Gabriele Santin

Gabriele Santin
Fondazione Bruno Kessler | FBK · Digital Society

PhD

About

50
Publications
5,533
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
373
Citations
Additional affiliations
September 2019 - present
Fondazione Bruno Kessler
Position
  • Researcher
January 2017 - September 2019
SimTech Simulation Technology
SimTech Simulation Technology
Position
  • Researcher
November 2015 - September 2019
Universität Stuttgart
Position
  • PostDoc Position
Education
January 2013 - March 2016
University of Padova
Field of study
  • Computational Mathematics
October 2009 - July 2012
University of Padova
Field of study
  • Applied Mathematics
October 2006 - October 2009
University of Padova
Field of study
  • Mathematics

Publications

Publications (50)
Article
Full-text available
Policy makers have implemented multiple non-pharmaceutical strategies to mitigate the COVID-19 worldwide crisis. Interventions had the aim of reducing close proximity interactions, which drive the spread of the disease. A deeper knowledge of human physical interactions has revealed necessary, especially in all settings involving children, whose edu...
Preprint
Error estimates for kernel interpolation in Reproducing Kernel Hilbert Spaces (RKHS) usually assume quite restrictive properties on the shape of the domain, especially in the case of infinitely smooth kernels like the popular Gaussian kernel. In this paper we leverage an analysis of greedy kernel algorithms to prove that it is possible to obtain co...
Preprint
Federated Leaning is an emerging approach to manage cooperation between a group of agents for the solution of Machine Learning tasks, with the goal of improving each agent's performance without disclosing any data. In this paper we present a novel algorithmic architecture that tackle this problem in the particular case of Anomaly Detection (or clas...
Preprint
Fairness-aware GANs (FairGANs) exploit the mechanisms of Generative Adversarial Networks (GANs) to impose fairness on the generated data, freeing them from both disparate impact and disparate treatment. Given the model's advantages and performance, we introduce a novel learning framework to transfer a pre-trained FairGAN to other tasks. This reprog...
Chapter
Standard kernel methods for machine learning usually struggle when dealing with large datasets. We review a recently introduced Structured Deep Kernel Network (SDKN) approach that is capable of dealing with high-dimensional and huge datasets - and enjoys typical standard machine learning approximation properties. We extend the SDKN to combine it wi...
Chapter
Full-text available
This chapter deals with kernel methods as a special class of techniques for surrogate modeling. Kernel methods have proven to be efficient in machine learning, pattern recognition and signal analysis due to their flexibility, excellent experimental performance and elegant functional analytic background. These data-based techniques provide so called...
Preprint
Kernel-based schemes are state-of-the-art techniques for learning by data. In this work we extend some ideas about kernel-based greedy algorithms to exponential-polynomial splines, whose main drawback consists in possible overfitting and consequent oscillations of the approximant. To partially overcome this issue, we introduce two algorithms which...
Preprint
Full-text available
Assessing the similarity of two images is a complex task that has attracted significant efforts in the image processing community. The widely used Structural Similarity Index Measure (SSIM) addresses this problem by quantifying a perceptual structural similarity. In this paper we consider a recently introduced continuous SSIM (cSSIM), which allows...
Preprint
Semi-lagrangian schemes for discretization of the dynamic programming principle are based on a time discretization projected on a state-space grid. The use of a structured grid makes this approach not feasible for high-dimensional problems due to the curse of dimensionality. Here, we present a new approach for infinite horizon optimal control probl...
Article
Full-text available
For dynamical systems with a non hyperbolic equilibrium, it is possible to significantly simplify the study of stability by means of the center manifold theory. This theory allows to isolate the complicated asymptotic behavior of the system close to the equilibrium point and to obtain meaningful predictions of its behavior by analyzing a reduced or...
Preprint
Full-text available
Policy makers have implemented multiple non-pharmaceutical strategies to mitigate the COVID-19 worldwide crisis. Interventions had the aim of reducing close proximity interactions, which drive the spread of the disease. A deeper knowledge of human physical interactions has revealed necessary, especially in all settings involving children, whose edu...
Preprint
Full-text available
Data-dependent greedy algorithms in kernel spaces are known to provide fast converging interpolants, while being extremely easy to implement and efficient to run. Despite this experimental evidence, no detailed theory has yet been presented. This situation is unsatisfactory especially when compared to the case of the data-independent $P$-greedy alg...
Preprint
Full-text available
Kernel based methods yield approximation models that are flexible, efficient and powerful. In particular, they utilize fixed feature maps of the data, being often associated to strong analytical results that prove their accuracy. On the other hand, the recent success of machine learning methods has been driven by deep neural networks (NNs). They ac...
Article
In this paper we analyze a greedy procedure to approximate a linear functional defined in a reproducing kernel Hilbert space by nodal values. This procedure computes a quadrature rule which can be applied to general functionals. For a large class of functionals, that includes integration functionals and other interesting cases, but does not include...
Preprint
Full-text available
Standard kernel methods for machine learning usually struggle when dealing with large datasets. We review a recently introduced Structured Deep Kernel Network (SDKN) approach that is capable of dealing with high-dimensional and huge datasets - and enjoys typical standard machine learning approximation properties. We extend the SDKN to combine it wi...
Article
Full-text available
Digital contact tracing is a relevant tool to control infectious disease outbreaks, including the COVID-19 epidemic. Early work evaluating digital contact tracing omitted important features and heterogeneities of real-world contact patterns influencing contagion dynamics. We fill this gap with a modeling framework informed by empirical high-resolut...
Preprint
Full-text available
The inference of novel knowledge, the discovery of hidden patterns, and the uncovering of insights from large amounts of data from a multitude of sources make Data Science (DS) to an art rather than just a mere scientific discipline. The study and design of mathematical models able to analyze information represents a central research topic in DS. I...
Preprint
Full-text available
For dynamical systems with a non hyperbolic equilibrium, it is possible to significantly simplify the study of stability by means of the center manifold theory. This theory allows to isolate the complicated asymptotic behavior of the system close to the equilibrium point and to obtain meaningful predictions of its behavior by analyzing a reduced or...
Article
Kernel based methods provide a way to reconstruct potentially high-dimensional functions from meshfree samples, i.e., sampling points and corresponding target values. A crucial ingredient for this to be successful is the distribution of the sampling points. Since the computation of an optimal selection of sampling points may be an infeasible task,...
Chapter
Full-text available
For certain dynamical systems it is possible to significantly simplify the study of stability by means of the center manifold theory. This theory allows to isolate the complicated asymptotic behavior of the system close to a non-hyperbolic equilibrium point, and to obtain meaningful predictions of its behavior by analyzing a reduced dimensional pro...
Chapter
Greedy kernel approximation algorithms are successful techniques for sparse and accurate data-based modelling and function approximation. Based on a recent idea of stabilization (Wenzel et al., A novel class of stabilized greedy kernel approximation algorithms: convergence, stability & uniform point distribution. e-prints. arXiv:1911.04352, 2019) o...
Preprint
Full-text available
Digital contact tracing is increasingly considered as a tool to control infectious disease outbreaks. As part of a broader test, trace, isolate, and quarantine strategy, digital contract tracing apps have been proposed to alleviate lock-downs, and to return societies to a more normal situation in the ongoing COVID-19 crisis. Early work evaluating d...
Preprint
Full-text available
Contact tracing, both manual and potentially with digital apps, is considered a key ingredient in the control of infectious disease outbreaks, and in the strategies making it possible to alleviate the lock-down and to return to a quasi-normal functioning of society in the COVID-19 crisis. However, the current leading modeling framework for evaluati...
Preprint
Full-text available
Greedy kernel approximation algorithms are successful techniques for sparse and accurate data-based modelling and function approximation. Based on a recent idea of stabilization of such algorithms in the scalar output case, we here consider the vectorial extension built on VKOGA. We introduce the so called $\gamma$-restricted VKOGA, comment on anal...
Preprint
Full-text available
In this paper we analyze a greedy procedure to approximate a linear functional defined in a Reproducing Kernel Hilbert Space by nodal values. This procedure computes a quadrature rule which can be applied to general functionals, including integration functionals. For a large class of functionals, we prove convergence results for the approximation b...
Preprint
Full-text available
Kernel based methods provide a way to reconstruct potentially high-dimensional functions from meshfree samples, i.e., sampling points and corresponding target values. A crucial ingredient for this to be successful is the distribution of the sampling points. Since the computation of an optimal selection of sampling points may be an infeasible task,...
Preprint
Full-text available
This chapter deals with kernel methods as a special class of techniques for surrogate modeling. Kernel methods have proven to be efficient in machine learning, pattern recognition and signal analysis due to their flexibility, excellent experimental performance and elegant functional analytic background. These data-based techniques provide so called...
Article
Full-text available
A variety of methods is available to quantify uncertainties arising with\-in the modeling of flow and transport in carbon dioxide storage, but there is a lack of thorough comparisons. Usually, raw data from such storage sites can hardly be described by theoretical statistical distributions since only very limited data is available. Hence, exact inf...
Chapter
Full-text available
We present a novel acceleration method for the solution of parametric ODEs by single-step implicit solvers by means of greedy kernel-based surrogate models. In an offline phase, a set of trajectories is precomputed with a high-accuracy ODE solver for a selected set of parameter samples, and used to train a kernel model which predicts the next point...
Presentation
Full-text available
For certain dynamical systems it is possible to significantly simplify the study of stability by means of the center manifold theory. This theory allows to isolate the complicated asymptotic behavior of the system close to a non-hyperbolic equilibrium point, and to obtain meaningful predictions of its behavior by analyzing a reduced dimensional pro...
Preprint
Full-text available
For certain dynamical systems it is possible to significantly simplify the study of stability by means of the center manifold theory. This theory allows to isolate the complicated asymptotic behavior of the system close to a non-hyperbolic equilibrium point, and to obtain meaningful predictions of its behavior by analyzing a reduced dimensional pro...
Preprint
Kernel based regularized interpolation is a well known technique to approximate a continuous multivariate function using a set of scattered data points and the corresponding function evaluations, or data values. This method has some advantage over exact interpolation: one can obtain the same approximation order while solving a better conditioned li...
Preprint
Full-text available
In this paper we consider the problem of approximating vector-valued functions over a domain $\Omega$. For this purpose, we use matrix-valued reproducing kernels, which can be related to Reproducing kernel Hilbert spaces of vectorial functions and which can be viewed as an extension to the scalar-valued case. These spaces seem promising, when model...
Chapter
Modern simulation scenarios frequently require multi-query or real-time responses of simulation models for statistical analysis, optimization, or process control. However, the underlying simulation models may be very time-consuming rendering the simulation task difficult or infeasible. This motivates the need for rapidly computable surrogate models...
Article
We propose a novel kernel-based method for image reconstruction from scattered Radon data. To this end, we employ generalized Hermite–Birkhoff interpolation by positive definite kernel functions. For radial kernels, however, a straightforward application of the generalized Hermite–Birkhoff interpolation method fails to work, as we prove in this pap...
Article
Full-text available
We present a novel acceleration method for the solution of parametric ODEs by single-step implicit solvers by means of greedy kernel-based surrogate models. In an offline phase, a set of trajectories is precomputed with a high-accuracy ODE solver for a selected set of parameter samples, and used to train a kernel model which predicts the next point...
Article
In this work, we consider two kinds of model reduction techniques to simulate blood flow through the largest systemic arteries, where a stenosis is located in a peripheral artery i.e. in an artery that is located far away from the heart. For our simulations we place the stenosis in one of the tibial arteries belonging to the right lower leg (right...
Article
Full-text available
In this work, we consider two kinds of model reduction techniques to simulate blood flow through the largest systemic arteries, where a stenosis is located in a peripheral artery i.e. in an artery that is located far away from the heart. For our simulations we place the stenosis in one of the tibial arteries belonging to the right lower leg (right...
Conference Paper
In the recent paper [1], a new method to compute stable kernel-based interpolants has been presented. This rescaled interpolation method combines the standard kernel interpolation with a properly defined rescaling operation, which smooths the oscillations of the interpolant. Although promising, this procedure lacks a systematic theoretical investig...
Article
Full-text available
Kernel-based methods provide flexible and accurate algorithms for the reconstruction of functions from meshless samples. A major question in the use of such methods is the influence of the samples locations on the behavior of the approximation, and feasible optimal strategies are not known for general problems. Nevertheless, efficient and greedy po...
Article
Full-text available
In the recent paper [8], a new method to compute stable kernel-based interpolants has been presented. This \textit{rescaled interpolation} method combines the standard kernel interpolation with a properly defined rescaling operation, which smooths the oscillations of the interpolant. Although promising, this procedure lacks a systematic theoretical...
Article
Full-text available
Kernel-based methods in Numerical Analysis have the advantage of yielding optimal recovery processes in the “native” Hilbert space \(\mathcal {H}\) in which they are reproducing. Continuous kernels on compact domains have an expansion into eigenfunctions that are both L 2-orthonormal and orthogonal in \(\mathcal {H}\) (Mercer expansion). This paper...
Article
Full-text available
In this paper we propose a new stable and accurate approximation technique which is extremely effective for interpolating large scattered data sets. The Partition of Unity (PU) method is performed considering Radial Basis Functions (RBFs) as local approximants and using locally supported weights. In particular, the approach consists in computing, f...
Article
Full-text available
In applied sciences, such as physics and biology, it is often required to model the evolution of populations via dynamical systems. In this paper, we focus on the problem of approximating the basins of attraction of such models in case of multi-stability. We propose to reconstruct the domains of attraction via an implicit interpolant using stable r...
Conference Paper
Full-text available
We present an algorithm to approximate large dataset by Radial Basis Function (RBF) techniques. The method couples a fast domain decomposition procedure with a localized stabilization method. The resulting algorithm can efficiently deal with large problems and it is robust with respect to the typical instability of kernel methods.
Article
Full-text available
In the last years, in the setting of Radial Basis Function (RBF), the study of approximation algorithms has particularly focused on the construction of (stable) bases for the associated Hilbert spaces. One of the way of describing such spaces and their properties is the study of a particular integral operator and its spectrum. We proposed in a rece...
Article
It is well known that radial basis function interpolants suffer from bad conditioning if the basis of translates is used. In the recent work by Pazouki and Schaback (2011), [5], the authors gave a quite general way to build stable and orthonormal bases for the native space NΦ(Ω)NΦ(Ω) associated to a kernel ΦΦ on a domain Ω⊂RsΩ⊂Rs. The method is sim...
Article
Full-text available
It's well know that Radial Basis Function approximants suffers of bad conditioning if the simple basis of translates is used. A recent work of M.Pazouki and R.Schaback gives a quite general way to build stable, orthonormal bases for the native space based on a factorization of the kernel matrix A. Starting from that setting we describe a particular...
Article
Full-text available
We implement in Matlab a Gauss-like cubature formula on bivariate domains whose boundary is a piecewise smooth Jordan curve (curvilinear polygons). The key tools are Green’s integral formula, together with the recent software package Chebfun to approximate the boundary curve close to machine precision by piecewise Chebyshev interpolation. Several t...

Network

Cited By

Projects

Projects (6)
Project
Digital contact tracing is increasingly considered as a tool to control infectious disease outbreaks. As part of a broader test, trace, isolate, and quarantine strategy, digital contract tracing apps have been proposedto alleviate lock-downs, and to return societies to a more normal situation in the ongoing COVID-19 crisis. Early work evaluating digital contact tracing did not consider important features and heterogeneities present in real-worldcontact patterns which impact epidemic dynamics. Here, we fill this gap by considering a modeling frameworkinformed by empirical high-resolution contact data to analyze the impact of digital contact tracing apps in the COVID-19 pandemic. We investigate how well contact tracing apps, coupled with the quarantine of identified contacts, canmitigate the spread of COVID-19 in realistic scenarios such as a university campus, a workplace, or a high school. We find that restrictive policies are more effective in confining the epidemics but come at the cost of quarantining alarge part of the population. It is possible to avoid this effect by considering less strict policies, which only considercontacts with longer exposure and at shorter distance to be at risk. Our results also show that isolation and tracingcan help keep re-emerging outbreaks under control provided that hygiene and social distancing measures limit the reproductive number to 1.5. Moreover, we confirm that a high level of app adoption is crucial to make digital contacttracing an effective measure. Our results may inform app-based contact tracing efforts currently being implementedacross several countries worldwide
Project
The "Research ITalian network on Approximation (RITA)" groups several italian numerical analysts working on Multivariate Approximation. Detailed Information about all research topics and activities of RITA members can be found at the website https://sites.google.com/site/italianapproximationnetwork/
Project
Since its inception in the 19th century through the efforts of Poincaré and Lyapunov, the theory of dynamical systems addresses the qualitative behaviour of dynamical systems as understood from models. From this perspective, the modeling of dynamical processes in applications requires a detailed understanding of the processes to be analyzed. This deep understanding leads to a model, which is an approximation of the observed reality and is often expressed by a system of Ordinary/Partial, Underdetermined (Control), Deterministic/Stochastic differential or difference equations. While models are very precise for many processes, for some of the most challenging applications of dynamical systems (such as climate dynamics, brain dynamics, biological systems or the financial markets), the development of such models is notably difficult. On the other hand, the field of machine learning is concerned with algorithms designed to accomplish a certain task, whose performance improves with the input of more data. Applications for machine learning methods include computer vision, stock market analysis, speech recognition, recommender systems and sentiment analysis in social media. The machine learning approach is invaluable in settings where no explicit model is formulated, but measurement data is available. This is frequently the case in many systems of interest, and the development of data-driven technologies is becoming increasingly important in many applications. The intersection of the fields of dynamical systems and machine learning is largely unexplored, and the goal of this project is to bring together researchers from these fields to fill the gap between the theories of dynamical systems and machine learning in the following directions: Machine Learning for Dynamical Systems: how to analyze dynamical systems on the basis of observed data rather than attempt to study them analytically. Dynamical Systems for Machine Learning: how to analyze algorithms of Machine Learning using tools from the theory of dynamical systems.