Fyodor Malchik

Fyodor Malchik
Al-Farabi Kazakh National University · Center of Physical-chemical Methods of Research and Analysis

PhD

About

22
Publications
4,087
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
108
Citations
Introduction
Li and Na ion batteries, MXene (Ti3C2Tx) synthesis and properties investigation, Li and Na aqueous-based electrolyte batteries

Publications

Publications (22)
Article
To determine the impact of the electrode composite parameters of metal-ion intercalation into host materials with poor conductivity, the processes were simulated with varying possible values of parameters. A physical model is proposed for the intercalation into an active material particle that has point contacts with an electronic conductor, consid...
Article
Full-text available
The need for low-cost, high-safety batteries for large-scale energy storage applications has sparked a surge in research of rechargeable aqueous batteries. While most research efforts are focused on the development of electrolyte formulations and electrode materials, it appears that the current collector impact on the battery performance is frequen...
Article
Increasing surface area between electrodes and electrolytes drastically has proven to improve electrochemical performances of microbatteries. 3D surface enhancement owing to the design of micropillar electrodes has permitted to fulfill this need while maintaining the same footprint area. Lithium nickel manganese oxide (cathode) and Lithium titanate...
Article
The lack of stable electrode materials for water-based electrolytes based on intercalation and conversion reaction mechanisms encourage scientists to design new or renovate existing materials with better cyclability, capacity, and cost-effectiveness.
Article
Extensive efforts are currently underway to develop safe and cost-effective electrolytes for large-scale energy storage. In this regard, water-based electrolytes may be an attractive option, but their narrow electrochemical stability window hinders their realization. Although highly concentrated fluorinated electrolytes have been shown to be highly...
Article
Identifying and understanding charge storage mechanisms is important for advancing energy storage. Well-separated peaks in cyclic voltammograms (CVs) are considered key indicators of diffusion-controlled electrochemical processes with distinct Faradaic charge transfer. Herein, we report on an electrochemical system with separated CV peaks, accompan...
Article
The article deals with the problem of electrochemical conversion of low-conductive materials considering an example of eldfellite-structured NaFe(SO4)2. The applying process of electronically-conducting material on NaFe(SO4)2 surface by means of milling providing multiple contacts with the conductive phase and thus delivering electrons to the activ...
Preprint
Full-text available
Identifying and understanding charge storage mechanisms is important for advancing energy storage, especially when new materials and electrolytes are explored. Well-separated peaks in cyclic voltammograms (CVs) are considered key indicators of diffusion-controlled electrochemical processes with distinct Faradic charge transfer. Herein, we report on...
Preprint
Identifying and understanding charge storage mechanisms is important for advancing energy storage, especially when new materials and electrolytes are explored. Well-separated peaks in cyclic voltammograms (CVs) are considered key indicators of diffusion-controlled electrochemical processes with distinct Faradic charge transfer. Herein, we report on...
Article
Full-text available
The purpose of this paper is to suggest frontier inter‐disciplinary research directions that can be considered as important horizons of modern electrochemistry in the field of energy storage and conversion. We selected several topics that call for advancements in solid‐state, interfacial, analytical and energy‐related electrochemical science. A dra...
Article
The need for improved batteries and supercapacitors, which are not based on lithium compounds, promotes significant research efforts to find suitable alternative systems based on various mono and multivalent cations capable of delivering high energy and power density with good long-term stability. The progress in aqueous Zn-ion batteries and superc...
Article
The newly emerging demand for ‘beyond-lithium’ electrochemical energy storage systems necessitates the development of alternative options in providing sustainable cost-effective storage capabilities. In pursuit of discovering such a solution, the intercalation of bisulfate anions into graphite in 17 M H2SO4 solutions has been revaluated. Although t...
Article
Full-text available
Nanoporous layers are widely spread in nature and among artificial devices. However, complex characterization of extensively nanoporous thin films showing porosity-dependent softening lacks consistency and reliability when using different analytical techniques. We introduce herein, a facile and precise method of such complex characterization by mul...
Article
Full-text available
Development of high power devices with improved energy density is a highly desired target for advanced energy storage applications. Herein we propose a new strategy of triply-hybridized supercapacitive energy storage device composed of hybrid battery-supercapacitor negative electrode [Mo6S8 (Chevrel-phase)/Ti3C2 (MXene)] coupled with positive nanop...
Article
Full-text available
The kinetics of LiFePO4 oxidation by hydrogen peroxide in aqueous alkaline medium is studied with the use of potentiometric determination of lithium concentration in solution during delithiation. It is demonstrated that the lithium transfer through the reaction-product layer is controlled by diffusion. The activation energy and the diffusion coeffi...
Article
Full-text available
The disposal of LiFePO4 (LFP) cathode material through oxidation in an air atmosphere is explained by its high chemical activity and high surface area (especially for nanoparticles). In this article, new methods for the determination of the degree of iron oxidation in LFP (oxidation degree) are taken into consideration, specifically those which do...
Article
Full-text available
In the last two decades, a huge attention has been paid to lithium-ion batteries with cathode material based on lithium iron phosphate (LiFePO4). This material is quite environmentally friendly and thermally stable in a fully discharged state. One of the main problems associated with the massive use of the cathode material, is to overcome the limit...

Network

Cited By