
Gabriela Schaepman-Strub- Professor
- Researcher at University of Zurich
Gabriela Schaepman-Strub
- Professor
- Researcher at University of Zurich
About
195
Publications
76,555
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,244
Citations
Introduction
Current institution
Additional affiliations
March 2008 - March 2019
Publications
Publications (195)
Arctic landscapes occupy a nexus of environmental change processes, globally significant soil carbon stores, wildlife populations, and subsistence-based human societies. In response to rapid climate warming, tundra ecosystems are experiencing widespread changes to vegetation and underlying permafrost, coupled with an array of ecological disturbance...
Arctic fires have become more frequent in recent decades. They release carbon to the atmosphere through burning organic material and degrading permafrost and thus accelerate global warming. Previous research highlighted climate variables as the driving factor of fire occurrence in the Arctic, largely ignoring the contribution of human activity. Her...
The fire season of 2020 in Siberia set a precedent for extreme wildfires in the Arctic tundra. Recent estimates indicated that the 2020 fires contributed 66% of the region's burned area over the last two decades. These fires burned in the carbon‐rich permafrost landscape, releasing vast amounts of carbon, and changing land surface processes by burn...
Climate change is expected to induce shifts in the composition, structure and functioning of Arctic tundra ecosystems. Increases in the frequency and severity of tundra fires have the potential to catalyse vegetation transitions with far‐reaching local, regional and global consequences.
We propose that post‐fire tundra recovery, coupled with climat...
Background
Enchytraeids, commonly known as potworms, are small oligochaetes found worldwide in various terrestrial, freshwater and marine ecosystems. Despite their crucial role in ecosystem functioning, the diversity and abundance of Enchytraeidae are seldom studied due to the labour-intensive process of species identification. This study aims to a...
We co-created visions of desirable futures for Arctic biodiversity during a workshop which included representatives from academia, Indigenous Peoples, business and policy-making. Appreciating our diverse perspectives, we identified key actions that would enable the positive outcomes shared in our visions: boosting education, rethinking Arctic biodi...
Atolls are at risk of losing their ability to physically adapt due to rising sea levels and coral reefs’ reduced sediment supply, resulting in faster erosion of reef islands. This research examines Aldabra, a raised atoll and UNESCO World Heritage Site in the Indian Ocean with diverse coastal ecosystems, to track shoreline changes against a regiona...
Climate warming enables easier access and operation in the Arctic, fostering industrial and urban development. However, there is no comprehensive pan-Arctic overview of industrial and urban development, which is crucial for the planning of sustainable development of the region. In this study, we utilize satellite-derived artificial light at night (...
Arctic biodiversity is under threat from both climate-induced environmental change and anthropogenic activity. However, the rapid rate of change and the challenging conditions for studying Arctic environments mean that many research questions must be answered before we can strategically allocate resources for management. Addressing threats to biodi...
The Circumpolar Arctic Vegetation Map (CAVM) shows the types of vegetation that occur across the Arctic—between the Arctic Ocean to the north and the northern limit of forests (“treeline”) to the south. Here, environmental and climatic conditions
are extreme, with a short growing season and low summer temperatures.
The region supports plants such a...
Radiative forcing geoengineering is discussed as an intermediate solution to partially offset greenhouse gas-driven warming by altering the Earth’s energy budget. Here we use an Earth System Model to analyse the response in Arctic temperatures to radiative geoengineering applied under the representative concentration pathway 8.5 to decrease the rad...
Siberia experienced a prolonged heatwave in the spring of 2020, resulting in extreme summer drought and major wildfires in the North-Eastern Siberian lowland tundra. In the Arctic tundra, plants play a key role in regulating the summer land surface energy budget by contributing to land surface cooling through evapotranspiration. Yet we know little...
The Arctic ecosystems and their species are exposed to amplified climate warming and, in some regions, to rapidly developing economic activities. This study assesses, models, and maps the geographic patterns of community‐level plant species richness in the Western Siberian Arctic and estimates the relative impact of environmental and anthropogenic...
The effects of climate change on plants are particularly pronounced in the Arctic region. Warming relaxes the temperature and nutrients boundaries that limit tundra plant growth. Increased resource availability under future climate conditions may induce a shift from a conservative economic strategy to an acquisitive one. Following the leaf economic...
The rate and extent of global biodiversity change is surpassing our ability to measure, monitor and forecast trends. We propose an interconnected worldwide system of observation networks — a global biodiversity observing system (GBiOS) — to coordinate monitoring worldwide and inform action to reach international biodiversity targets.
Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, curre...
Motivation
The goal of the Russian Arctic Vegetation Archive (AVA‐RU) is to unite and harmonize data of plot‐based plant species and their abundance, vegetation structure and environmental variables from the Russian Arctic. This database can be used to assess the status of the Russian Arctic vegetation and as a baseline to document biodiversity cha...
The Arctic is warming four times faster than the global average, and plant communities are responding through shifts in species abundance, composition and distribution. However, the direction and magnitude of local plant diversity changes have not been explored thus far at a pan-Arctic scale. Using a compilation of 42,234 records of 490 vascular pl...
Arctic vegetation is crucial for fauna and the livelihoods of Northern peoples and is tightly linked to climate, permafrost soils, and water. Yet, a comprehensive understanding of climate change effects on Arctic vegetation is lacking. Protected areas cannot halt climate change but could reduce future pressure from additional drivers, like land use...
The effects of climate change on plants are particularly pronounced in the Arctic region. Warming relaxes the temperature and nutrients boundaries that limit tundra plant growth. Increased resource availability under future climate conditions may induce a shift from a conservative economic strategy to an acquisitive one. Following the leaf economic...
Arctic vegetation changes, such as increasing shrub-cover, are expected to accelerate climate warming through increased absorption of incoming radiation and corresponding decrease in summer shortwave albedo. Here we analyze mid-summer shortwave land-surface albedo and its change across the pan-Arctic region based on MODIS satellite observations ove...
Extreme wildfires are being reported worldwide, contributing to global warming by emitting substantial amounts of carbon dioxide, destabilizing ecosystems, and causing major socioeconomical damage. Boreal forests and Arctic tundra have experienced devastating fires in recent summers. From 2019 to 2021, more than 90% of these fires occurred in centr...
Climate change is leading to a species redistributions. In the tundra biome, many shrub species are expanding into new areas, a process known as shrubification. However, not all tundra shrub species will benefit from warming. Winner and loser species (those projected to expand and contract their ranges, and/or those that have increased or decreased...
Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetatio...
Lagoonal mangrove ecosystems are vital for carbon capture, protection of coastlines and conservation of biodiversity. Yet, they are decreasing globally at a higher rate than other mangrove ecosystems. In addition to human drivers, local environmental factors influence the functioning of lagoonal mangrove ecosystems, but their importance and combine...
Arctic vegetation changes, such as increasing shrub-cover, are expected to accelerate climate warming through increased absorption of incoming radiation and corresponding decrease in summer shortwave albedo. Here we analyze mid-summer shortwave land-surface albedo and its change across the pan-Arctic region based on MODIS satellite observations ove...
Climate change is causing Arctic temperatures to increase at least twice as fast as the planet on average. Temperature and precipitation are predicted to continue increasing, such that flooding might become more prevalent in the new Arctic. Increased flooding frequency and extreme flooding events may pose new threats to Arctic biodiversity through...
The global mean temperature is increasing due to the increase in greenhouse gases in the atmosphere, but paradoxically, many regions in the mid-latitudes have experienced cold winters recently. Here we analyse multiple observed and modelled datasets to evaluate links between Arctic temperature variation and cold damage in the East Asian terrestrial...
Arctic vegetation types provide food and shelter for fauna, support livelihoods of Northern peoples, and are tightly linked to climate, permafrost soils, lakes, rivers, and the ocean through carbon, energy, water, and nutrient fluxes. Despite its significant role, a comprehensive understanding of climate change effects on Arctic vegetation is lacki...
Mangrove forests, vital for the conservation of biodiversity, protection of coastlines, and carbon capture, are decreasing globally at a rate higher than most other tropical forests. They are threatened by sea level rise, drought and storm surge, especially on low-lying islands where forests are directly exposed to the elements and have limited lan...
The majority of climate models predict severe increases in future temperature and precipitation in the Arctic. Increases in temperature and precipitation can lead to an intensification of the hydrologic cycle that strongly impacts Arctic environmental conditions. In order to investigate effects of future precipitation scenarios on ecosystems, preci...
The interaction of shortwave radiation with vegetation drives basic processes of the biosphere, such as primary productivity, species interactions through light competition, and energy fluxes between the atmosphere, vegetation, and soil. Here, we aim to understand the effects of leaf functional trait diversity on canopy light absorption. We focus o...
Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current und...
Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current und...
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait rela- tionships extend to climatic extremes, and if these interspecific...
Excessive amounts of metal ions in soil are toxic for most plant species, yet metal can also facilitate plant survival by elemental defense against herbivores and pathogens. Zinc and cadmium hyperaccumulation in Arabidopsis halleri is known to be effective for the defense against natural enemies. The allotetraploid species A. kamchatica, derived fr...
The local flora (LF) surrounding the research station at the Kytalyk Resourse Reserve was studied in detail and an annotated checklist is presented. Species composition of Kytalyk area flora is compared with the LF in three neighboring areas in the lower reaches of the Indigirka River. These localities had differing topography, therefore their spec...
Shallow thermokarst ponds are a conspicuous landscape element of the Arctic Siberian tundra with high biogeochemical variability. Little is known about how microbes from the regional species pool assemble into local pond communities, and how the resulting patterns affect functional properties such as dissolved organic carbon (DOC) remineralization...
Plant traits reflect growth strategies and trade-offs in response to environmental conditions. Because of climate warming, plant traits might change, altering ecosystem functions and vegetation–climate interactions. Despite important feedbacks of plant trait changes in tundra ecosystems with regional climate, with a key role for shrubs, information...
Assessing patterns and processes of plant functional, taxonomic, genetic, and structural biodiversity at large scales is essential across many disciplines, including ecosystem management, agriculture, ecosystem risk and service assessment, conservation science, and forestry. In situ data housed in databases necessary to perform such assessments ove...
Major boreal forest disturbance and associated carbon emissions have been reported in the coldest region of the Northern Hemisphere. Related biophysical feedbacks to climate remain highly uncertain but might reduce warming effects expected from carbon emissions. This study quantifies albedo change after disturbance, primarily fires, in larch‐domina...
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific r...
Abstract. Plant traits reflect growth strategies and trade-offs in response to environmental conditions. Because of climate warming, plant traits might adapt, altering ecosystem functions and vegetation–climate interactions. Despite important feedbacks of plant trait changes in tundra ecosystems with regional climate, with a key role for shrubs, in...
The third global bleaching event caused prolonged elevated sea surface temperatures from 2014 to 2017 that heavily impacted coral reefs worldwide. This study determines changes in benthic community following this bleaching event at a remote UNESCO World Heritage Site in the Western Indian Ocean. Aldabra Atoll offers a rare opportunity to study glob...
As the Arctic warms, vegetation is responding, and satellite measures indicate widespread greening at high latitudes. This ‘greening of the Arctic’ is among the world’s most important large-scale ecological responses to global climate change. However, a consensus is emerging that the underlying causes and future dynamics of so-called Arctic greenin...
Biodiversity–ecosystem functioning (BEF) experiments have shown that local species richness promotes ecosystem functioning and stability. Whether this also applies under real-world conditions is still debated. Here, we focus on larger scales of space, time and ecological organization. We develop a quasi-experimental design in which we relate land-c...
Carbon release through boreal fires could considerably accelerate Arctic warming; however, boreal fire occurrence mechanisms and dynamics remain largely unknown. Here, we analyze fire activity and relevant large-scale atmospheric conditions over southeastern Siberia, which has the largest burned area fraction in the circumboreal and high-level carb...
Land cover maps are the basic data layer required for understanding and modeling ecological patterns and processes. The Circumpolar Arctic Vegetation Map (CAVM), produced in 2003, has been widely used as a base map for studies in the arctic tundra biome. However, the relatively coarse resolution and vector format of the map were not compatible with...
With habitat loss and fragmentation among the greatest threats to biodiversity, a better understanding of the habitat use of keystone species is critical in any conservation management strategy. Aldabra Atoll, in the Seychelles archipelago, has the largest population worldwide of giant tortoises. This endemic species (Aldabrachelys gigantea) could...
Land cover maps are the basic data layer required for understanding and modeling ecological patterns and processes. The Circumpolar Arctic Vegetation Map (CAVM), produced in 2003, has been widely used as a base map for studies in the arctic tundra biome. However, the relatively coarse resolution and vector format of the map were not compatible with...
The project aims to study the microbial diversity in arctic siberian thaw ponds and to link it to community functioning, especially in terms of greenhouse gas emissions.
This poster deals with experimental and observational work conducted to assess the question of the importance of stochasticity in bacterial community assembly.
Leaf area index (LAI) is a critical vegetation structural variable and is essential in the feedback of vegetation to the climate system. The advancement of the global Earth Observation has enabled the development of global LAI products and boosted global Earth system modeling studies. This overview provides a comprehensive analysis of LAI field mea...
The “greening of the Arctic” is among the world’s most significant large scale ecological responses to global climate change1. The Arctic has warmed at twice the rate of the rest of the planet on average in recent decades2 and satellite-derived vegetation indices have indicated widespread increases in productivity (termed “greening”) at high latitu...
Aim
Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups rep...
Land cover maps are the basic data layer required for understanding and modeling ecological patterns and processes. The Circumpolar Arctic Vegetation Map (CAVM), produced in 2003, has been widely used as a base map for studies in the arctic tundra biome. However, the relatively coarse resolution and vector format of the map were not compatible with...
Motivation: The Tundra Trait Team (TTT) database includes field‐based measurements
of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade‐offs, trait–environment relationships and environmental filtering, and trait variation...
Climate change, nutrient pollution, land conversion, overexploitation, and invasive species and diseases – the ‘big five’ global drivers of ecosystem change – are altering biodiversity in the Arctic. Changes in biodiversity have implications for local people since they depend on biodiversity for their traditional activities. Remote Arctic areas lac...
The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem...
Dry grasslands are species rich and ecologically valuable habitats that have experienced a massive decline in Switzerland during the last century due to agricultural intensification and land abandonment. Appropriate management is a key factor in maintaining habitat quality of the remaining most valuable sites and should thus be an essential part of...
The contemporary Arctic carbon balance is uncertain, and the potential for a permafrost carbon feedback of anywhere from 50 to 200 petagrams of carbon (Schuur et al., 2015) compromises accurate 21st-century global climate system projections. The 42-year record of atmospheric CO2 measurements at Barrow, Alaska (71.29 N, 156.79 W), reveals significan...
Regulations designed to prevent global inequalities in the use of genetic resources apply to both commercial and non-commercial research. Conflating the two may have unintended consequences for collaboration between the Global North and biodiverse countries in the Global South, which may promote global injustice rather than mitigate it.
Dry grasslands are species rich and ecologically valuable habitats that have experienced a massive decline in Switzerland during the last century due to agricultural intensification and land abandonment. Appropriate management is a key factor in maintaining habitat quality of the remaining most valuable sites and should thus be an essential part of...
We studied the temperature relations of wild and zoo Aldabra giant tortoises (Aldabrachelys gigantea) focusing on: 1) the relationship between environmental temperature and tortoise activity patterns (n=8 wild individuals), and 2) on tortoise body temperature fluctuations, including how their core and external body temperatures vary in relation to...
Continuous, consistent, and long time-series from remote sensing are essential to monitoring changes on Earth's surface. However, analyzing such data sets is often challenging due to missing values introduced by cloud cover, missing orbits, sensor geometry artifacts, and so on. We propose a new and accurate spatio-temporal prediction method to repl...
Global environmental change and biodiversity loss are closely linked through different feedback mechanisms. The University of Zurich Research Priority Programme on ‘Global Change and Biodiversity’ approach is to work with interdisciplinarity and transdisciplinarity to integrate mechanisms of interactions, feedback and scale and improve our understa...
Research of the past decades has shown that biodiversity promotes ecosystem functions including primary productivity. However, most studies focused on experimental communities at small spatial scales, and little is known about how these findings scale to nonexperimental, real-world ecosystems at large spatial scales, despite these systems providing...
Aldabra Atoll has the largest population of giant tortoises (Aldabrachelys gigantea) in the world. As such an important biological resource, it is necessary to understand how the effects of climate change will impact this keystone species; in particular the frequency of drought, which is likely to affect tortoise habitat. To assess whether drought...
Tundra shrubs are slow-growing species limited by low air temperature and scarce nutrient availability. However, shrub expansion has been widely observed in the Arctic during the last decades and attributed to climate warming. Shift in shrub growth, wood structure and abundance affects the surface albedo and permafrost thawing and these changes may...
Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through (i) accelerated nutrient mobilization in the surface soil layers, and (ii) increased thawing depths during the growing season which increases accessibility of nutrients in the deeper soil layer...
Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through (i) accelerated nutrient mobilization in the surface soil layers, and (ii) increased thawing depths during the growing season which increases accessibility of nutrients in the deeper soil layer...
Assessing the inherent uncertainties in satellite data products is a challenging task. Different technical approaches have been developed in the Earth Observation (EO) communities to address the validation problem which results in a large variety of methods as well as terminology.
This paper reviews state-of-the-art methods of satellite validation...
This paper assesses the vulnerability of Arctic fishing communities. We hypothesise that climate change related trends, such as increasing temperature and altered seasonality, and shocks, such as the breakdown of the Soviet Union or new fishing regulations, increase vulnerability of local Arctic peoples and compromise the sustainability of their li...
At 36 locations worldwide, we estimate the cloud radiative effect (CREatm) on atmospheric solar absorption
(ASRatm) by combining ground-based measurements of surface solar radiation (SSR) with collocated satellite-derived
surface albedo and top-of-atmosphere net irradiance under both all-sky and clear-sky conditions. To derive continuous
clear-sky...
Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristic...
ABSTRACT: Climate change is changing the shape of landscapes across the globe. How this impacts terrestrial animals, especially ectotherms, will depend on their physiological sensitivity. For animals that act as ecosystem engineers, their response to climate change will have wide-ranging direct and indirect effects on both habitat and ecosystem str...
Vegetation changes, such as shrub encroachment and wetland expansion, have
been observed in many Arctic tundra regions. These changes feed back to
permafrost and climate. Permafrost can be protected by soil shading through
vegetation as it reduces the amount of solar energy available for thawing.
Regional climate can be affected by a reduction in s...
Remotely sensed data are sparse, which means that data have missing values, for instance due to cloud cover. This is problematic for applications and signal processing algorithms that require complete data sets. To address the sparse data issue, we present a new gap-fill algorithm. The proposed method predicts each missing value separately based on...
Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in s...
Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in s...
Rapid climate warming in the tundra biome has been linked to increasing shrub dominance. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual shrub growth provide an und...