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 Abstract – Medical doctors use radiology, endoscopy and 
smart pills to inspect the human body's inner content. 
Nowadays, self-propelled micro robots are developed to fulfill 
these tasks which use types of crawling techniques to advance. 
This paper suggests a novel swimming method, which creates a 
traveling wave in an elastic tail made of piezo-electric 
actuators, for propulsion of a micro-robot in the body. The 
novel swimming method was analyzed and optimized 
analytically by solving the coupled elastic/fluidic problem. It 
was found that under the extreme size limitations a tail 
manufactured by current MEMS technology is able to swim at 
the order of several mm/sec in water. 
 
 Index Terms – Micro Robot, Medical Robot, Fluid Flow 
Analysis, Swimming Robot. 
 

I.  INTRODUCTION 

 The ideal micro robot for medical applications is a 
totally autonomous one that incorporates a control unit, 
power source, positioning and maneuvering actuators, and is 
able to freely navigate and perform medical procedures 
within the human body (see [1] for classification of micro 
robots). Such a system is on the verge of "science fiction" 
but several micro medical devices have already been 
developed that posses some robotics aspects such as micro 
catheters [2], smart pills [3] and swimming micro robots [4]. 
In this investigation we concentrate on micro-robots with 
swimming ability since they can be used for next generation 
un-tethered endoscopes that transmit images from inside the 
body. Other potential uses of such micro-robots are 
treatment of a specific location [5] and local drug delivery 
[6], the propulsion of such micro-robots is treated in [7-9]. 

When dealing with miniaturization, it is not possible to 
downscale a macro propulsion systems such as propeller or 
jet even though the components of such a unit have been 
already developed (probably this is one of the reasons that 
bacteria have not used the propeller). The need for a new 
propulsion concept is due to the nature of the flow in small 
scales. A micro robot of a typical dimension of 1 mm, 
velocity of 1 mm/sec that swims in water has Reynolds 
number of 1. Hence, the viscosity has much larger affect and 
the flow should be analyzed by Stokes equation. 
 This investigation proposes to propel a micro-robot by 
tails built of piezoelectric actuators (See Fig. 1) where the 
propulsion is achieved by creating a traveling wave in the 
tail. In contrast to macro size swimmers standing waves 
can't advance a micro robot in Stokes flow.    

 
 

Fig. 1:  Illustration of an un-tethered swimming micro-robot. 
 

II.  PROPULSION MODEL 

Fig. 1 illustrates the concept a micro-robot propelled by 
elastic tails. Each tail is actuated by 3 piezoelectric 
actuators, that are modeled as Euler-Bernoulli beam. The 
beam is divided into three parts each has it own elastic fields 
(See Fig. 2) defined as follows: 
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ij

n

j
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=
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ρim
 is the distributed mass; 
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=

++=
n

j
jjjjj ZAIY ξiK  is the stiffness coefficient, with 

correction term due to the weakening of the electric field 
applied on the piezoelectric layers 

jξ  by the cross coupling 
[10];  
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is the damping coefficient based modified Bessel functions 
of the (κ  is the wave number and a  is the radius of the tail) 
in viscous fluid assuming that the flow around the tail is a 
Stokes flow and the amplitude of the travelling wave is 
small, i.e. the deformed cross section of the tail remains 
circular [10]. 
 

 
Fig. 2: The tail's three sections. 

The boundary conditions of the beam are clamped at 0=x  
and free at Lx = : 
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The continuity conditions between the elastic fields are: 
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Following [11], the moment iM  in a piezoelectric 
layered beam is calculated as follows: 
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)(tEiM  are the moments that are created in the beam  
by the electric field. 

As a result, the boundary (BC) and continuity 
conditions (CC) become inhomogeneous. We used a 
polynomial transformation to convert the variable ),( txwi  
and create homogeneous BC and CC. This transformation 
enables solving the elastic field equation by separation of 
variables. The transformed field equation is: 
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The polynoms )(xpi
 form three polynoms along the tail 

shown in Fig. 3.    

 
x 

Fig. 3: Illustration of the polynoms for 3/2;3/1;1 21 === ααL . 

The general solution of (3) is given by: 
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where: )(tfk  - are the time functions of the variable 
separation. This function is the same in the different elastic 
fields along the tail. 

)(, xkiφ  - are the shape modes of the system.  

The modes differ at each elastic field, but the continuity 
conditions ensure that they create a smooth spatial function 
along the three parts of the beam. 
By substituting the general solutions, (6), into the BC and 
CC one can find the natural frequencies and the mode 
shapes of the beam. Fig. 4 illustrates the first 4 modes of the 
tail ( KKm;m ii == ). 
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Fig. 4: The beams' modes. 
 
The polynoms shown in Fig 3 are decomposed into the 

beam's modes and enables deriving the evolution equations 
of each mode: 
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)(i

kCp  - is a constant derived by the decomposition of the 

polynomial )(xpi  to the k-th shape function )(xkφ . 

 In order to find the general behaviour of the beam one 
has to calculate the contribution of each moment, )(tEiM , 

separately, and the total time response is the superposition: 
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Converting to the Laplace domain and substituting into (8) 
the transformation between the moments EiM and the time 
functions, )(tfk  is: 
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This equation gives the expression for the transformed 
variable ),( txzi , however in order to find tail motion created 
by the input voltages one has to inverse transform ),( txwi

 by 

the equation: 
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The expression for the time response of the distributed 
variable ),( txwi

 as a function of the input voltages is: 
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This expression can be simplified by assuming that each 
part of the tail has the same cross section. In this case: 
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where dddd 221 === , KKKK 321
ˆˆˆˆ === , and 

kkkk ζζζζ === 321
. 

Equation (11) completes the model of the tail and gives 
the expression of the dynamic response of the tail to input 
voltage, )(tVi

 exserted on the piezoelectric actuators.  
It should be mentioned that this model is based on the 

Euler-Bernoulli beam model, and Taylor fluidic model. For 
the swimming micro-robots those assumptions are accurate 
enough since piezoelectric actuators are not able to create 
large tail deformations.  

Once we have the relation between the input model and 
the tail behaviour, the question is what should be the input 
voltages in order to create swimming. 

III.  DESIRED TAIL MOTION 

In contrary to laminar flow in viscous flows described 
by the Stokes equation creating a standing wave will not 
advance the micro-robot. 

The fluidic model [11] assumes that the tails motion is 
described by the following function: 
 

)(sin),( Utxbtxw −= κ                    (13) 
 

b  is the amplitude, κ  is wave number and U is the 
velocity of the travelling wave. 

In order to create the travelling wave defined by (13) it 
will be decomposed to the mode shapes of the tail illustrated 
in Fig.4: 
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Figs. 4 and 5 illustrates the approximation by three and 
four terms of the xκsin  and xκcos  functions. 
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Fig. 4: Approximation of xκsin  and xκcos  functions (blue lines) by three 
modes of the tail (red lines). 
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Fig. 5: Approximation of xκsin  and xκcos  functions  
(blue lines) by four modes of the tail (red lines). 

  
Numerical simulations show that the best fit to the 

traveling waves was found for the parameter L/2πκ = , i.e. 
the wavelength of the traveling wave is the length of the tail. 
Also, a constant angle of 76.78° was added to the 
trigonometric functions to improve the fitting. 

Hence, by creating the time function: 
 

UtCcUtCstr kkk κκ sincos)( −=                    (15) 
 

traveling wave are obtained on which the fluid propulsion is 
based.  

IV.  CREATING TAIL MOTION 

The desired time function, (15), is realized by input 
voltages )sin()( iii tVtV φ+Ω=  with different amplitudes and 
phases for each beam segment. The resulting tail motion is 
simulated in Fig. 6a – 6g. The figures illustrate a full cycle 
of a traveling wave.  
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Fig. 6a: The tails displacement at t=0[sec]. 
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Fig. 6b: The tails displacement at t= /3/ [sec]. 
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Fig. 6c: The tails displacement at t=2 /3/ [sec]. 
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Fig. 6d: The tails displacement at t= / [sec]. 
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Fig. 6e: The tails displacement at t=4 /3/ [sec]. 
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Fig. 6f: The tails displacement at t=5 /3/ [sec]. 
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Fig. 6g: The tails displacement at t=2 / [sec]. 
 

 Notice that the pick of the wave advances along the tail 
length in contrast to standing waves. 
 It was shown by Taylor [10] that in Stokes flow the 
relation between a traveling wave advancing in the tail and 
the total velocity of the swimming micro-robot is: 
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modified Bessel function of the i-th order.  
The propulsion efficiency can also be derived from this 
equation. The additional drag created by the robots body is 
not taken into account in this analysis. 

V.  NUMERICAL EXAMPLE 

 The feasibility of the suggested propulsion method for 
micro robot is calculated next for a unimorph piezoelectric 
tail. Unimorph is a bending strip actuator that has one 
piezoelectric layer and one elastic layer. The tail's 
dimensions are 10 [mm] length and 1 [mm] width. 
 The tails layers are PZT of the fixed thickness of 1 [um] 
and SCS (Single Crystal Silicon) in <100> orientation in 
varying thicknesses. Such a propulsion unit can be built by 
using an SOI (Silicon on insulator) wafer, depositing on the 
thin side a PZT actuator and releasing the device from the 
thick side. The physical properties of the layers are given in 
Table I. 

TABLE I 
PHYSICAL PROPERTIES OF THE TAILS LAYERS 
Layer  Silicon PZT 

Specific weight [kg/m^3] 2330 7700 
Young modulus [GPa] * 141.17 70.05 
Piezoelectric coefficient [pC/N] * - -230.7 
Dialectric constant [nF/N] * - 15.49 
Cross coupling coefficient k * - 0.138 

 aSee [10] for details on how those coefficients are calculated. 
 The maximal voltage applied on the piezoelectric 
actuator is 10 [V] (the maximal voltage applied only on the 
third segment the other two segments' voltage are 
depended).  
 Figs. 10-12 illustrate the total micro-robot velocity 

MRU , 
the amplitude of the tail and the traveling wave velocity U  
(marked with blue plusses), for different elastic layer 
thicknesses. 
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Fig. 10: The micro-robots velocity for different Si thicknesses. 

 

10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

Thickness [um]

T
ai

ls
 A

m
pl

itu
de

 [
um

]

 
Fig. 11: The tails motions amplitude for different Si thicknesses. 
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Fig. 12: The traveling wave velocity for different Si thicknesses. 

 
 Although the maximal velocity shown in Fig. 10 
reaches 5 [m/s] those results are not feasible. Only the 
results lower then the amplitude of 1 [mm], i.e. the thickness 
of the Si layer is more than 3 [um], are relevant. In practice, 
thicker Si has to be used because the tail will be too fragile. 
The other results are presented to show that there is an 
optimal thickness for such a tail and one can analytically 
optimize the tail design for performances of the swimming 
micro robot.  
 In conclusion, the propulsion presented here can 
achieve velocity of the order of 1 [mm/sec] and it is 
compact and simple to manufacture. Thus, such propulsion 
is a feasible actuator for the swimming micro-robot. 
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