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Abstract – This paper models, analyzes and optimizes a 
novel swimming method for a swimming micro robot. The 
propulsion is achieved by creating a traveling wave in an elastic 
tail made of piezo-electric actuators. The novel swimming 
method was analyzed analytically by solving the coupled 
elastic/fluidic problem. The parameters that influence 
swimming were identified and optimized. It was found that 
under the extreme size limitations a tail manufactured by 
current MEMS technology is able to swim at the order of 
several cm/sec in water. 

Index Terms – Micro Robot, Coupled elastic/fluidic 
Analysis, Swimming Robot. 

I. INTRODUCTION

Propulsion of micro-organisms has longed been studied 
using techniques of the field of low Reynolds number 
hydrodynamics (i.e. viscous flow, or Stokes flow) [1], [2]. 
Such studies define the motion of swimming object as a 
boundary condition problem and analyze the propulsion 
velocity, force, torque and consumed power the flow creates. 
The actuators that creates the motion are much less 
understood.  

Recently, there have been several studies that designed 
small robots that are able to swim [3-7]. Such studies 
showed that it is possible to create swimming robots in the 
order of 1 [cm].  

The present investigation suggests a new concept of a 
swimming  microrobot for medical use, illustrated in Fig. 1. 
The micro-robots main components are: the payload, the 
power source and the propelling (and steering) actuators.  

In an earlier paper, [8], the actuating tail consists of 
three piezo-electric micro-actuators (See Fig. 2) was 
described. In this article we analyze and optimize the 
actuators and show that with such an actuator a propelling 
velocity of the order of 10 [mm/s] is achievable. 

Fig. 1:  Illustration of an un-tethered swimming micro-robot. 

II.  PROPULSION MODEL

Fig. 1 illustrates the concept of a micro-robot propelled 
by elastic tails. Each tail is actuated by 3 piezoelectric 
actuators that are modeled as Euler-Bernoulli beam. A short 
description of the modeling method that was used to solve 
the elastic-fluidic problem is given next (further details on 
the model is given in [8]). The beam is divided into three 
parts each part is described by a distributed variables, 

),( txwi
, (See Fig. 2) defined as follows: 
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jjjjj ZAIY ξiK  is the stiffness coefficient, with  

jY  is the Young modulus of the j'-th layer; 

jI  is the cross section inertia of the j'-th layer; 

jA  is the cross section area of the j'-th layer; 

jZ  is distance from the neutral axes of the j'-th layer; 

jξ  is correction term due to the weakening of the electric 

field applied on the piezoelectric layers  by the cross 
coupling. (For further details see [9]); 
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is the damping coefficient based modified Bessel functions 
of the (κ  is the wave number and a  is the radius of the tail) 
in viscous fluid assuming that the flow around the tail is a 
Stokes flow and the amplitude of the travelling wave is 
small, i.e. the deformed cross section of the tail remains 
circular [10]. 

Fig. 2: The tail's three sections. 
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The boundary conditions (BC) of the beam are clamped at 
0=x  and free at Lx = : 
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The continuity conditions (CC) between the elastic fields 
are: 
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Following [9], the moment 
iM  in a piezoelectric layered 

beam is calculated as follows: 
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)(tEiM  are the moments that are created in the beam  

by the electric field. 
 The system variables ),( txwi

 is converted to ),( txzi
 to 

homogenize the boundary and continuity conditions. The 
general solution of ),( txzi

is obtained by the method of 

separation of variables as follows: 
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where: )(tfk
 - are the time functions of the variable 

separation. This function is the same in the different elastic 
fields along the tail. 

)(, xkiφ  - are the shape modes of the system.  

The modes differ at each elastic field, but the continuity 
conditions ensure that they create a smooth spatial function 
along the three parts of the beam. 

By substituting the general solutions, (5), into the BC 
and CC one can find the natural frequencies and the mode 
shapes of the beam. Fig. 3 illustrates the first 4 modes of the 
tail ( KKm;m ii == ). 
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Fig. 3: The beams' modes. 

The modes illustrated in Fig. 3 are the solution of the 
shape mode function, )(, xkiφ . Substituting the shape mode 

functions into the field equations results a set of time 
dependent ODE's defined in equation 6: 
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)(i

kCp  - is a constant derived by the decomposition of the 

polynomial )(xpi  to the k-th shape function )(xkφ . 

 The contribution of each moment, 
EiM , was found by 

by Laplace transformation of (6). The time functions )(tgk
, 

are found from the transfer matrix defined below: 
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where: 321 )()(),( , ,,itgxtxw
k
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φ

This expression can be simplified by assuming that each 
part of the tail has the same cross section. In this case: 
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where ∑=
i
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kkkk ζζζζ === 321
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Equation (7-8) completes the model of the tail and gives 
the expression of the dynamic response of the tail to input 
voltage, )(tVi

 exserted on the piezoelectric actuators.  

It should be mentioned that this model is based on the 
Euler-Bernoulli beam model, and Taylor fluidic model. For 
the swimming micro-robots those assumptions are accurate 
enough since piezoelectric actuators are not able to create 
large tail deformations.  

Once we have the relation between the input model and 
the tail behaviour, the question is what should be the input 
voltages in order to create swimming. In viscous flows 
described by the Stokes equation one has to create a 
travelling wave. The desired motion of the neutral axis of the 
tail should be as follows: 
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b  is the amplitude, κ  is wave number and U is the 
velocity of the travelling wave. 

If the swimming tail is divided to m actuators the highest 
number of controllable modes is also m. Each voltage is 
defined by: )sin()( iii tVtV φ+Ω=  (two degrees of freedom 

iiV φ; ). Each desired time functionhas the form of 

UtCcUtCstr kkk κκ sincos)( −=  (two degrees of freedom 

ii CcCs ; ). Clearly each actuator can apply one voltage i.e. 

each actuator can define a single time function and by it 
control a single modal function. 

Using the transfer matrix (9) one can find the desired 
phases and magnitudes for the different input voltages to 
create a full cycle of a traveling wave shown in Figs. 4a – 
4g. 
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Fig. 4a: The tails displacement at t=0[sec]. 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 10
-5

x [m] 

Fig. 4b: The tails displacement at t=π/3/Ω[sec]. 
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Fig. 4c: The tails displacement at t=2π/3/Ω[sec]. 
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Fig. 4d: The tails displacement at t=π/Ω[sec]. 
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Fig. 4e: The tails displacement at t=4π/3/Ω[sec]. 
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Fig. 4f: The tails displacement at t=5π/3/Ω[sec]. 
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Fig. 4g: The tails displacement at t=2π/Ω[sec]. 

 Notice that the pick of the wave advances along the tail 
length in contrast to standing waves. 
 It was shown by Taylor [10] that in Stokes flow the 
relation between a traveling wave advancing in the tail and 
the total velocity of the swimming micro-robot is: 
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modified Bessel function of the i-th order.  
The propulsion efficiency can also be derived from this 
equation. The additional drag created by the robots body is 
not taken into account in this analysis. 

III.  SYSTEM ANALYSIS AND OPTIMIZATION

 The coupled fluidic-mechanical-electrical model 
enables the analysis of the influence of the different 
parameters of the system. One has to determine the wave 
length and velocity of the desired traveling wave, the shape 
of the actuator and the influence of the loading parameters 
such as the viscosity of the surrounding fluid. 

The best fit for the decomposition of the traveling wave 
is L/2πκ = , i.e. the wavelength of the traveling wave is the 
length of the tail. Figs. 5 and 6 illustrates the approximation 
by three and four modal functions, )(xkφ , of the desired 

trigonometric functions: )sin( Cx φκ + and )cos( Cx φκ +

functions. 
Cφ  is a constant angle that is added to improve the 

fitting and it's value is 76.78°. 
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Fig. 5: Approximation of xκsin  and xκcos  functions (blue lines) by three 

modes of the tail (red lines). 
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Fig. 6: Approximation of xκsin  and xκcos  functions  

(blue lines) by four modes of the tail (red lines).

  

One can observe that the more modal functions are used, 
the better the fit of the approximated trigonometric 
functions. The disadvantage is that more modal functions 
need to be controlled, i.e. more actuators are needed, and the 
system is more complicated.  

The influence of the thickness of a tail was shown in an 
earlier investigation [8]. In piezoelectric micro-actuators, on 
contrary to macro actuators, the thickness of the 
piezoelectric layer has also structural importance. The 
moment created by the piezoelectric layer is scaled to the 
layer thickness linearly, )( iEi tOαM , and the stiffness of the 

beam is scaled by the third power, )( 3
ii tOαK . In general, in 

a piezoelectric bimorph the thinner the piezoelectric layer's 
thickness the larger the actuators stroke. In a unimorph or 
any other composite piezoelectric beam one can find what is 
the best combination of thicknesses to get maximal stroke. 
For example taking a unimorph actuator made of  a PZT 
layer and a Si layer (See Fig. 7) .  

x 

Fig. 7: Illustration of a unimorph made of Si and PZT layers. 

  

The stroke of the actuator is proportional to the term: 
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Where: PZTSiPZTSi ttYY /;/ == βα , E is the electric 

field on the piezoelectric layer, d is the piezoelectric 
coefficient and 

PZTξ  is the cross coupling coefficient. 
TABLE I 

PHYSICAL PROPERTIES OF THE TAILS LAYERS

Layer  Silicon PZT 
Specific weight [kg/m^3] 2330 7700 
Young modulus [GPa] * 141.17 70.05 
Piezoelectric coefficient [pC/N] * - -230.7 
Dialectric constant [nF/N] * - 15.49 
Cross coupling coefficient k * - 0.138 

aSee [9] for details on how those coefficients are calculated. 

For the physical properties given in Table 1 the optimal 
thickness ratio β  is 386.0=β . Fig. 8 illustrates the 

dependence of the stiffness in the parameter β  and the 

single maxima. 

Fig. 8: The stiffness of the Si-PZT beam for different thickness ratios. 

An additional parameter that influences the propulsion 
velocity is the length of each actuator in the tail, i.e. the 
parameters 1α  and 2α . In the earlier study, [8], the actuators 

were divided equally, 3/2;3/1 21 == αα . For a tail defined 

in Fig. 8 and Si layer thickness of m][ 20 μ  is the propulsive 

velocity that was achieved was [mm/s] 4.7=MRU . In Fig. 9 

we show the propulsive velocity for the parameter range: 
]99.0,[];98.0,01.0[ 121 ααα == . One can observe that there 

is a local maxima at 46.0;13.0 21 == αα . The propulsive 

velocity at the maxima is [mm/s]87.80=MRU . 

Fig. 9: Propulsion velocity achieved by different actuator configurations. 

 The reason of such a dramatic increase in the propulsive 
velocity is the voltage that is applied on each actuator. In the 
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case of even distribution of actuator lengths, the voltage on 
each actuator is: ]][10,49.3,771.0[],,[ 321 VoltVVV = . These 

voltage amplitudes create a traveling wave along the tail. In 
the case of actuator lengths of 46.0;13.0 21 == αα , the 

voltages on ][1.0 mm  the actuators are 

]75.9,10,93.9[],,[ 321 =VVV . The second actuator 

configuration takes much better advantage of the applied 
voltage, hence more energy is entered into the tail the 
amplitude of the traveling wave is increased and the 
propulsive velocity is larger. The optimization of the 
actuator sizes was found with accuracy of 01.0=iδα  We 

assume that larger resolution one can achieve ][10 Volt
voltage on all the actuators. 
 The actuator distribution is invariant under the total tail 
length L, or other parameters of the tail (assuming the tail 
has the same cross section all along). The parameters that 
influence the actuator distribution are the damping 
coefficients 

kζ . An under-damped modal function, for 

example 13 <ζ  causes greater sensitivity at the resonance 

and different reaction of the tail to the piezo-actuators 
excitation. Thus the optimization is not global for the total 
parameter space. 

Fig. 10 illustrates the propulsive velocity for the same 
parameter range as the previous figure. The thickness of the 
Si layer was increased in this optimization to m][ 60 μ . In 

this case the maximal velocity is [mm/s]84.3=MRU  and the 

actuator configuration is: 49.0;14.0 21 == αα  (different 

from the earlier optimization values). 
  

Fig. 10: Propulsion velocity achieved by different actuator configurations. 

  

IV. CONCLUSIONS

 In conclusion, the propulsion presented here can 
achieve velocity of the order of 1 [cm/sec] and it is compact 
and simple to manufacture. The analytical model enables 
this optimization in comparison to a numerical model in 
which analysis is more difficult. The increase of the 
propulsion is achieved by fully taking advantage of the 
actuator voltages in building the traveling wave. 
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