Gabriele Cavallaro

Gabriele Cavallaro
Forschungszentrum Jülich · Jülich Supercomputing Centre (JSC)

PhD in electrical and computer engineering

About

79
Publications
11,340
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
860
Citations
Additional affiliations
September 2014 - December 2014
University of Iceland
Position
  • Assistant Lecturer
Description
  • Practical Lectures given in the graduate course "Statistical Data Mining"
Education
September 2010 - March 2013
Università degli Studi di Trento
Field of study
  • Telecommunications Engineering
September 2007 - September 2010
Università degli Studi di Trento
Field of study
  • Telecommunications Engineering

Publications

Publications (79)
Conference Paper
Full-text available
High-Performance Computing (HPC) enables precise analysis of large and complex Earth Observation (EO) datasets. However, the adoption of supercomputing in the EO community faces challenges from the increasing heterogeneity of HPC systems, limited expertise, and the need to leverage novel computing technologies. This paper explores the implications...
Article
Full-text available
In the last decade, deep learning (DL) has significantly impacted industry and science. Initially largely motivated by computer vision tasks in 2-D imagery, the focus has shifted toward 3-D data analysis. In particular, 3-D surface reconstruction, i.e., reconstructing a 3-D shape from sparse input, is of great interest to a large variety of applica...
Article
Full-text available
The amount of data needed to effectively train modern deep neural architectures has grown significantly, leading to increased computational requirements. These intensive computations are tackled by the combination of last generation computing resources, such as accelerators, or classic processing units. Nevertheless, gradient communication remains...
Preprint
Full-text available
p>Land Cover (LC) maps generated by the classification of Remote Sensing (RS) data allow for the monitoring of Earth processes and the dynamics of objects and phenomena. Environmental monitoring applications can implement accurate quantification of LC variability when maps are spatiotemporally consistent and are continuously updated, as they provid...
Preprint
Full-text available
p>Land Cover (LC) maps generated by the classification of Remote Sensing (RS) data allow for the monitoring of Earth processes and the dynamics of objects and phenomena. Environmental monitoring applications can implement accurate quantification of LC variability when maps are spatiotemporally consistent and are continuously updated, as they provid...
Preprint
Full-text available
p>The increased development of quantum computing hardware in recent years has led to increased interest in its application to various areas. Finding effective ways to apply this technology to real-world use-cases is a current area of research in the Remote Sensing (RS) community. This paper proposes an Adiabatic Quantum Kitchen Sinks (AQKS) kernel...
Preprint
Full-text available
p>The increased development of quantum computing hardware in recent years has led to increased interest in its application to various areas. Finding effective ways to apply this technology to real-world use-cases is a current area of research in the Remote Sensing (RS) community. This paper proposes an Adiabatic Quantum Kitchen Sinks (AQKS) kernel...
Preprint
Full-text available
p>The performance of machine learning models relies on the quality, quantity, and diversity of annotated remote sensing datasets. However, the expensive effort required to annotate samples from diverse locations around the globe, coupled with the need for higher computation, often leads to models that are less generalizable across different regions...
Preprint
Full-text available
p>The performance of machine learning models relies on the quality, quantity, and diversity of annotated remote sensing datasets. However, the expensive effort required to annotate samples from diverse locations around the globe, coupled with the need for higher computation, often leads to models that are less generalizable across different regions...
Preprint
In recent years, the development of quantum annealers has enabled experimental demonstrations and has increased research interest in applications of quantum annealing, such as in quantum machine learning and in particular for the popular quantum SVM. Several versions of the quantum SVM have been proposed, and quantum annealing has been shown to be...
Article
Land cover maps generated by the classification of remote sensing data allow for monitoring Earth processes and the dynamics of objects and phenomena. For accurate land cover variability quantification in environmental monitoring, maps need to be spatiotemporally consistent, continually updated, and indicate permanent changes. However, producing fr...
Article
Full-text available
In recent years, the development of quantum annealers has enabled experimental demonstrations and has increased research interest in applications of quantum annealing, such as in quantum machine learning and in particular for the popular quantum Support Vector Machine (SVM). Several versions of the quantum SVM have been proposed, and quantum anneal...
Article
Recent advances in satellite technology have led to a regular, frequent and high-resolution monitoring of Earth at the global scale, providing an unprecedented amount of Earth observation (EO) data. The growing operational capability of global Earth monitoring from space provides a wealth of information on the state of our planet Earth that waits t...
Conference Paper
Full-text available
Deep Learning models have proven necessary in dealing with the challenges posed by the continuous growth of data volume acquired from satellites and the increasing complexity of new Remote Sensing applications. To obtain the best performance from such models, it is necessary to fine-tune their hyperparameters. Since the models might have massive am...
Article
The High-Performance and Disruptive Computing in Remote Sensing (HDCRS) Working Group (WG) was recently established under the IEEE Geoscience and Remote Sensing Society (GRSS) Earth Science Informatics (ESI) Technical Committee to connect a community of interdisciplinary researchers in remote sensing (RS) who specialize in advanced computing techno...
Article
Full-text available
The classification of hyperspectral images (HSIs) is an essential application of remote sensing and it is addressed by numerous publications every year. A large body of these papers present new classification algorithms and benchmark them against established methods on public hyperspectral datasets. The metadata contained in these research papers (...
Preprint
Full-text available
p>The increasing availability of quantum computers motivates researching their potential capabilities in enhancing the performance of data analysis algorithms. Similarly as in other research communities, also in Remote Sensing (RS) it is not yet defined how its applications can benefit from the usage of quantum computing. This paper proposes a form...
Preprint
Full-text available
p>The increasing availability of quantum computers motivates researching their potential capabilities in enhancing the performance of data analysis algorithms. Similarly as in other research communities, also in Remote Sensing (RS) it is not yet defined how its applications can benefit from the usage of quantum computing. This paper proposes a form...
Poster
Over the last years, deep-learning approaches have become increasingly popular in the context of Computational Fluid Dynamics (CFD), where there is growing interest in developing data-driven subfilter-scale (SFS) models for Large Eddy Simulations (LES). This has been promoted by the remarkable performance of recent Machine Learning (ML)-based archi...
Article
Land-cover classification methods are based on the processing of large image volumes to accurately extract representative features. Particularly, convolutional models provide notable characterization properties for image classification tasks. Distributed learning mechanisms on high-performance computing platforms have been proposed to speed up the...
Article
The increasing availability of quantum computers motivates researching their potential capabilities in enhancing the performance of data analysis algorithms. Similarly, as in other research communities, also in Remote Sensing (RS) it is not yet defined how its applications can benefit from the usage of quantum computing. This paper proposes a formu...
Chapter
In this article, we present JUWELS Booster, a recently commissioned high-performance computing system at the Jülich Supercomputing Center. With its system architecture, most importantly its large number of powerful Graphics Processing Units (GPUs) and its fast interconnect via InfiniBand, it is an ideal machine for large-scale Artificial Intelligen...
Article
Full-text available
The combination of data acquired by Landsat-8 and Sentinel-2 Earth Observation (EO) missions produces dense Time Series (TSs) of multispectral images that are essential for monitoring the dynamics of land-cover and land-use classes across the Earths surface with high temporal resolution. However, the optical sensors of the two missions have differe...
Conference Paper
Given the Covid-19 pandemic, the retail industry shifts many business models to enable more online purchases that produce large transaction data quantities (i.e., big data). Data science methods infer seasonal trends about products from this data and spikes in purchases, the effectiveness of advertising campaigns, or brand loyalty but require exten...
Conference Paper
Full-text available
A wide variety of Remote Sensing (RS) missions are continuously acquiring a large volume of data every day. The availability of large datasets has propelled Deep Learning (DL) methods also in the RS domain. Convolutional Neural Networks (CNNs) have become the state of the art when tackling the classification of images, however the process of traini...
Conference Paper
Full-text available
Using computationally efficient techniques for transforming the massive amount of Remote Sensing (RS) data into scientific understanding is critical for Earth science. The utilization of efficient techniques through innovative computing systems in RS applications has become more widespread in recent years. The continuously increased use of Deep Lea...
Conference Paper
Full-text available
Recent developments in Quantum Computing (QC) have paved the way for an enhancement of computing capabilities. Quantum Machine Learning (QML) aims at developing Machine Learning (ML) models specifically designed for quantum computers. The availability of the first quantum processors enabled further research, in particular the exploration of possibl...
Preprint
Full-text available
In this article, we present JUWELS Booster, a recently commissioned high-performance computing system at the J\"ulich Supercomputing Center. With its system architecture, most importantly its large number of powerful Graphics Processing Units (GPUs) and its fast interconnect via InfiniBand, it is an ideal machine for large-scale Artificial Intellig...
Conference Paper
Full-text available
We observe a continuously increased use of Deep Learning (DL) as a specific type of Machine Learning (ML) for data-intensive problems (i.e., ’big data’) that requires powerful computing resources with equally increasing performance. Consequently, innovative heterogeneous High-Performance Computing (HPC) systems based on multi-core CPUs and many-cor...
Article
Full-text available
Polar stratospheric clouds (PSCs) play a key role in polar ozone depletion in the stratosphere. Improved observations and continuous monitoring of PSCs can help to validate and improve chemistry–climate models that are used to predict the evolution of the polar ozone hole. In this paper, we explore the potential of applying machine learning (ML) me...
Preprint
Full-text available
Abstract. Polar stratospheric clouds (PSC) play a key role in polar ozone depletion in the stratosphere. Improved observations and continuous monitoring of PSCs can help to validate and enhance chemistry-climate models that are used to predict the evolution of the polar ozone hole. In this paper, we explore the potential of applying machine learnin...
Article
Full-text available
High-Performance Computing (HPC) has recently been attracting more attention in remote sensing applications due to the challenges posed by the increased amount of open data that are produced daily by Earth Observation (EO) programs. The unique parallel computing environments and programming techniques that are integrated in HPC systems are able to...
Conference Paper
Full-text available
The classification of land-cover classes in remote sensing images can suit a variety of interdisciplinary applications such as the interpretation of natural and man-made processes on the Earth surface. The Convolutional Support Vector Machine (CSVM) network was recently proposed as binary classifier for the detection of objects in Unmanned Aerial V...
Article
Full-text available
Advances in remote sensing hardware have led to a significantly increased capability for high-quality data acquisition, which allows the collection of remotely sensed images with very high spatial, spectral, and radiometric resolution. This trend calls for the development of new techniques to enhance the way that such unprecedented volumes of data...
Conference Paper
Multi-GPU systems are in continuous development to deal with the challenges of intensive computational big data problems. On the one hand, parallel architectures provide a tremendous computation capacity and outstanding scalability. On the other hand, the production path in multi-user environment faces several roadblocks since they do not grant roo...
Presentation
The development of the latest-generation sensors mounted on board of Earth observation platforms has led to a necessary re-definition of the challenges within the entire lifecycle of remote sensing data. The acquisition, processing and application phases face problems, which are well described by the Vs big data definitions: (1) Volume - the increa...
Conference Paper
Full-text available
The progress of remote sensing technologies leads to increased supply of high-resolution image data. However, solutions for processing large volumes of data are lagging behind: desktop computers cannot cope anymore with the requirements of macro-scale remote sensing applications; therefore, parallel methods running in High-Performance Computing (HP...
Conference Paper
Full-text available
Supervised image classification is one of the essential techniques for generating semantic maps from remotely sensed images. The lack of labeled ground truth datasets, due to the inherent time effort and cost involved in collecting training samples, has led to the practice of training and validating new classifiers within a single image. In line wi...
Article
Full-text available
Component trees are region-based representations that encode the inclusion relationship of the threshold sets of an image. These representations are one of the most promising strategies for the analysis and the interpretation of spatial information of complex scenes as they allow the simple and efficient implementation of connected filters. This wo...
Chapter
Current and forthcoming sensor technologies and space missions are providing remote sensing scientists and practitioners with an increasing wealth and variety of data modalities. They encompass multisensor, multiresolution, multiscale, multitemporal, multipolarization, and multifrequency imagery. While they represent remarkable opportunities for th...
Article
Full-text available
In this paper, an approach is proposed to fuse LiDAR and hyperspectral data, which considers both spectral and spatial information in a single framework. Here, an extended self-dual attribute profile (ESDAP) is investigated to extract spatial information from a hyperspectral data set. To extract spectral information, a few well-known classifiers ha...
Article
Full-text available
Morphological attribute profiles are multilevel decompositions of images obtained with a sequence of transformations performed by connected operators. They have been extensively employed in performing multi-scale and region-based analysis in a large number of applications. One main, still unresolved, issue is the selection of filter parameters able...
Article
—Remotely sensed images with very high spatial resolution provide a detailed representation of the surveyed scene with a geometrical resolution that at the present can be up to 30 cm (WorldView-3). A set of powerful image processing operators have been defined in the mathematical morphology framework. Among those, connected operators (e.g., attribu...
Article
Full-text available
One of the observations made in earth data science is the massive increase of data volume (e.g, higher resolution measurements) and dimensionality (e.g. hyper-spectral bands). Traditional data mining tools (Matlab, R, etc.) are becoming redundant in the analysis of these datasets, as they are unable to process or even load the data. Parallel and sc...
Article
In this letter, we explore the use of self-dual attribute profiles (SDAPs) for the classification of hyperspectral images. The hyperspectral data are reduced into a set of components by nonparametric weighted feature extraction (NWFE), and a morphological processing is then performed by the SDAPs separately on each of the extracted components. Sinc...
Article
The application of remote sensing to the study of human settlements relies on the availability of different types of image sources which provide complementary measurements for the characterization of urban areas. By analyzing images of very high spatial resolution (metric and submetric pixel size) it is possible to retrieve information on buildings...
Conference Paper
Morphological attribute filters have been widely exploited for characterizing the spatial structures in remote sensing images. They have proven their effectiveness especially when computed in multi-scale architectures, such as for Attribute Profiles. However, the question how to choose a proper set of filter thresholds in order to build a represent...
Conference Paper
Full-text available
The big data analytics approach emerged that can be interpreted as extracting information from large quantities of scientific data in a systematic way. In order to have a more concrete understanding of this term we refer to its refinement as smart data analytics in order to examine large quantities of scientific data to uncover hidden patterns, unk...
Conference Paper
In this paper we compare features obtained by different filtering strategies for morphological attribute filters by considering non-increasing attributes. The Attribute profiles (APs) and Self Dual Attribute Profiles (SDAPs) are obtained by sequentially applying attribute filters on tree-based image representations, such as Min- or Max-trees and In...
Article
Full-text available
Supervised classification plays a key role in terms of accurate analysis of hyperspectral images. Many applications can greatly benefit from the wealth of spectral and spatial information provided by these kind of data, including land-use and land-cover mapping. Conventional classifiers treat hyperspectral images as a list of spectral measurements...
Article
The detection of hedges is a very important task for the monitoring of a rural environment and aiding the management of their related natural resources. Hedges are narrow vegetated areas composed of shrubs and/or trees that are usually present at the boundaries of adjacent agricultural fields. In this paper, a technique for detecting hedges is pres...