
This article has been accepted for publication in a future issue of Computing
Journal (Springer)

Trust-driven Reinforcement Selection Strategy
for Federated Learning on IoT Devices

Gaith Rjoub1, Omar Abdel Wahab2, Jamal Bentahar1, and Ahmed Bataineh1

1 Concordia University, Montreal, QC, Canada
{g rjoub,bentahar,ah batai}@encs.concordia.ca

2 Université du Québec en Outaouais, Gatineau, QC, Canada
omar.abdulwahab@uqo.ca

Abstract. Federated learning is a distributed machine learning approach
that enables a large number of edge/end devices to perform on-device
training for a single machine learning model, without having to share
their own raw data. We consider in this paper a federated learning sce-
nario wherein the local training is carried out on IoT devices and the
global aggregation is done at the level of an edge server. One essential
challenge in this emerging approach is IoT devices selection (also called
scheduling), i.e., how to select the IoT devices to participate in the dis-
tributed training process. The existing approaches suggest to base the
scheduling decision on the resource characteristics of the devices to guar-
antee that the selected devices would have enough resources to carry out
the training. In this work, we argue that trust should be an integral
part of the decision-making process and therefore design a trust estab-
lishment mechanism between the edge server and IoT devices. The trust
mechanism aims to detect those IoT devices that over-utilize or under-
utilize their resources during the local training. Thereafter, we introduce
DDQN-Trust, a double deep Q learning-based selection algorithm that
takes into account the trust scores and energy levels of the IoT devices
to make appropriate scheduling decisions. Finally, we integrate our so-
lution into four federated learning aggregation approaches, namely, Fe-
dAvg, FedProx, FedShare and FedSGD. Experiments conducted using a
real-world dataset show that our DDQN-Trust solution always achieves
better performance compared to two main benchmarks: the DQN and
random scheduling algorithms. The results also reveal that FedProx out-
performs the competitor aggregation models in terms of accuracy when
integrated into our DDQN-Trust solution.

Keywords: Federated Learning · Edge Computing · Internet of Things
(IoT) · Double Deep Q-Network (DDQN) · Trust · IoT Device Selection.

1 Introduction

With the increasing reliance on Internet of Things (IoT) applications and social
media platforms, the volume of data that need to be stored and processed is

1

2 G. Rjoub et al.

becoming enormous. Cloud computing has long been a great solution to deal
with this challenge, owing to the wide array of benefits it has proved to offer for
data providers [4, 9, 30, 34, 35]. These benefits include multi-tenancy, elasticity,
virtualization and reduced storage and processing costs. Consequently, instead of
acquiring and continuously maintaining expensive hardware equipment to store
and analyze big data, companies can now migrate these duties to the cloud to be
done in a more efficacious and cost-efficient manner. The increasing data privacy
and network communication concerns play against the adoption of a centralized
cloud-based data storage and analytics approach. First, data owners often feel
reluctant to share their data with the cloud platform [3]. This is because these
owners will no longer have any control on their own data and hence are not
sure which other (possible unauthorized) parties will have access to their sensi-
tive data. Federated learning has been proposed to let IoT devices in the cloud
computing environment train machine learning models collaboratively without
moving data from any IoT device to one central location [37]. In particular, IoT
devices train local models using their data, and then upload the local models,
instead of raw data, to a centralized parameter server.

Moreover, the cloud data centers are mostly located in geographical areas
that are quite far from the IoT devices. This entails high communication cost
and delay to transmit data to the cloud for processing and receive back the in-
sights from the cloud for decision-making. These factors have pushed the research
community to design distributed data analytics approaches that are executed ei-
ther by the end devices or at the edge of the network [41]. Edge computing
fetches two great refinements to the existing cloud computing. On one hand,
edge computing allows preprocessing large amounts of data at edge nodes be-
fore transferring them to the central servers in the cloud. On the other hand, it
enables the edge nodes with computing ability to optimize the cloud resources.

1.1 Problem Statement

Inspired by this idea, the concept of Federated Learning (FL) has recently been
proposed to allow end devices to collaboratively train a single machine learning
model without having to share their raw data. FL consists of two main phases,
i.e., local training and global computation. In the local training phase, a pa-
rameter server (e.g., edge node) initializes the machine learning model and then
shares initial parameters with the end devices. These devices then use the shared
parameters to train the model on their own data. Finally, they share the updated
parameters obtained through training the model on their data with the param-
eter server. In the global computation phase, the parameter server aggregates
all the received updates to reconstruct a global machine learning model. This
process repeats until a certain accuracy level is attained.

One substantial challenge in federated learning is how to select the end de-
vices that will participate in the collaborative training. Several approaches have
been proposed to tackle this challenge [26,38,40]. Most existing approaches rely
on the devices’ resource characteristics when taking their decisions. Despite the
importance of the resource factor, we argue in this work that the reliability of

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 3

the devices cannot be overlooked. In fact, the presence of unreliable devices in
the federated training might lead to performance degradation and even security
hazards. Unreliable devices might, for example, use bogus data to do their local
training. To address this problem, we propose in this paper a device selection
solution, also called scheduling, for federated learning that takes into account
both the resources availability (in terms of energy level) and trustworthiness of
the IoT devices [5, 11, 12]. The considered scenario consists of an edge server
which plays the role of the parameter server that is responsible for the global
computation phase and IoT devices that are responsible for the local training
phase. A fundamental challenge in federated learning is the uncertainty that
the edge server faces regarding the resource and trust levels of the IoT devices.
Specifically, with the large numbers of deployed IoT devices in edge-based sys-
tems, the chances of encountering untrusted or poorly-performing IoT devices
is fairly high. Such IoT devices would not only cause the process and execu-
tion time to be high, but will also increase the amounts of wasted resources
in case of malicious or compromised IoT devices. We address this challenge by
proposing DDQN-Trust, a trust-driven double deep Q-network reinforcement
learning-based algorithm [31]. Compared to the traditional reinforcement learn-
ing approaches, DDQN-Trust has the advantage of reducing the overestimation
of Q values and thus helps us achieve a faster training and have a more stable
learning. Moreover, as argued in [18, 21, 37], DDQN reveals better performance
compared to classic optimization methods such as Monte-Carlo search, swarm
intelligence, genetic algorithms and Bayesian methods.

Another major limitation of most existing federated learning scheduling ap-
proaches stems from the fact that they base their solutions, by default, on the
federated averaging aggregation approach (i.e., FedAvg). According to this ap-
proach, clients perform several batch updates on their local data and then trans-
mit their updated weights to the server. The server then takes the average of the
weights to derive the global model for the next training iteration. Unfortunately,
FedAvg suffers from two main limitations from both the statistical and system
perspectives [36]. From the statistical perspective, the performance of FedAvg
begins to diverge in settings where the data is non-identically distributed across
devices, which is the case in our scenario. From the system’s perspective, FedAvg
does not allow participating devices to perform variable amounts of local work
based on their underlying systems constraints, making it less resilient to dy-
namic federated learning settings. To address this problem, we investigate three
other aggregation approaches and integrate them, in addition to FedAvg, into
our solution to study its applicability to a wider set of scenarios.

1.2 Application Scenario

As an application example, we adopt an image and video object prediction model
over an autonomous vehicles (AVs) environment. In this scenario, we use real-
time street images and videos, including dashcam videos, camera car images,
pedestrian images and videos in public transportation. Those images and videos
are the core of smart city applications that rely on IoT systems [32]. The following

4 G. Rjoub et al.

is the scenario that we consider in our simulation. Data coming to devices contain
unique, overlapping, or heterogeneous inputs. In addition, the labeled data on
an edge server are available for devices to access at any time, and the initial
dataset on the AVs will act as a template on different iterations. In order to
ensure consistency in the testing, we reuse this public dataset on the edge server
as the test set. For training, each vehicle private data are used to train the CNN
learning model. The publicly available dataset on the edge server is used to test
the CNN model. The reason behind using this dataset is because it contains
varying labels instead of testing the model on only the local limited data.

Fig. 1: Architectural overview of federated learning for IoT networks.

As illustrated in Fig. 1, the FL-based architecture for IoT data consists of
three layers: the IoT devices and local model layer, the edge computing and
aggregation server layer, and the smart IoT application layer. Each layer affects
the model’s reliability, and it also influences the quality of service on the network.
Based on our scenario, the AVs environment has edge server, including wireless
base stations and roadside units, that are situated along the roadside. The edge
computing server is used to aggregate local models from vehicles into a global
model based on their local data. The vehicles only share their local models,

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 5

rather than their local data, in order to protect their privacy. However, FL is
the underlying principle of the system, which involves AVs completing learning
tasks in a distributed manner.

1.3 Contributions

In a preliminary version of this work [31], we proposed an intelligent schedul-
ing approach for federated learning that helps the server select the subset of
IoT devices that minimizes the resources utilization and maximizes the energy
efficiency. This paper builds on and extends our previous work by integrating
our scheduling approach with different federated learning aggregation models,
namely FedProx, FedShare, FedSGD, and FedAvg to select the aggregation model
that best suits our solution.

To provide a solution to the problems mentioned above, we use in our paper
the autonomous vehicular edge computing (AVEC) scenario as shown in Fig.
2 to illustrate how the computing, data storage, and communication resources
can take advantage of vehicular networks at the edge computing environment.
In order to facilitate on-road tasks while respecting the real-time and reliability
requirements, edge servers such as roadside units and base stations can be used.
The edge server aggregates the local models of vehicles in a certain area, allowing
the new vehicle to download the edge network model, monitor the road condi-
tions, and then enhance driver assistance features such as real-time navigation,
lane change, collision warnings, and recognize traffic light.

Fig. 2: System process of the proposed edge federated learning model.

6 G. Rjoub et al.

Executing FL models over IoT environments has been mainly categorized
into two directions [17]: computation resources and communication. From the
computation perspective, the idea is to reduce the overhead and time in the local
training phase over IoT devices to make the model learning efficient. The main
objective of our scheduling solution is to attain better resource exploitation, to
guarantee the security of the user’s data, and to ensure that sufficient energy
is available for the training process requirements. To this end, our solution fo-
cuses on the computing aspect to select the trusted IoT that will execute the
federated training. Therefor, we take into account the CPU, memory, and en-
ergy of the IoT devices to predict their ability to perform the federated learning
tasks. Particularly, at each local training round, we select the most trusted IoT
devices in terms of computation to improve the training performance. The main
contributions of the paper can be summarized as follows:

– We propose a trust establishment technique for the IoT devices. The algo-
rithm monitors the CPU and memory consumption of the IoT devices and
employs a modified Z-score statistical method to identify the IoT devices
that exhibit any abnormal behavior in terms of over-consumption or under-
consumption. This is of prime importance to detect those devices that do
not dedicate enough resources to serve the federated learning tasks as well
as those that carry out additional computations to achieve some malicious
objectives. The modified Z-score is more robust than the standard Z-score
technique since it relies on the median (instead of the mean) for calculating
the Z-score. It is thus less influenced by the outliers. Moreover, compared
to classification techniques such as Support Vector Machine (SVM) and de-
cision tree, the modified Z-score technique needs less training time and can
hence be executed with less overhead.

– We introduce DDQN-Trust, an algorithm which enables the edge server to
find the optimal scheduling decisions in terms of energy efficiency and the
trustworthiness. In particular, we first formulate a stochastic optimization
problem that seeks to derive a set of IoT devices that, by sending the fed-
erated learning tasks to them, the edge server can maximize the trust and
minimize the energy cost. The algorithm is designed to solve the optimiza-
tion problem while modeling the uncertainty that the server faces regarding
the resource and trust levels of the IoT devices.

– Unlike most existing scheduling approaches in FL which base their solutions
on the FedAvg aggregation method by default, we integrate four aggrega-
tion approaches, namely FedAvg, FedProx, FedShare and FedSGD into our
DDQN-Trust solution. This is important to broaden the applicability of our
solution to a wider set of federated learning scenarios.

– We analyse the proposed solution experimentally in an image recognition
scenario using a Convolutional Neural Network (CNN). The experimental
results reveal that our solution shows a better performance compared to the
DQN and random scheduling algorithms.

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 7

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we conduct a literature
review on the existing task scheduling approaches in cloud and edge computing
settings, and in the context of federated learning. We also survey the main deep
and reinforcement learning-based resource management approaches. In Section
3, we describe the details of the proposed solution. In Section 4, we explain the
experimental environment, evaluate the performance of our scheduling solution,
and present empirical analysis of our results compared to other benchmarks.
Section 5 concludes the paper.

2 Related Work

In this section, we survey the main task scheduling approaches in federated
learning as well as in edge computing environments.

2.1 Task Scheduling with Federated Learning

In [6], the authors study the problem of training FL algorithms over a realistic
wireless network. To do so, the authors formulate an optimization problem that
jointly considers user selection and resource allocation to minimize the value
of the loss function. To solve this problem, a closed-form expression of the ex-
pected convergence rate of the FL algorithm that considers the wireless factors
is derived. In [2], the authors adopt a DQN algorithm that allows the server
to learn and find optimal decisions without any a priori knowledge of the net-
work dynamics. The authors employ Mobile Crowd-Machine Learning (MCML)
to address data privacy issues of traditional machine learning. In [14], the in-
vestigators propose a segment-level decentralized federated learning to improve
the efficiency of network capacity utilization among client nodes. In particular,
the authors introduce a segmented gossip approach, which not only makes full
utilization of node-to-node bandwidth, but also achieves good training conver-
gence. In [27], the authors present FedCS, a protocol that aims to improve the
efficiency of FL in a mobile edge computing environment with heterogeneous
clients. FedCS proposes to solve a client selection problem with resource con-
straints, which allows the server to aggregate as many client updates as possible
and to accelerate the training convergence rate. In [26], the authors present a
DQN algorithm for resource allocation in a mobility-aware FL network. The au-
thors propose to employ DQN to enable the model owner to find the optimal
decisions in terms of energy and channels without priori knowledge about the
network. The authors formulate the energy and channel selection decision of the
model owner as a stochastic optimization problem. The optimization problem
aims to maximize the number of successful transmissions of the model owner
while minimizing the energy and channel costs.

8 G. Rjoub et al.

2.2 Task Scheduling in Cloud and Edge Computing

In [29], the researchers propose BigTrustScheduling, a trust-aware scheduling so-
lution tailored for big data tasks. The solution consists of three stages: virtual
machines (VMs) trust level computation to derive a trust value for each VM
based on its underlying performance, task priority level determination based on
resource requirements and prices, and trust-aware scheduling that minimizes the
makespan and cost of task execution. In [20], the authors present a smart man-
ufacturing factory framework based on edge computing and investigate the Job
Shop Scheduling (JSP) under such a setting. Moreover, the authors adjust the
DQN framework with an edge computing framework to solve the JSP. In [8],
the investigators consider the characteristics of autonomous-driving tasks to se-
lect more suitable mobile edge computing (MEC) servers for task migration.
To improve the earliest deadline first algorithm through the replacement and
recombination of tasks, the authors propose a Best Fit Replacement Scheduling
(BFRS) technique that enables more tasks to be executed at every stage, while
considering the time constraints of tasks, the urgency difference among them
and their vulnerability to environmental impacts. In [15], the researchers aim to
reach an optimal revenue for edge service providers in the contexts of dynamic
task scheduling and resource management in MEC environments. Moreover, the
authors argue that their solution achieves a favorable property called total uni-
modularity. This property further helps design an equivalent linear programming
problem which can efficiently and elegantly be solved in polynomial time.

2.3 Federated Learning Aggregation Approaches

In [24], the investigators introduce FedAvg in which the server collects the local
stochastic gradient descents from the client devices and takes the average to pro-
duce the next global model. The authors performed extensive experiments on
this algorithm, demonstrating its robustness in unbalanced and non-IID data dis-
tributions. For strongly convex and non-convex loss functions, the authors in [7]
propose the Federated Learning with Heterogeneous Quantization (FEDHQ) ap-
proach that uses different aggregation weights to balance over converging clients
in the face of heterogeneous quantization errors. In [22], the authors present
two class-weighted aggregation methods for federated learning under non-ID
data, i.e., FedCA-TDD and FedCA-VSA. Based on the contribution of every
client, both strategies assign weights; yet they determine the contributions of
the clients’ models differently. Under FedCA-TDD, the classes generated using
each client’s data are taken into account, while under FedCA-VSA, only the ac-
curacy of the local models is assessed. A multi-criteria client selection approach
called FedMCCS is described in [1]. The main focus of this approach is to utilize
a bilevel optimization scheme that can effectively select and maximize the num-
ber of FL participants at each round, while taking into consideration the lack of
communication and computation, and client heterogeneity.

In [19], the authors define an aggregation framework, called FedProx. Fed-
Prox addresses the system and statistical heterogeneity that arises from FL.

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 9

The authors argue that FedProx can be viewed as a generalization and re-
parametrization of FedAvg, the current state-of-the-art aggregation method for
FL. FedProx allows variable amounts of work to be performed locally across
devices, and relies on a proximal term to help stabilize the aggregation results.
In [39], the researchers focus on the statistical challenge of FL when local data
is non-IID. To address this challenge, they propose FedShare whose main idea
is to share parts of a small public dataset among clients to alleviate the weight
divergence across the local data of the clients. In [10], the authors define FedSGD
and provide a comprehensive study of its convergence. FedSGD operates under
non-IID data for strongly convex and smooth FL problems. FedSGD is char-
acterized by a trade-off between the number of local computation rounds and
global communication rounds.

Overall, the existing scheduling approaches in FL, cloud and edge computing
focus on the resource characteristics of the participant devices, but overlook the
reliability of these devices. In this work, we consider both the resource and trust
components to guarantee high-quality and reliable performance of the federated
training. Moreover, different from the scheduling approaches that employ tra-
ditional deep Q learning approaches, we formulate in this paper the scheduling
problem as a double deep Q learning algorithm. This is important to consider
the uncertainty that the server faces about the trust and resource characteristics
of the IoT devices, while avoiding the problem of overoptimism when choosing
the scheduling actions.

3 Trust-Aware IoT Scheduling for Federated Learning

We explain in this section the details of our proposed double deep Q learning-
based selection algorithm that takes into account the trust scores and energy
levels of the IoT devices to make appropriate scheduling decisions for FL.

3.1 Trust Establishment Mechanism

Several approaches have been proposed to improve the scheduling process in
cloud environments. The main idea of these approaches is to reduce the makespan
by trying to reduce the waiting time of tasks in the queues and attempting to
map tasks to the nearest IoTs to reduce the transfer time (i.e., the data locality
concept). However, this does not always guarantee a better performance in a
dynamic and open environment like cloud computing. In fact, with the increasing
number of deployed autonomous IoT devices, the likelihood of coming across
untrusted or compromised ones is reasonably high, which motivates the need for
a trust mechanism.

In Algorithm 1, we propose a statistical trust establishment method for IoT
devices based on monitoring the CPU and RAM consumption of the devices to
identify the ones that exhibit some abnormal resource consumption behavior,
and the devices whose consumption goes down the normal minimal habitual
consumption (e.g., failed IoTs). This is important to detect those devices that

10 G. Rjoub et al.

do not dedicate enough resources to serve the FL tasks as well as those that
exhibit some overly high consumption which could be an indication of some
malicious behavior. For example, some malicious devices might optimize for a
malicious objective that aims to generate targeted misclassification. Such devices
are expected to spend more resources than the regular devices that only try to
optimize for the underlying federated task.

Algorithm 1 is executed by an edge server to monitor the IoT devices that
are located within its range. The proposed method capitalizes on the modified
Z-score statistical technique. Modified Z-score is a standardized score that mea-
sures outlier strength, i.e., how much a particular score differs from the typical
score by checking the dependability of a particular score on a certain typical
score. This method shows a greater robustness to outliers compared to some
other statistical techniques (e.g, traditional Z-Score, Tukey method, etc.) since
it capitalizes on the median x̄ instead of the mean µ. In our algorithm, this
method approximates the difference of a certain score from the median using
the median absolute deviation MADz

j (t) of a metric z (e.g., CPU, RAM) con-
sumed by a device j during a time window [t− δ, t] (Algorithm 1 line 6).

More specifically, the modified Z-score αzj (i, t) is calculated through dividing
the difference between the consumption xzj (i) of the device j in terms of the
resource metric z at time moment i ∈ [t − δ, t] and the median consumption
of that device in terms of that metric within the time interval [t − δ, t] by the
median absolute deviation of the metric z (Algorithm 1 line 20). The constant
% = 0.6745 is needed because E(MADz

j (t)) = 0.6745σ for a large number n of
samples. Observations will be labeled outliers when αzj (i, t) ≥ ϕ, where ϕ = 3.5
as argued in [16]. This limit quantifies the patterns of maximal and minimal
habitual utilization of each IoT device within a certain time interval. Thus, any
future consumption that exceeds or falls under this limit is deemed to be unusual.

The Algorithm then checks for any future consumption of the IoT to de-
termine whether there exists any consumption that exceeds or falls under the
computed abnormal limit (Algorithm 1 - lines 22 − 23). If such a case is en-
countered, this observation is added to a table that registers each IoT’s unusual
consumption (if any) (Algorithm 1 - line 24). The average unusual consumption
for each metric is then computed (Algorithm 1 - line 28). The Algorithm then
computes the trust value of each IoT by dividing the sum of the proportional
abnormal consumption over all the metrics by the number of metrics that the
device has overused/underused (if any) (Algorithm 1 - line 36). If no metric has
been overused/underused, the initial trust in the IoT’s trustworthiness would be
set to 1 (Algorithm 1 - line 34), which represents a full trust in that device.

3.2 DDQN-Trust Scheduling Policy

Reinforcement learning [23, 28] is an active research and application area of
machine learning that has been applied to solve uncertainty-driven problems
wherein exact models are often infeasible. It aims at guiding a certain agent
on how to react to the changes that take place in the environment. The agent
performs the appropriate actions that maximize its cumulative reward according

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 11

Algorithm 1 IoT Trust

Inputs:
1: j: an IoT being monitored by the edge computing server
2: M = {CPU, memory}: the set of IoT ’s metrics to be analyzed by the edge server
3: δ: size of time window after which the algorithm is to be repeated

Variables:
4: Mz

j (t): a table recording xzj (i) (i = t− δ, t− δ + 1, . . . , t), the amounts of z ∈M consumed by

j during the time interval [t− δ, t]
5: x̄zj (t): the median of Mz

j (t) (median consumption of z ∈M by j during the time interval [t−δ, t])

6: MADzj (t): the median absolute deviation of Mz
j (t), i.e., MADzj (t) = median

{∣∣∣xzj (i)− x̄zj (t)
∣∣∣}

for all t− δ ≤ i ≤ t
7: αzj (i, t): the modified Z-score of xzj (i) ∈Mz

j (t)

8: AbnormalMetricszj : sum of unusual consumption of z ∈M by j

9: CountAbnormalMetricszj : a counter enumerating the occurrence of unusual consumption of
z ∈M by j

10: AvgAbnormalMetricszj : j’s average unusual consumption of z ∈M
11: PropAbnormalMetricszj : j’s unusual consumption of z ∈ M proportionally to the upper and

lower consumption limits of this z
12: AbnormalMetricsj : the number of abnormal usages of all the metrics by j.

Output:
13: Γj : trust value of j

14: Initialize AbnormalMetricsj to 0
15: for each metric z ∈M do
16: Initialize AbnormalMetricszj and CountAbnormalMetricszj to 0

17: Initialize AvgAbnormalMetricszj and PropAbnormalMetricszj to 0

18: Compute the median x̄zj (t) of Mz
j (t)

19: Compute the MADzj (t) of Mz
j (t)

20: Compute αzj (i, t) =
%(xzj (i)− x̄zj (t))

MADzj (t)

21: for each data point xzj (i) ∈Mz
j (t) do

22: if αzj (i, t) ≥ ϕ then

23: AbnormalMetricszj = AbnormalMetricszj + xzj (i)

24: CountAbnormalMetricszj = CountAbnormalMetricszj + 1

25: end if
26: end for
27: if CountAbnormalMetricszj > 0 then

28: AvgAbnormalMetricszj = AbnormalMetricszj/CountAbnormalMetricszj
29: PropAbnormalMetricszj = ϕ

AvgAbnormalMetricsz
j

30: AbnormalMetricsj = AbnormalMetricsj + 1
31: end if
32: end for
33: if AbnormalMetricsj = 0 then
34: Γj = 1
35: else

36: Γj =

∑
z∈M PropAbnormalMetricszj

AbnormalMetricsj

37: end if
38: return Γj

12 G. Rjoub et al.

to the current state of the environment. In this work, we propose DDQN-Trust,
a trust and energy-aware dynamic double deep Q network scheduling algorithm.
The proposed method consists of a multi-layered neural network that, for a given
state outputs a vector of actions given a set of parameters of the network. The
problem is formulated as a global Markov Decision Process (MDP) where the
system global states and global actions are formulated as the combination of IoT
devices local states and actions. It is defined by the tuple

〈
S,A, T,R, γ

〉
, where:

– S: the set of global states of the system.
– A: the set of joint actions of all the IoT devices.
– T : the transition probability function defined as: T (s, a, s′) = Pr(s′|s, a),

where s, s′ ∈ S and a ∈ A.
– R : S ×A× S 7→ R: the reward function of the model.
– γ: a discount factor that decreases the impact of the past reward.

Let Sj be the set of local states of the IoT device j and J the set of all the
devices. The global state space S is obtained through the Cartesian product of
IoT devices local states: S =

∏
j∈J

Sj . Each local state sj ∈ Sj is as follows:

sj = (Γj , χj); Γj ∈ [0, 1], χj ∈ {0, 1, . . . , χmax} (1)

where Γj is the trust value of the IoT device j computed in Algorithm 1 and
χj is the energy state of j. Trust and energy state are dynamic, so they could
change from state to state. The global action space of the parameter edge server
is the joint action space of each device: A =

∏
j∈J

Aj where Aj is the set of local

actions of j. A local action aj ∈ Aj is as follows:

aj = (σj , l
χ
j , ξj); σj ∈ {0, 1} , lχj ∈ {0, 1, . . . , χ

max} , ξj ∈ R (2)

where σj = 1 means the parameter server assigns a training task to the IoT
device j; σj = 0 otherwise, lχj refers to the amount of energy needed by the
IoT device j to download, train and upload the model, and ξj is the cost of
transmitting the model from the parameter server to the device j and running
the model. For an action to be feasible from a global state s to s′, the following
condition should hold:

lχj (s′) ≤ χj(s) ∀j ∈ J (3)

where lχj (s′) refers to lχj in the action leading to s′ and χj(s) is χj in s. Finally,
to define the reward function R, the objective of maximizing the selection of
trusted IoT devices having enough energy to receive and perform the training
task is considered. The cost ξj is also considered proportional to the maximum
cost ξmax. The reward ψj for the device j is a function of state s ∈ S and action
a ∈ A as follows:

ψj(s, a) =

{
Γj .χj − ξj

ξmax , if lχj ≤ χj .
− ξj
ξmax , otherwise.

(4)

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 13

Thus, along with the trust scores of the IoT devices, the edge server accounts
for the available energy level of the devices to make sure that these devices have
enough battery capacity to download, train and upload the model.
The global reward of the parameter server is as follows:

R(s, a) =
∑
j∈J

ψj(s, a) (5)

The parameter edge server determines the optimal policy π∗ : S → A that
indicates the actions to be taken at each state to maximize the cumulative re-
ward. The essential goal of the Q-learning (QL) algorithm used to find π∗ is to
update the Q-value of a state-action pair, Q(s, a), which encodes the expected
future discounted reward for taking action a in state s. The optimal action-value
function Q∗(s, a) is Q∗(s, a) = max

π
Qπ(s, a). This optimal value function can be

nested within the Bellman optimality equation as follows:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

Pr(s′|s, a).max
a′∈A

Q∗(s′, a′) (6)

Depending on the Q-table that results from updating the Q(s, a) values, the
parameter server determines the optimal action from any state to maximize the
cumulative reward. The QL algorithm is practical for networks with small state
and action spaces only, but when the number of network participants increases
(which is the case of IoT networks that consist of a large number of devices), the
problem of assigning training tasks to the IoT devices becomes high dimensional.
The Deep QL (DQL) algorithm (a combination of QL and deep neural network
DNN) comes into play to solve the high dimensionality problem. The input of
the DNN is one of states of the online network, and the outputs are the Q-values
Q(s, a; θ) of all the possible actions, with θ being the weight matrix of the DNN.
The DNN needs to be trained by using experiences (s, a,R(s, a), s′) to obtain the
approximate values Q∗(s, a). We use the Mean Square Error (MSE) to define the
loss function and DNN uses the Bellman equation to minimize this loss function
as follows:

L(θi) = E[(R(s, a) + γ arg max
a′∈A

Q(s′, a′; θ′i)−Q(s, a; θi))
2] (7)

where θi represents the parameters of the online network at the ith iteration,
θ′i represents the parameters of the target network at the ith iteration, and E[.]
denotes the expected value. Note that the action a is selected based on the ε-
greedy policy. By using the max operator (which uses the same Q-values to select
and to evaluate an action in standard QL and DQN), we observe that it is more
likely that this operator selects overestimated values, resulting in overoptimistic
estimates. To prevent such a problem, we should decouple the action selection
from the evaluation by employing the double deep Q-network (DDQN) [13]. The
main feature of DDQN is the use of two separate DNNs, i.e., an online network
with weight set θ and a target network with weight set θ′′. The DDQN employs
two valuation functions for two autonomous DNNs learned through randomly

14 G. Rjoub et al.

assigning experiences to update one of the two value functions, resulting in two
sets of weights θ for the first DNN and θ′′ for the second DNN. At each iteration,
the weights of the online network are updated, while those of the target network
are kept constant to determine the greedy policy. The target function of our
DDQN-Trust error is defined by:

TDDQN−Trust(s, a, s
′) = R(s, a) + γQ(s′, arg max

a′∈A
Q(s′, a′; θ); θ′′) (8)

To compute the optimal value Q(s′, a′; θ), the weight θ of the online network
uses the next state s′ to select an action, while the target network θ′′ uses the
next state s′ to evaluate the action. Then, a stochastic gradient descent step is
performed to update the weights of the online networks θ based on the loss

3.3 DDQN-Trust-based Federated Learning Model

In this section, we describe how the FL process can be executed after inte-
grating our trust establishment and scheduling mechanisms. A DNN model
is distributed over the IoT devices to be collaboratively trained following the
FL framework. Let Dj be a local dataset collected by the IoT device j, Dj =
{(x1j , y1j), . . . , (xnj , ynj)}, where xij is the ith training sample and yij represents
the corresponding ground-truth label. In this work, we take a general Convolu-
tional Neural Network (CNN) model for analysis. The edge server receives the
local gradient vectors from the trusted IoT devices and then aggregates (aver-
ages) them to obtain the global gradient using Equation (9):

g [ν] =
1∑

j∈J
|ϑj |

∑
j∈J
|ϑj |gj [ν] (9)

where ϑj is a subset of local data collected from the IoT device j for a training
period ν, with ϑj ⊆ Dj , and gj [ν] being the local gradient which is computed
as per Equation (10).

gj [ν] = ∇wjLj (wj , ϑj) (10)

where wj is the local parameter set of the CNN model, Lj is the local loss
function on the IoT device j to measure the training error and ∇wjLj(.) is the
gradient of the loss function Lj with respect to wj .

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 15

Algorithm 2 DDQN-Trust-based Federated Learning Algorithm for IoT Selec-
tion
1: Initialize the global parameter set of the CNN model
2: for each round τ = 1, 2, . . . do
3: Use Algorithm 1 to compute the trust scores of all the IoT devices
4: Use DDQN-Trust to select a subset E ⊆ J of IoT devices to participate in the training
5: Send Wτ to each selected IoT
6: for each IoT device j ∈ E do % E = {1, 2, . . . , E}
7: Execute IoTLocalUpdate(Wτ) % See Algorithm 3
8: end for

9: Wτ = 1
n

E∑
j=1

njwj

10: end for

In Algorithms 2 and 3, we describe the federated learning process after em-
bedding our proposed trust establishment mechanism and DDQN-Trust schedul-
ing policy to improve the selection of IoT devices. In Algorithm 2, nj is the data
size available on IoT device j, n is the size of the whole data across all devices,
E is the total number of selected devices, τ is the training communication round
index and Wτ is the global parameter set at round τ .

Algorithm 3 IoT Local Training

1: IoTLocalUpdate(Wτ)
2: wj = Wτ

3: for each local iteration t = 1 to T do
4: wj = wj − η∇wjLj(wj , ϑj) % η is the learning rate

5: end for
6: return wj to the edge server

Each IoT device runs the stochastic gradient descent (SGD) algorithm based
on the received global gradient. The local loss function on each device j is defined
as per Equation (11):

Lj (wj) =
1

Nj

∑
(x,y)∈Dj

` (wj , x, y) (11)

where ` (wj , x, y) is the sample-wise loss function that quantifies the predic-
tion error between the learning output (via input x and parameter wj) and the
ground-truth label y, and Nj is the number of data samples of the device j.
Each device seeks to minimize the local loss function defined in Equation (11)
to minimize the training error. On a global level, the main target of the training
task at the edge server is to optimize the parameters towards minimizing the
global loss function L(W) via the SGD algorithm expressed as follows:

L(W) =
1∑E

j=1Nj

E∑
j=1

NjLj(wj) (12)

16 G. Rjoub et al.

3.4 Federated Learning Aggregation Approaches

We integrate our solution with four existing federated learning approaches,
namely, FedProx, FedShare, FedSGD, and FedAvg. The objective is to pick the
approach that best suits our solution.

3.4.1 FedAvg

The FedAvg approach relies on a single-model strategy that leverages an av-
eraged results across many clients. In FedAvg, the server chooses a subset of IoT
devices in each communication round and sends the global model back to them.
Each device will perform a predefined number of gradient descent iterations on
its local data, before pushing the model’s weight to the server. Finally, the server
averages these weights to generate a new global model. Technically speaking, af-
ter receiving the local model wτj and gradient g, the server aggregates them using
Algorithm 2 (Line 9) and Equation (9) and shares w and g with the IoT devices.

3.4.2 FedSGD

The main idea of FedSGD is to let the IoT devices minimize a surrogate
function Φτj [10] after each global round, as follows:

Φτj (w) = Ξj(w) + 〈η∇gτ−1 −∇gj(wτ−1), w〉 (13)

with Ξj being L-smooth and β strongly convex, ∀j [25], and Φ inspired
by the Distributed Approximate NEewton (DANE) scheme introduced in [33].
Furthermore, we include both local and global gradient estimates weighted by
a controllable parameter η. Thereafter, the IoTs send not only the local model
wj , but also local gradient estimates ∇gτ−1 to speed the convergence up in the
experiments.

3.4.3 FedShare

In FedShare, a globally accessed dataset G with a uniform distribution is used
to mitigate the impact of data heterogeneity across the client devices. Specifi-
cally, a sample of this dataset is given to each IoT device in the initialization
phase. The shared data from G is combined with the private data of each de-
vice to form the training set of the device’s local model. The server then ag-
gregates the local models from the IoT devices using FedAvg to construct the
global model. In FedShare, two trade-offs are considered. The first one is the
trade-off between the test accuracy and the size of G, which is quantified as

β =
‖G‖

‖
∏
j∈J

Dj‖
× 100%. The second trade-off is between the test accuracy and

the random distributed fraction [39].

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 17

3.4.4 FedProx
To a certain extent, FedProx is similar to FedAvg in that devices are chosen

at each round, which means that local updates are made to a subset of devices,
and these are then averaged to obtain a global model. Therefore, to reiterate,
instead of all training devices having the same number of rounds, FedProx indi-
rectly trains for various devices having varying rounds. In other words, instead
of assuming a uniform number of local rounds Ω for all devices throughout the
training process, FedProx implicitly accommodates variable Ω’s for different de-
vices and at different iterations. We adopt Ωτj -inexact solution [19] to find wτj
for each IoT device j at round τ where Ωτj -inexact minimizer minimizes the
following objective hj :

wτ+1
j ≈ argminw hj(w;wτ) = Lj(wj) +

T

2
‖w − wτ‖2 (14)

4 Implementation and Experiments

In this section, we explain the experimental setup we used to implement our
double deep Q network scheduling algorithm. We also report and compare the
experimental results.

4.1 Experimental Setup

To carry out our experiments, we used TensorFlow Federated (TFF), which
is an open-source framework for machine learning on decentralized data. TFF
supports a variety of distributed learning scenarios executed on a large number
of heterogeneous devices having diverse capabilities.

To achieve an effective high level accuracy, the FL model requires a labelled
dataset. The majority of the data at the edge computing environment are unla-
beled, which cannot be used directly to train the model. Data collected by IoT
devices may also have a bias towards the environment within which they operate.
For example, the vehicle’s dashcam that runs on highways mostly captures traf-
fic signs, whereas a video from a car travelling in the city contains various shop
signs. This may lead to a high degree of data diversity across those IoT devices.
In other words, the data are nonindependent and identically distributed (non-
IID). In contrast, most of the existing analytical or machine learning methods
are based on IID data. Therefore, there is a need for an appropriate approach to
deal with such a type of real-world datasets. In this article, we used real-world
data for object detection, and well-known benchmark dataset for image classifi-
cation. We used the CIFAR-10 3 dataset for image classification, which consists
of 60, 000 32 × 32 colour images in 10 classes, with 6000 images per class. The
dataset consists of 50, 000 training images and 10000 test images. We divide the
CIFAR-10 non-IID data over 1000 IoT devices into 500 shards of size 100 after
sorting the whole data by label index, then assign five shards to each device.

3 https://www.cs.toronto.edu/ kriz/cifar.html

18 G. Rjoub et al.

On the other hand, for the object detection, we used the Udacity Self Driving
Car Dataset 4, which contains 97, 942 labels across 11 classes and 15, 000 im-
ages. There are 1, 720 images with no labels. The employed CNN model consists
of six 3 × 3 convolution layers as follows: 32, 32, 64, 64, 128, 128. Each layer
is activated by a Rectified Linear Unit (ReLU) and batch normalized. Every
pair of convolution layers is followed by a 2 × 2 max pooling layer, followed by
three fully-connected layers (where each fully connected layer takes a 2D input
of 382 and 192 units) with ReLU activation and another 10 units activated by
soft-max. The model is trained on IoT devices using the Stochastic Gradient
Descent (SGD) algorithm with a batch size of 128 rows. The training dataset
was distributed over a set of 1000 IoT devices (i.e., |J | = 1000) of 4 types: type-1
with 1 CPU core and 1.75GB RAM, type-2 with 2 CPU cores and 3.5GB RAM,
type-3 with 4 CPU cores and 7GB RAM, and type-4 with 8 CPU cores and
14GB RAM. At each iteration, the edge server selects the top 50 IoT devices
returned by the scheduling algorithm (i.e., E = 50).

We evaluate the performance of the proposed DDQN-Trust solution against
the traditional DQN [26] which has lately been used for client selection in fed-
erated learning and with the random scheduling approach, the default approach
in federated learning. The proposed DDQN-Trust model consists of two Deep
Neural Networks (DNNs), where each DNN has a size of 32×32×32. The Adam
optimizer is used to adjust the learning rate during the training. The learning
rate η is initially set to 0.01 to avoid losing the local minima. In general, the deep
Q learning approach prefers the long-term reward; therefore, we set the value
of the discount factor γ to 0.9. We use the ε-greedy policy with ε = 0.9 that
balances between the exploration and exploitation. During the training phase,
ε is linearly reduced to zero to move from exploration to exploitation. Our ap-
plication is written in Python, version 3, and executed in a 64-bit Windows
7 environment on a machine equipped with an Intel Core i7-6700 CPU 3.40
GHz Processor and 16 GB RAM. The implementation code is open source and
available on GitHub 5.

4.2 Experimental Results

In Fig. 3, we measure the accuracy of our DDQN-Trust approach against the
classic DDQN that does not include our trust algorithm. The considered accu-
racy is yielded by the FedProx, FedShare, FedSGD and FedAvg approaches. We
ran the experiments over 1000 iterations to analyse the scalabilty of the different
considered solutions. The first observation that can be drawn from the figure is
that the trust-based approaches, i.e., FedProx, FedShare, FedSGD and FedAvg
with DDQN-Trust achieve higher accuracy compared to the approaches that do
not consider trust, i.e., FedProx, FedShare, FedSGD, and FedAvg with DDQN.
In particular, the accuracy levels obtained by the FedProx, FedShare, FedSGD,

4 https://public.roboflow.com/object-detection/self-driving-car
5 https://github.com/gaith7/Trust Fed

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 19

and FedAvg approaches with DDQN-Trust are 93%, 86%, 83%, and 78% respec-
tively, whereas the accuracy levels obtained by the FedProx, FedShare, FedSGD,
and FedAvg approaches with DDQN are 77%, 72%, 68%, and 65% respectively.
The second observation that can be drawn from Fig. 3 is that the trust-based
approaches converge faster to a stable accuracy level compared to the non-trust
approaches. The improvements brought by the trust-based approaches mainly
stem from their consideration of the trust and energy values when selecting the
devices that will participate in the federated training.

0 100 200 300 400 500 600 700 800 900 1000

Iteration

-20

0

20

40

60

80

100

A
c
c
u

ra
c
y

FedProx (DDQN-Trust)

FedShare (DDQN-Trust)

FedSGD (DDQN-Trust)

FedAvg (DDQN-Trust)

FedProx (DDQN)

FedShare (DDQN)

FedSGD (DDQN)

FedAvg (DDQN)

Fig. 3: Accuracy over iteration rounds of different aggregation methods with the
CNN model of our DDQN-Trust and classic DDQN

In Fig. 4, we compare the accuracy of our trust-based approach against
the DQN and random scheduling approaches used to select the IoT devices
while varying the federation approaches. Specifically, we compare the studied
approaches (i.e., FedProx, FedShare, FedSGD, and FedAvg) with the DDQN-
Trust, DQN, and random scheduling approaches over 1000 iterations. We notice
from the sub-figures that the accuracy obtained by the DDQN-Trust schedul-
ing approach is higher than that obtained by the DQN and random approaches
under the different aggregation methods. In particular, the accuracy levels ob-
tained by the DDQN-Trust, DQN, and random scheduling are of 94%, 86%, and
77% respectively with the FedProx aggregation framework, 91%, 82%, and 74%
respectively with the FedShare framework, 88%, 81%, and 72% respectively with
the FedSGD framework, and 83%, 74%, and 69% respectively with the FedAvg
framework. We also notice from the sub-figures that DDQN-Trust converges to
a stable accuracy level faster than the DQN and random approaches. The im-

20 G. Rjoub et al.

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

DDQN-Trust

DQN

RS

(a) FedProx

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

DDQN-Trust

DQN

RS

(b) FedShare

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

DDQN-Trust

DQN

RS

(c) FedSGD

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

DDQN-Trust

DQN

RS

(d) FedAvg

Fig. 4: Performance of the trained CNNs with DDQN-Trust, DQN, and RS
scheduling models

provements with regard to the random scheduling approach mainly stem from
the fact that DDQN-Trust leverages the trust and energy values of the IoT de-
vices rather than making random selections. Compared to the traditional DQN,
DDQN-Trust improves the accuracy since it relies on a double Q learning model
that provides a better estimation of the potential actions. This is thanks to its
second Q-function approximator, which helps avoid overoptimism. In DQN, on
the other hand, the Q values are noisy; thus when we take the maximum over
all the actions, there is a considerable risk of obtaining an overestimated value.

One important observation from Fig. 3 and Fig. 4 is that FedProx has the
highest accuracy and the fastest convergence compared to the other three ag-
gregation approaches. This is because FedProx addresses the system and statis-
tical heterogeneity across the IoT devices, which makes its aggregation results
more accurate. On the other hand, the classic FedAvg yields the lowest accu-
racy level and the slowest convergence, may be due to the fact that when the
local data distributions across the devices are highly heterogeneous, the local
updating schemes may allow local models to move too far away from the ini-

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 21

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

20

40

60

80

100

120

140

160

180

200

R
e

w
a

rd

RS

DQN

DDQN-Trust

(a) FedProx

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

20

40

60

80

100

120

140

160

180

200

R
e

w
a

rd

RS

DQN

DDQN-Trust

(b) FedShare

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

20

40

60

80

100

120

140

160

180

200

R
e

w
a

rd

RS

DQN

DDQN-Trust

(c) FedSGD

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

20

40

60

80

100

120

140

160

180

200

R
e

w
a

rd

RS

DQN

DDQN-Trust

(d) FedAvg

Fig. 5: Reward values in DDQN-Trust, DQN, and Random scheduling policies

tial global model, potentially damaging the convergence. FedShare and FedSGD
are characterized by an acceptable accuracy level. In fact, FedShare depends on
a data-sharing strategy that seeks to distribute a small subset of independent
global data, characterized by a uniform distribution over classes, to the local
devices. This helps the federated learning model be less influenced by the data
heterogeneity across the IoT devices. On the other hand, FedSGD relies on a
local surrogate function that is designed for each IoT device to allow it to solve
its local optimization problem approximately up to a local accuracy level.

In Fig. 5, we provide experimental comparisons in terms of cumulative re-
ward. We ran the experiments over 1000 iterations. We notice from the sub-
figures that the reward obtained by the DDQN-Trust is much higher than those
obtained by the DQN and random scheduling approaches. In particular, the
average rewards obtained by the DDQN-Trust, DQN, and random approaches
are 188, 174, and 107, respectively with the FedProx framework (Fig. 5a), 181,
167, and 97 respectively with the FedShare framework (Fig. 5b), 177, 162, and
95 respectively with FedSGD (Fig. 5c), and 162, 160, and 81 respectively with
FedAvg (Fig. 5d). This means the proposed DDQN-Trust approach enables the

22 G. Rjoub et al.

edge server to better learn the scheduling policy that best maximizes the reward.
In the random approach, the edge server randomly selects IoT devices, which
increases the risk of selecting unreliable devices or devices that have insufficient
energy levels and resources. This endangers the whole collaborative training
process and makes the performance unstable. Moving to the traditional DQN
approach, its overestimation of the future actions leads to a natural reduction
in the overall reward that results from the chosen actions.

5 Conclusion

We designed and formulated a trust and energy-aware FL scheduling approach in
IoT environments using DDQN while considering four aggregation approaches
namely, FedAvg, FedProx, FedShare, and FedSGD. Experiments conducted on
the CIFAR-10 real-world dataset reveal that our DDQN-Trust solution outper-
forms, in terms of accuracy and cumulative reward, the most commonly used
scheduling approaches in FL, i.e., DQN and random scheduling. Our solution
accurately selects the appropriate set of IoT devices whose participation in the
federated training improves the machine learning model’s accuracy. We studied
the accuracy of the three models by implementing a CNN model in a federated
fashion on the IoT devices and varying the aggregation approaches. The results
revealed that our DDQN-Trust solution, DQN, and random scheduling yield
respectively an accuracy of 94%, 86%, and 77% with the FedProx aggregation
framework, 91%, 82%, and 74% respectively with FedShare, 88%, 81%, and 72%
with FedSGD, and 83%, 74%, and 69% with FedAvg. Besides, our DDQN-Trust
converges faster to a stable accuracy level. Finally, the results revealed that the
reward obtained by our proposed solution is much higher than those obtained by
the DQN and random scheduling approaches. In particular, the average rewards
obtained by the DDQN-Trust, DQN, and random approaches are 188, 174, and
107, respectively with FedProx, 181, 167, and 97 respectively with FedShare, 177,
162, and 95 respectively with FedSGD, and 162, 160, and 81 respectively with Fe-
dAvg. In the future, we plan to extend this work by investigating and formulating
the scheduling approach using Dueling Double Deep Q Network (DDDQN) and
actor-critic, which could help better reduce the overhead and time complexity
of the scheduling process by avoiding unnecessary computations.

References

1. AbdulRahman, S., Tout, H., Mourad, A., Talhi, C.: FedMCCS: multicriteria client
selection model for optimal IoT federated learning. IEEE Internet of Things Jour-
nal 8(6), 4723–4735 (2020)

2. Anh, T.T., Luong, N.C., Niyato, D., Kim, D.I., Wang, L.C.: Efficient training
management for mobile crowd-machine learning: A deep reinforcement learning
approach. IEEE Wireless Communications Letters 8(5), 1345–1348 (2019)

3. Bataineh, A.S., Bentahar, J., Mizouni, R., Abdel Wahab, O., Rjoub, G., El Barachi,
M.: Cloud computing as a platform for monetizing data services: A two-sided game

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 23

business model. IEEE Transactions on Network and Service Management p. In
Press (2021). https://doi.org/10.1109/TNSM.2021.3128160

4. Bataineh, A.S., Bentahar, J., Wahab, O.A., Mizouni, R., Rjoub, G.: A game-based
secure trading of big data and IoT services: Blockchain as a two-sided market.
In: International Conference on Service-Oriented Computing. pp. 85–100. Springer
(2020)

5. Bentahar, J., Drawel, N., Sadiki, A.: Quantitative group trust: A two-stage veri-
fication approach. In: Proc. of the 21st International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2022), P. Faliszewski, V. Mascardi, C.
Pelachaud, M.E. Taylor (eds.), May 9–13, 2022,. pp. xx–xx (2022)

6. Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H.V., Cui, S.: A joint learning and
communications framework for federated learning over wireless networks. CoRR
abs/1909.07972 (2019)

7. Chen, S., Shen, C., Zhang, L., Tang, Y.: Dynamic aggregation for heterogeneous
quantization in federated learning. IEEE Transactions on Wireless Communica-
tions (2021)

8. Dai, H., Zeng, X., Yu, Z., Wang, T.: A scheduling algorithm for autonomous driving
tasks on mobile edge computing servers. J. Syst. Archit. 94, 14–23 (2019)

9. Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., Zeng, J.: Q-learning based dynamic
task scheduling for energy-efficient cloud computing. Future Gener. Comput. Syst.
108, 361–371 (2020)

10. Dinh, C.T., Tran, N.H., Nguyen, M.N., Hong, C.S., Bao, W., Zomaya, A.Y.,
Gramoli, V.: Federated learning over wireless networks: Convergence analysis and
resource allocation. IEEE/ACM Transactions on Networking (2020)

11. Drawel, N., Bentahar, J., Laarej, A., Rjoub, G.: Formalizing group and propagated
trust in multi-agent systems. In: Bessiere, C. (ed.) Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020. pp.
60–66 (2020). https://doi.org/10.24963/ijcai.2020/9

12. Drawel, N., Bentahar, J., Laarej, A., Rjoub, G.: Formal verification of group and
propagated trust in multi-agent systems. Autonomous Agents and Multi-Agent
Systems p. In Press (2022). https://doi.org/10.1007/s10458-021-09542-6

13. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA. pp. 2094–2100. AAAI Press (2016)

14. Hu, C., Jiang, J., Wang, Z.: Decentralized federated learning: A segmented gossip
approach. CoRR abs/1908.07782 (2019)

15. Huang, J., Li, S., Chen, Y.: Revenue-optimal task scheduling and resource manage-
ment for IoT batch jobs in mobile edge computing. Peer Peer Netw. Appl. 13(5),
1776–1787 (2020)

16. Iglewicz, B., Hoaglin, D.C.: How to detect and handle outliers, vol. 16. Asq Press
(1993)

17. Khan, L.U., Saad, W., Han, Z., Hossain, E., Hong, C.S.: Federated learning for
internet of things: Recent advances, taxonomy, and open challenges. IEEE Com-
munications Surveys & Tutorials (2021)

18. Lei, L., Tan, Y., Zheng, K., Liu, S., Zhang, K., Shen, X.: Deep reinforcement
learning for autonomous internet of things: Model, applications and challenges.
IEEE Commun. Surv. Tutorials 22(3), 1722–1760 (2020)

19. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated
optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)

24 G. Rjoub et al.

20. Lin, C., Deng, D., Chih, Y., Chiu, H.: Smart manufacturing scheduling with edge
computing using multiclass deep Q network. IEEE Trans. Ind. Informatics 15(7),
4276–4284 (2019)

21. Luo, S.: Dynamic scheduling for flexible job shop with new job insertions by deep
reinforcement learning. Appl. Soft Comput. 91, 106208 (2020)

22. Ma, Z., Zhao, M., Cai, X., Jia, Z.: Fast-convergent federated learning with class-
weighted aggregation. Journal of Systems Architecture 117, 102125 (2021)

23. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep
reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics
in Networks. pp. 50–56 (2016)

24. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics. pp. 1273–1282. PMLR (2017)

25. Nesterov, Y., et al.: Lectures on convex optimization, vol. 137. Springer (2018)
26. Nguyen, H.T., Luong, N.C., Zhao, J., Yuen, C., Niyato, D.: Resource allocation

in mobility-aware federated learning networks: A deep reinforcement learning ap-
proach. In: 6th IEEE World Forum on Internet of Things, WF-IoT 2020, New
Orleans, LA, USA, June 2-16, 2020. pp. 1–6. IEEE (2020)

27. Nishio, T., Yonetani, R.: Client selection for federated learning with heterogeneous
resources in mobile edge. In: 2019 IEEE International Conference on Communica-
tions, ICC 2019, Shanghai, China, May 20-24, 2019. pp. 1–7. IEEE (2019)

28. Rjoub, G., Bentahar, J., Abdel Wahab, O., Saleh Bataineh, A.: Deep and rein-
forcement learning for automated task scheduling in large-scale cloud computing
systems. Concurrency and Computation: Practice and Experience (2020)

29. Rjoub, G., Bentahar, J., Wahab, O.A.: Bigtrustscheduling: Trust-aware big data
task scheduling approach in cloud computing environments. Future Gener. Com-
put. Syst. 110, 1079–1097 (2020)

30. Rjoub, G., Bentahar, J., Wahab, O.A., Bataineh, A.S.: Deep smart scheduling: A
deep learning approach for automated big data scheduling over the cloud. In: 7th
International Conference on Future Internet of Things and Cloud, FiCloud 2019,
Istanbul, Turkey, August 26-28, 2019. pp. 189–196. IEEE (2019)

31. Rjoub, G., Wahab, O.A., Bentahar, J., Bataineh, A.: A trust and energy-aware
double deep reinforcement learning scheduling strategy for federated learning on
IoT devices. In: International Conference on Service-Oriented Computing. pp. 319–
333. Springer (2020)

32. Rjoub, G., Wahab, O.A., Bentahar, J., Bataineh, A.S.: Improving autonomous
vehicles safety in snow weather using federated YOLO CNN learning. In: Interna-
tional Conference on Mobile Web and Intelligent Information Systems. pp. 121–134.
Springer (2021)

33. Shamir, O., Srebro, N., Zhang, T.: Communication-efficient distributed optimiza-
tion using an approximate newton-type method. In: International conference on
machine learning. pp. 1000–1008. PMLR (2014)

34. Wahab, O.A., Bentahar, J., Otrok, H., Mourad, A.: Resource-aware detection and
defense system against multi-type attacks in the cloud: Repeated bayesian stack-
elberg game. IEEE Transactions on Dependable and Secure Computing (2019)

35. Wahab, O.A., Cohen, R., Bentahar, J., Otrok, H., Mourad, A., Rjoub, G.: An
endorsement-based trust bootstrapping approach for newcomer cloud services. Inf.
Sci. 527, 159–175 (2020)

36. Wahab, O.A., Mourad, A., Otrok, H., Taleb, T.: Federated machine learning: Sur-
vey, multi-level classification, desirable criteria and future directions in communi-
cation and networking systems. IEEE Communications Surveys & Tutorials (2021)

Trust-driven Reinforcement Selection Strategy for IoT Federated Learning 25

37. Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., Chen, M.: In-edge AI: intelligen-
tizing mobile edge computing, caching and communication by federated learning.
IEEE Netw. 33(5), 156–165 (2019)

38. Yang, H.H., Liu, Z., Quek, T.Q.S., Poor, H.V.: Scheduling policies for federated
learning in wireless networks. IEEE Trans. Commun. 68(1), 317–333 (2020)

39. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

40. Zhou, Z., Yang, S., Pu, L., Yu, S.: CEFL: online admission control, data scheduling,
and accuracy tuning for cost-efficient federated learning across edge nodes. IEEE
Internet Things J. 7(10), 9341–9356 (2020)

41. Zhu, G., Liu, D., Du, Y., You, C., Zhang, J., Huang, K.: Toward an intelligent edge:
Wireless communication meets machine learning. IEEE Communications Magazine
58(1), 19–25 (2020)

