The direct alteration of specific DNA sequence is
a vital element of genome editing which is called
gene editing. Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) which is
associated with Protein 9 (CAS9) method is
suitable genome editing technique which
requires just two reagent; single guide RNA
(sgRNA) and Cas9 protein [27,28,29,30,31]
Other endonucleases like Cpf1 can cause
mutations apart from cas9 [32,33,34,35]. The
genome editing reagents can be synthesized and
assemble in vitro which can form active
ribonucleoprotein (RNP) complexes where the
complexes can be delivered into protoplast which
can mutagenize the target gene [32,36,37].

In biotechnology, protoplast is usually used to
determine target site mutagenesis efficiency and
which can also be generated into plants [36]. The

regeneration of protoplast is a major challenge
when using CRISPR mutagenesis most
especially in monocot plants therefore there will
be need for high regeneration efficiency
protocols which are unavailable [37,38].
CRISPER/Cas9 technology is a very useful tool
in research and plant breeding which still a new
technology at the infant stage [38]. Using the
CRISPER-mediated mutagenesis it is possible to
remove the integrated transgenes encoding gene
editing reagents from the genome through
genetic segregation thereby reducing the fear of
the public about genetically modified
foods[32,39].

Lin et. al., 2018 [40] reported the development of
protocol for analyzing DNA from individual
mutagenized protoplasts and also proved that
CRISPR-based mutagenesis of protoplasts is a
useful technology for polyploid crops.

2.3 Improvement of Food Nutrition
Content

The aquatic food chain of fauna aquaculture,
microalgae denotes the major natural nutrition.
Chlorella vulgaris is one example of the sources
of aquatic nutrition [41]. The C. vulgaris species
have been used extensively as nutritional
supplements or aquaculture feeds [42].
Microalgae are regarded as one of the organism
producing distinct range of bioactive chemical
compounds, primarily vitamins, pigments,
proteins, minerals, lipids and polysaccharides.
The main reasons for their consideration as
important source of nutrition for diverse purposes
are the high nutritional content of the microalgal
species [43,44,45,46]. Lee and Tan 1988 [47]
Reported the documented the production of
genetically improved strain of algae by somatic
fusion and hybridization.

Algae-algae protoplast fusion has been reported
as a valuable technique to improve their nutrition.
Protoplast fusion technique is an in vitro genetic
manipulation process which are considered more
effectual compared to the conventional
techniques used for strain improvement such as
selection and mutation [48,49]. Somatic
hybridization put up by this procedure has
demonstrated strong efficacy in increasing
nutrition and valuable metabolites production
[50].

According to Kusumaningrum and Zainuri 2018
[51], the use of protoplast fusion technique for
microalgae Chlorella had been carried out to
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improve their carotenoid for animal aquatic
supplement. During the application of protoplast
fusion on interspecific microalgae of C. vulgaris,
the nutrition content of fusant was subjected for
analysis by GCMS methods on C. vulgaris
powder from 100 L liquid cultivation of the fusant.
The study resulted in fusant with high mass
production level. 17 amino acid with high
concentration of firstly, glutamic acid (14495.52
ppm) secondly, leucine (10856.97 ppm) and
thirdly, Aspartic acid (10378 ppm) was showed
on the nutrition analysis of fusant. Palmitic acid
(1.59%) was showed highest concentration in its
lipid acid profile.

2.4 Nitrogen-Fixation Symbioses

Nitrogen which is a compound of many bio-
molecules is very important for growth and
development of plants. Most nitrogen exist in the
atmosphere and the ability fix atmospheric
nitrogen through the nitrogenase enzyme
complex is restricted to some bacteria and where
the bacterian abd plant live in symbiotic
relationship provide the reiches sources of
nitrogen to plants [52,53]. For the last few
decades there have been scientific research on
bacteria having nitrogen-fixing symbioses with
legumes, which are mostly made of the following
genera Sinorhizobium, Mesorhizobium,
Bradyrhizobium, and Rhizobium, Azorhizobium
[54,55]. Leguminous plants characterization for
nitrogen fixation is mainly dependent on their
ability in developing nitrogen-fixing nodules
through interaction with the symbiotic bacteria
[56]. Actinomycete Frankia forms nitrogen-fixing
root nodules on non legumes plants thua the
genetic basis of the symbiotic interactions that
occurs between Frankia strains and host plants
is poorly understood [57].

Early works on the genetics of nitrogen fixation
was studied on free-living nitrogen-fixing bacteria
Klebsiella pneurnoniae. The presence of 17 nil
(nitrogen fixation) genes that encode nitrogen
fixation in K. pneumonia is responsible for
nitrogen fixation [58]. Intergeneric transfer of K.
pneumoniae nil clusters to other non-nitrogen-
fixing bacteria and yeast though nitrogen fixation
has only been observed in closely related
species [59,60,61].

Prakash and Cummings 1988 [62]  reported the
successful use of Protoplast fusion to create
novel actinomycete capable of fixing atmospheric
nitrogen. Protoplasts of Streptomyces
griseofuscus, which is a fast-growing

actinomycete and Frankia which is a a slow-
growing actinomycete were both allowed to fuse
and regenerate on media which does not have
supply of nitrogen. The regenerated colonies
were able to acquire the fast growing
characteristics of the streptomyces and tha ability
on growon a media lacking nitrogen from
Frankia.

Louis and Ensign (1987) [63] also reported the
use of four Frankia strains ACN1, EANlpec, Cpll
and EulIc for the formation and regeneration of
protoplasts of the actinorhizal nitrogen-fixing
actinomycete frankia where the protoplast was
sandwiched between a layer of a nutritionally rich
osmotically stabilizing medium and a layer of
low-melting-point agarose. It was observed that
the regeneration of the four strains varied widely
and the maximum regeneration efficiency was
only observed on two strains.

Sabir and El-Bestawy 2009 [64] Also reported an
effective role by protoplast fusion in enhancing
nodulation of Rhizobial species. The bacteria
abilities to produce nodulation were observed on
two weak strains (RtI1 and RtI2) and one efficient
strain (RtA1) which were selected for protoplast
fusion and the numbers of nodules formed by the
intra-specific protoplast fusion strains were
observed. The Protoplast fusion of the
indigenous R. leguminosarum biovar trifolii
strains resulted in nodulation increases by 1.93-
to 5.67-fold when compared to their parent
strains. This is an excellent result for agricultural
practices for the formation of nitrogen-fixing root
nodules on leguminous crops.

The prospect of Green Nitrogen Revolution will
be a great achievement in producing stable food
crops that has substitute for mineral nitrogen
fertilizer which can be achieve by using nitrogen-
fixing fertilizers [65].

2.5 Production of Herbicide Resistant
Plants

The production of herbicide resistant plant can
be achieved through protoplast fusion. Attempts
have been made to make plants tolerance
herbicides such as bromoxynil, atrazine,
sulphonylureas, glyphosate and phosphinothricin
[66]. Many herbicides operate by inactivating
some plant enzymes (target proteins) which are
very important for functions such as the
photosynthetic or other biosynthetic pathways
which are unique to plants [67].

Rathore et. al., 1993 [68] Reported the use of bar
gene in combination with the herbicide Basta to
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select transformed rice (Oryza sativa L. cv.
Radon) protoplasts for the production of
herbicide-resistant rice plants. The presences of
Phosphinothricin acetyltransferase assays was
used to confirmed the expression of the bar gene
in plants obtained from phosphinothricin resistant
calli. Both the bar and gusA genes were
transmitted to progeny as confirmed by Southern
analysis, where the progeny having the bar gene
was found to be resistant to Basta.  Thus
Herbiace or Basta can be use as a post-
emergence on rice plants transformed with the
bar gene.

Menczel et. al., 1986 [69] also reported the use
of Terbutryn-resistant plastids of the Nicotiana
plumbaginifolia TBR2 mutant which was
introduced into Nicotiana tabacum plants by
protoplast fusion following X-irradiation of TBR2
protoplasts where the Cybrid plants was founded
resistant to high levels of atrazine (10 kg/ha).The
level of atrazine resistance (to 10 kg/ha) is likely
to be sufficiently enough to protect the crop
under field conditions because atrazine is mostly
applied at a rate of 2-4.5 kg/ha.

Datta et. al., 1992 [70] Confirmed that an
important Indica rice cultivar Oryza sativa cv.
IR72 was transformed with the application of
direct gene transfer. The transformed rice
showed resistance to high dosage level of
phosphinothricin.

2.6 Introduction and Establishment of
Disease Resistance

Protoplast fusion is a powerful tool to transfer
disease resistance genes from different plants
[71]. Disease resistance in breeding may come
from either more distantly related species or from
closely related species. Protoplast fusion is one
of the techniques that is used to circumvent
problems in introgression genes for resistance
[72].

Chen et. al., 2008 [71] Reported the use of
protoplast fusion to overcome sexual
incompatibility between cultivated potatoes and
diploid solanum. They develop a systematic
protocol for the isolation of huge number of high
quality protoplasts from variety of Mexican wild
species of late blight (plant disease). Using the
protocol, new somatic hybrids of one Argentina
wild species, two Mexican and cultivated potato
clones and the successful somatic hybrids were
from the cell fusion of Solanum tuberosum and
the diploid species Solanum pinnatisectum,
Solanum cardiophyllum and Solanum chacoense

which shows higher level of resistance to both
late blight than was found in S. tuberosum.

Cybridizations and Somatic hybridizations in
citrus produced rootstocks that is resistant to
abiotic and biotech constraints which increased
the yield and quality of the fruit [73] also in brown
spot resistant scions [74].

Xiao et. al., 2004 [75] also reported the
production of the first resistant raphano-brassica
asymmetric and symmetric hybrids. This new
development showed new resistance types along
with multiple resistances which include turnip
mosaic virus.

The ability of mycoviruses for managing plant-
pathogenic fungi was first confirmed with
Cryphonectria parasitica [76,77]. The success of
plant disease control with hypoviruses has to do
with their ability to reduce the virulence (to
induce hypovirulence) of the target fungus.
Hypoviruses can be transmitted from a
hypovirulent strain to a virulent fungal strain by
hyphal fusion (anastomosis) when the two strains
are vegetatively compatible, but hypoviruses
cannot be transmitted when applied by
extracellular routes [78].

Lee et. al., 2011 reported the introduction of
hypovirulent mycoviruses in fungi as an
alternative to fungicides to contol plant diseases.
Transmission of hypovirulence-associated
double-stranded RNA (dsRNA) viruses between
mycelia has become a challenge because it is
prevented by the vegetative incompatibility
barrier that usually exists between different
strains or species of filamentous fungi.They
determined whether protoplast fusion could be
used to transmit FgV1-DK21 virus, which is
associated with hypovirulence on F. boothii to F.
asiaticum, F. graminearum, F. oxysporum f. sp.
lycopersici, and Cryphonectria parasitica. When
the result was compared to virus-free strains, the
FgV1-DK21 recipient strains had reduced growth
rates, reduced virulence and altered
pigmentation. The results showed that protoplast
fusion can be used to introduce FgV1-DK21
dsRNA into C. parasitica and into other Fusarium
species that FgV1-DK21 can be used as a
hypovirulence factor and as a plant disease
control agent [79].

2.7 Insect Pest Control

For many years there have been search for
plants that can produce and survive in spite of
insect pests. Advances in biotechnology have
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shown numerous insect-resistant plants
development. The use of biotechnology as a tool
in developing insect-resistant plants will continue
to be on the increase. The acceptability of
protoplast fusion base insect-resistant plants
may be greater along with the increase in the
understanding the processes [80].

Chen et. al., 2008 [71] reported the use of
protoplast fusion in overcoming sexual
incompatibility between diploid cultivated
potatoes and Solanum species. They developed
an effective protoplast fusion system for
production of new potatoes insect resistance with
the use of Mexican wild potato species as gene
pools. They designed a systematic procedure for
the isolation of a large number of high quality
protoplasts from various insect (Colorado potato
beetle) that carries high levels of resistance.
Assessment of insect reactions demonstrated
that several of the protoplast derived clones and
somatic hybrids showed a higher level of
resistance to Colorado potato beetle than was
found in Solanum tuberosum. The result from
this study is the first for successful transfer of
Colorado potato beetle resistance from a wild
Mexican species into cultivated potato by
protoplast fusion.

Fungi which is found in the genus Lecanicillium
(formerly classified as the single species
Verticillium lecanii) are very vital pathogens of
insects and some of them have been developed
as commercial biopesticides. Lecanicillium spp.
uses both hydrolytic enzymes and mechanical
forces to penetrate the insect integument directly
and the cell wall of the fungal plant pathogen.
Futher more to mycoparasitism of the plant
pathogen, the mode of action is linked to
colonization of host plant tissues, triggering an
induced systemic resistance [81]. Protoplast
fusion was done using three strains of
Lecanicillium spp. (as V. lecanii) to get new
strains having useful characteristics as insect
contol agents. The combination of three strains
are; B-2 with Vertalec, B-2 with Mycotal and
Vertalec with Mycotal, where new hybrid strains
were gotten. They started with 43 hybrid strains
which were used in bioassays against the cotton
aphid, Aphis gossypii. of these out of which 30
strains induced mortality equal to or higher than
Vertalec (42%). Again, 50 hybrid strains were
equally used in bioassays against Trialeurodes
vaporariorum (greenhouse whitefly) out of which
37 strains exhibited an equal or higher infection
rate as compared to that of Mycotal (36.2%) [82].
The results suggest that strains from
Lecanicillium spp. can be used as a potential for

developing single microbial control agent that
can be effective against insects pest due to its
antagonistic and parasitic resistance inducing
characteristics [81].

Bacillus thuringiensis (Bt) is a ubiquitous Gram-
positive and spore forming bacterium that
produces parasporal crystals during the
stationary phase of its growth cycle [83]. The
crystals is made up of one or more crystal
proteins (encoded by cry or cyt genes) that has
specific toxicity against several orders of insects
such as Diptera and Lepidoptera [84,83].
Protoplast fusion was done between B.
thuringiensis UV-resistant mutant 66/1a and B.
sphaericus to get a new Bacillus strains with
wider spectrum of action against many insects.
The results showed the expression of some cry
genes encoded for insecticidal crystal proteins
from B. thuringiensis and the binary toxin genes
from B. sphaericus in all fusant strains. SDS–
PAGE protein analysis confirmed that all some
fusant strains acquired and expressed specific
larvicidal proteins to both lepidopteran and
dipteran species. The recombinant fusants have
more efficient potential values insecticidal
against Culex pipiens and Spodoptera littoralis
larvae, respectively [85].

2.8 Plant-Parasitic Nematode Control

Plants interact with different types of organisms,
most time leading to various pathologies. Among
these organisms are nematodes that has
intimate interactions with different plant hosts
[86,87]. There are over 4100 species of plant-
parasitic nematode currently [88] and damages
that is caused by plant nematodes has been
projected at $US80 billion per year. They
represent an important constraint on the delivery
of global food security [89]. The management of
Nematode depends mainly on chemical
nematicides, but due to their negative impact on
the environment and nematologists are looking
for innovate safer and eco-friendly control
methods [90].

Root-knot nematodes are considered as one of
the main constraints to vegetable farming
worldwide. The use of bacteria such as
rhizospher as an antagonistic to nematodes is
eco-friendly, Chitinase production is a vital factor
in improving the nematicidal activity of this kind
of microorganisms. The nematicidal activity of
Lysinibacillus sphaericus Amira strain and
Bacillus amyloliquefaciens subsp. plantarum SA5
against root-knot nematodes, Meloidogyne
incognita, using protoplast technique was
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developed, their fusants were tested for
nematicidal and chitinase activity using
greenhouse experiments and bioassay. The
selected fusants from the two bacterial strains
were seen to be more effective in killing M.
incognita J2 under laboratory conditions.The
production of Chitinase from the fusant was
much higher under solid-state fermentation than
submerged fermentation conditions. The
recorded chitinase produced by B.
amyloliquefaciens is 0 units (μg NAG/ml
enzyme/h), L. sphaericus is 1393 units (μg
NAG/ml enzyme/h), and Bas8 is 3399units (μg
NAG/ml enzyme/h, under solid-state
fermentation and 90, 85, and 143 units (μg
NAG/ml enzyme/h), under submerged
fermentation conditions. The result showed that
fusant from L. sphaericuand and B.
amyloliquefaciens can be used as biological
control agents against root-knot nematode M.
incognita [91].

Verticillium lecanii is universally distributed in
soils, even though this fungus is mostly isolated
from insects. It has a broad host range such as
plant-parasitic nematodes, insects and
phytopathogenic fungi, and [92,93]. The strains
of V. lecanii was screened to check the relative
potential of hybrid strains of V. lecanii against
soybean cyst nematode with that of the parental
strains in greenhouse pots and to determine the
efficacious strains using protoplast fusion as
biological control agents.  Three parental strains
Vertalec®, B-2 and Mycotal® and their 162
hybrid strains were screened in greenhouse pot
tests. Few of the hybrid strains reduced the
density of soybean cyst nematode in the soil and
damage on soybean plants. The hybrid strain
AaF42 was seen to reduce the nematode egg
density by 93.2% when compared to the control.
In addition, this strain significantly reduced egg
density and the cyst as compared with the
parental strains. Some of the hybrid strains
developed by protoplast fusion exhibited higher
level of nematode control efficacy against
soybean cyst nematode than the parental strains
[94].

3. DISCUSSION

Protoplast fusion is a major breeding tool that is
used to produce new genetic combination which
is different from other scientific tools and it also
transfer mono and polygenic traits [95,96].
Protoplast fusion has successfully been used as
a tool to produce useful metabolites, target site
mutagenesis, improvement of food nutrition

content, introduction and establishment of
disease resistance plants, creating nitrogen-
fixing symbioses, production of herbicide
resistant plants, insect pest contol and plant-
parasitic nematode control through the
application of plant biotechnology techniques.
Genomic variation is of important interest in most
plants for yield and quality improvement, disease
resistance, cytoplasmic male sterility (CMS)
transfer, Salt tolerance, rootstock improvement
and seedless triploids are the most frequent
goals of protoplast fusion [97].

Other researchers have also report important use
of protoplast fusion in plant biotechnology. Kao
et. al., 1974 [98] Reported the protoplast fusion
for intergeneric hybrid cells. Matthew et. al., 2016
[99] Studied the microbead encapsulation of
living plant protoplasts which is seen as a new
tool for the handling of single plant cells. Miiller-
Gensert et. al., 1987 [100] reported the
interspecific T-DNA transfer through plant
protoplast fusion. Grosser and Gmitte 2011 [101]
Examined the Protoplast fusion for production of
triploids and tetraploids which is used for
rootstock and scion breeding in citrus. Li et. al.,
2018 [102] Describe plant adenine base editor
based on an evolved tRNA adenosine
deaminase fused to the nickase CRISPR/Cas9
which enable A•T to G•C conversion in
protoplasts and regeneration in rice and wheat
plants.

Many countries have the fears about the
application of plant biotechnology but have also
forgotten about the two major challenges of plant
biotechnology which are; the continuous increase
in population at geometric rate and the current
climatic changes which are posing serious threat
to the human population and the growth of our
plants (crops). If the challenges of the plant
biotechnology will be solved then the application
of plant biotechnology has become very
necessary. Since protoplast fusion allows the
introduction of new genes into plants without
genetically modified plants, which is the fear of
common man then protoplast fusion, offers an
option. Therefore protoplast fusion has become
essential for plant (crops) improvement for the
future.

4. CONCLUSION

The use of protoplast fusion will go a long way to
remove the fear of genetically modified crops
(foods) in the mind of the common man. The fear
of increase in population and climatic change has
left us with no other option in feeding our
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population than the use of plant biotechnology.
Protoplast is a useful technology in plant
biotechnology not just for food production alone
but for other products that are useful to humans.
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