Fuyi Li

Fuyi Li
Northwest A & F University · College of Information Engineering

Doctor of Philosophy
I consistently pursue collaborative opportunities to create advanced bioinformatics tools for exploring biological data

About

115
Publications
45,894
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,583
Citations
Introduction
My research interests are large-scale data mining, machine learning, bioinformatics and computational systems biology. More specifically, my research focuses on machine learning, sequence analysis, structural analysis, DNA/RNA post-transcriptional and protein post-translational modification prediction, antimicrobial resistance phenotype prediction of human bacterial pathogens using whole-genome sequence data.
Additional affiliations
June 2022 - present
University of Melbourne
Position
  • Honorary Fellow
Education
February 2017 - May 2020
Monash University
Field of study
  • Bioinformatics

Publications

Publications (115)
Article
Full-text available
Post-translational modifications (PTMs) play very important roles in various cell signalling pathways and biological process. Due to PTMs’ extremely important roles, many major PTMs have been stud-ied, while the functional and mechanical characterization of major PTMs is well-documented in sever-al databases. However, most currently available datab...
Article
Motivation: Proteases are enzymes that cleave target substrate proteins by catalyzing the hydrolysis of peptide bonds between specific amino acids. While the functional proteolysis regulated by proteases plays a central role in the ‘life and death’ process of proteins, many of the corresponding substrates and their cleavage sites were not found yet...
Article
Full-text available
Proteases are enzymes that cleave and hydrolyse the peptide bonds between two specific amino acids of target substrate proteins. Protease-controlled proteolysis plays a key role in the degradation and recycling of proteins, which is essential for various physiological processes. Thus, solving the substrate identification problem will have important...
Article
Promoters are short consensus sequences of DNA, which are responsible for transcription activation or the repression of all genes. There are many types of promoters in bacteria with important roles in initiating gene transcription. Therefore, solving promoter-identification problems has important implications for improving the understanding of thei...
Article
DNA N4-methylcytosine (4mC) is an important epigenetic modification that plays a vital role in regulating DNA replication and expression. However, it is challenging to detect 4mC sites through experimental methods, which are time-consuming and costly. Thus, computational tools that can identify 4mC sites would be very useful for understanding the m...
Article
Full-text available
Single-cell RNA sequencing (scRNA-seq) offers unprecedented insights into transcriptome-wide gene expression at the single-cell level. Cell clustering has been long established in the analysis of scRNA-seq data to identify the groups of cells with similar expression profiles. However, cell clustering is technically challenging, as raw scRNA-seq dat...
Article
Protein-metal ion interactions play a central role in the onset of numerous diseases. When amino acid changes lead to missense mutations in metal-binding sites, the disrupted interaction with metal ions can compromise protein function, potentially causing severe human ailments. Identifying these disease-associated mutation sites within metal-bindin...
Article
Full-text available
Single-cell ribonucleic acid sequencing (scRNA-seq) technology can be used to perform high-resolution analysis of the transcriptomes of individual cells. Therefore, its application has gained popularity for accurately analyzing the ever-increasing content of heterogeneous single-cell datasets. Central to interpreting scRNA-seq data is the clusterin...
Article
Molecular property prediction is a key component of AI-driven drug discovery and molecular characterization learning. Despite recent advances, existing methods still face challenges such as limited ability to generalize, and inadequate representation of learning from unlabeled data, especially for tasks specific to molecular structures. To address...
Article
Full-text available
Recent advancements in high-throughput sequencing technologies have significantly enhanced our ability to unravel the intricacies of gene regulatory processes. A critical challenge in this endeavor is the identification of variant effects, a key factor in comprehending the mechanisms underlying gene regulation. Non-coding variants, constituting ove...
Article
Full-text available
MicroRNAs (miRNAs) are short non-coding RNAs involved in various cellular processes, playing a crucial role in gene regulation. Identifying miRNA targets remains a central challenge and is pivotal for elucidating the complex gene regulatory networks. Traditional computational approaches have predominantly focused on identifying miRNA targets throug...
Conference Paper
Full-text available
Building deep neural network models for clinical prediction tasks is an increasingly active area of research. While existing approaches show promising performance, the learned patient representations from deep neural networks are often task-specific and not generalizable across multiple clinical prediction tasks. In this paper, we propose a novel n...
Article
Full-text available
Motivation The asymmetrical distribution of expressed mRNAs tightly controls the precise synthesis of proteins within human cells. This non-uniform distribution, a cornerstone of developmental biology, plays a pivotal role in numerous cellular processes. To advance our comprehension of gene regulatory networks, it is essential to develop computatio...
Article
Full-text available
N6-methyladenosine (m$^{6}$A) is a widely-studied methylation to messenger RNAs, which has been linked to diverse cellular processes and human diseases. Numerous databases that collate m$^{6}$A profiles of distinct cell types have been created to facilitate quick and easy mining of m$^{6}$A signatures associated with cell-specific phenotypes. Howev...
Article
The Type III Secretion Systems (T3SSs) play a pivotal role in host-pathogen interactions by mediating the secretion of type III secretion system effectors (T3SEs) into host cells. These T3SEs mimic host cell protein functions, influencing interactions between Gram-negative bacterial pathogens and their hosts. Identifying T3SEs is essential in biome...
Preprint
Full-text available
Micro RNAs (miRNAs) are short non-coding RNAs involved in various cellular processes, playing a crucial role in gene regulation. Identifying miRNA targets remains a central challenge and is pivotal for elucidating the complex gene regulatory networks. Traditional computational approaches have predominantly focused on identifying miRNA targets throu...
Preprint
Full-text available
Single-cell RNA sequencing (scRNA-seq) technology can be used to perform high-resolution analysis of the transcriptomes of individual cells. Therefore, its application has gained popularity for accurately analyzing the ever-increasing content of heterogeneous single-cell datasets. Central to interpreting scRNA-seq data is the clustering of cells to...
Article
Full-text available
Motivation PE/PPE proteins, highly abundant in the Mycobacterium genome, play a vital role in virulence and immune modulation. Understanding their functions is key to comprehending the internal mechanisms of Mycobacterium. However, a lack of dedicated resources has limited research into PE/PPE proteins. Results Addressing this gap, we introduce ME...
Article
Origins of replication sites (ORIs) are crucial genomic regions where DNA replication initiation takes place, playing pivotal roles in fundamental biological processes like cell division, gene expression regulation, and DNA integrity. Accurate identification of ORIs is essential for comprehending cell replication, gene expression, and mutation-rela...
Article
Full-text available
The multidrug-resistant Gram-negative bacteria has evolved into a worldwide threat to human health; over recent decades, polymyxins have re-emerged in clinical practice due to their high activity against multidrug- resistant bacteria. Nevertheless, the nephrotoxicity and neurotoxicity of polymyxins seriously hinder their practical use in the clinic...
Preprint
Full-text available
Motivation: PE/PPE proteins, highly abundant in the Mycobacterium genome, play a vital role in virulence and immune modulation. Understanding their functions is key to comprehending the internal mechanisms of Mycobacterium. However, a lack of dedicated resources has limited research into PE/PPE proteins. Results: Addressing this gap, we introduce M...
Preprint
Full-text available
Motivation The asymmetrical distribution of expressed mRNAs tightly controls the precise synthesis of proteins within human cells. This non-uniform distribution, a cornerstone of developmental biology, plays a pivotal role in numerous cellular processes. To advance our comprehension of gene regulatory networks, it is essential to develop computatio...
Preprint
Full-text available
Protein-metal ion interactions play a central role in the onset of numerous diseases. When amino acid changes lead to missense mutations in metal-binding sites, the disrupted interaction with metal ions can compromise protein function, potentially causing severe human ailments. Identifying these disease-associated mutation sites within metal-bindin...
Article
Full-text available
Proteases contribute to a broad spectrum of cellular functions. Given a relatively limited amount of experimental data, developing accurate sequence-based predictors of substrate cleavage sites facilitates a better understanding of protease functions and substrate specificity. While many protease-specific predictors of substrate cleavage sites were...
Article
Full-text available
Antimicrobial peptides (AMPs) are short peptides that play crucial roles in diverse biological processes and have various functional activities against target organisms. Due to the abuse of chemical antibiotics and microbial pathogens’ increasing resistance to antibiotics, AMPs have the potential to be alternatives to antibiotics. As such, the iden...
Article
The genome of Mycobacterium tuberculosis contains a relatively high percentage (10%) of genes that are poorly characterised because of their highly repetitive nature and high GC content. Some of these genes encode proteins of the PE/PPE family, which are thought to be involved in host-pathogen inter-actions, virulence, and disease pathogenicity. Me...
Article
Full-text available
It has been demonstrated that RNA modifications play essential roles in multiple biological processes. Accurate identification of RNA modifications in the transcriptome is critical for providing insights into the biological functions and mechanisms. Many tools have been developed for predicting RNA modifications at single-base resolution, which emp...
Article
Background: Promoters are DNA regions that initiate the transcription of specific genes near the transcription start sites. In bacteria, promoters are recognized by RNA polymerases and associated sigma factors. Effective promoter recognition is essential for synthesizing the gene-encoded products by bacteria to grow and adapt to different environm...
Article
Full-text available
A-to-I editing is the most prevalent RNA editing event, which refers to the change of adenosine (A) bases to inosine (I) bases in double-stranded RNAs. Several studies have revealed that A-to-I editing can regulate cellular processes and is associated with various human diseases. Therefore, accurate identification of A-to-I editing sites is crucial...
Article
Full-text available
Lysine 2-hydroxyisobutylation (Khib), which was first reported in 2014, has been shown to play vital roles in a myriad of biological processes including gene transcription, regulation of chromatin functions, purine metabolism, pentose phosphate pathway and glycolysis/gluconeogenesis. Identification of Khib sites in protein substrates represents an...
Chapter
Pseudouridine is a ubiquitous RNA modification and plays a crucial role in many biological processes. However, it remains a challenging task to identify pseudouridine sites using expensive and time-consuming experimental research. To this end, we present Porpoise, a computational approach to identify pseudouridine sites from RNA sequence data. Porp...
Article
Graph similarity learning is a significant and fundamental issue in the theory and analysis of graphs, which has been applied in a variety of fields, including object tracking, recommender systems, similarity search, etc. Recent methods for graph similarity learning that utilize deep learning typically share two deficiencies: (1) they leverage grap...
Article
Determining the pathogenicity and functional impact (i.e., gain-of-function; GOF or loss-of-function; LOF) of a variant is vital for unraveling the genetic level mechanisms of human diseases. To provide a ‘one-stop’ framework for the accurate identification of pathogenicity and functional impact of variants, we developed a two-stage deep-learning-b...
Article
Antiviral defenses are one of the significant roles of RNAi in plants. It has been reported that the host RNAi mechanism machinery can target viral RNAs for destruction because virus-derived small interfering RNAs (vsiRNAs) are found in infected host cells. Therefore, the recognition of plant vsiRNAs is the key to understanding the functional mecha...
Article
Microsatellite instability (MSI), a vital mutator phenotype caused by DNA mismatch repair deficiency, is frequently observed in several tumors. MSI is recognized as a critical molecular biomarker for diagnosis, prognosis, and therapeutic selection in several cancers. Identifying MSI status for current gold standard methods based on experimental ana...
Article
Subcellular localization of messenger RNAs (mRNAs) plays a key role in the spatial regulation of gene activity. The functions of mRNAs have been shown to be closely linked with their localizations. As such, understanding of the subcellular localizations of mRNAs can help elucidate gene regulatory networks. Despite several computational methods that...
Article
Full-text available
Background: Anti-CRISPR proteins are potent modulators that inhibit the CRISPR-Cas immunity system and have huge potential in gene editing and gene therapy as a genome-editing tool. Extensive studies have shown that anti-CRISPR proteins are essential for modifying endogenous genes, promoting the RNA-guided binding and cleavage of DNA or RNA substra...
Article
An essential step in engineering proteins and understanding disease-causing missense mutations is to accurately model protein stability changes when such mutations occur. Here, we developed a new sequence-based predictor for protein stability (PROST) change (∆∆G) upon single-point missense mutation. PROST extracts multiple descriptors from the most...
Article
Full-text available
The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of biological and chemical molecules in an efficient, accessible and accurate manner. Notwithstanding several computational tools that characterize protein or nucleic acids data, there are no on...
Chapter
Posttranslational modifications (PTMs) have vital roles in a myriad of biological processes, such as metabolism, DNA damage response, transcriptional regulation, protein-protein interactions, cell death, immune response, signaling pathways and aging. Identification of PTM sites is a crucial first step for biochemical, pathological and pharmaceutica...
Article
Motivation: Accurate annotation of different genomic signals and regions (GSRs) from DNA sequences is funda-mentally important for understanding gene structure, regulation, and function. Numerous efforts have been made to develop machine learning-based predictors for in silico identification of GSRs. However, it remains a great challenge to identif...
Article
Among various types of protein post-translational modifications (PTMs), lysine PTMs play an important role in regulating a wide range of functions and biological processes. Due to the generation and accumulation of enormous amount of protein sequence data by ongoing whole-genome sequencing projects, systematic identification of different types of l...
Article
Full-text available
Optimization of fermentation process for the recombinant protein production (RPP) is often resource-intensive. Machine learning (ML) approaches are useful in minimizing the experimentations and find vast applications in RPP. However, these ML-based tools primarily focus on features with respect to amino acid sequences ruling out the influence of fe...
Article
Full-text available
RNA binding proteins (RBPs) are critical for the post-transcriptional control of RNAs and play vital roles in a myriad of biological processes, such as RNA localization and gene regulation. Therefore, computational methods that are capable of accurately identifying RBPs are highly desirable and have important implications for biomedical and biotech...
Article
Promoters short DNA sequences play vital roles in initiating gene transcription. However, it remains a challenge to identify promoters using conventional experiment techniques in a high-throughput manner. To this end, several computational predictors based on machine learning models have been developed, while their performance is unsatisfactory. In...
Article
Full-text available
Protein secretion has a pivotal role in many biological processes and is particularly important for intercellular communication, from the cytoplasm to the host or external environment. Gram-positive bacteria can secrete proteins through multiple secretion pathways. The non-classical secretion pathway has recently received increasing attention among...
Article
Full-text available
Mycobacterium tuberculosis genome comprises approximately 10% of two families of poorly characterised genes due to their high GC content and highly repetitive nature. The largest sub-group, the proline-glutamic acid polymorphic guanine-cytosine-rich sequence (PE_PGRS) family, is thought to be involved in host response and disease pathogenicity. Due...
Article
Full-text available
Promoters are crucial regulatory DNA regions for gene transcriptional activation. Rapid advances in next-generation sequencing technologies have accelerated the accumulation of genome sequences, providing increased training data to inform computational approaches for both prokaryotic and eukaryotic promoter prediction. However, it remains a signifi...
Article
Full-text available
Background: Simple Sequence Repeats (SSRs) are short tandem repeats of nucleotide sequences. It has been shown that SSRs are associated with human diseases and are of medical relevance. Accordingly, a variety of computational methods have been proposed to mine SSRs from genomes. Conventional methods rely on a high-quality complete genome to identif...
Article
Conventional supervised binary classification algorithms have been widely applied to address significant research questions using biological and biomedical data. This classification scheme requires two fully labeled classes of data (e.g. positive and negative samples) to train a classification model. However, in many bioinformatics applications, la...
Article
Full-text available
5-methylcytosine (m5C) is an important post-transcriptional modification that has been extensively found in multiple types of RNAs. Many studies have shown that m5C plays vital roles in many biological functions, such as RNA structure stability and metabolism. Computational approaches act as an efficient way to identify m5C sites from high-throughp...
Article
Pseudouridine is a ubiquitous RNA modification type present in eukaryotes and prokaryotes, which plays a vital role in various biological processes. Almost all kinds of RNAs are subject to this modification. However, it remains a great challenge to identify pseudouridine sites via experimental approaches, requiring expensive and time-consuming expe...
Article
Full-text available
Sequence-based analysis and prediction are fundamental bioinformatic tasks that facilitate understanding of the sequence(-structure)-function paradigm for DNAs, RNAs and proteins. Rapid accumulation of sequences requires equally pervasive development of new predictive models, which depends on the availability of effective tools that support these e...
Article
Motivation: Digital pathology supports analysis of histopathological images using deep learning methods at a large-scale. However, applications of deep learning in this area have been limited by the complexities of configuration of the computational environment and of hyperparameter optimization, which hinder deployment and reduce reproducibility....
Article
Understanding how a mutation might affect protein stability is of significant importance to protein engineering and for elucidating the mechanisms of protein evolution and genetic diseases. While a number of computational tools have been developed to predict the effect of missense mutations on protein stability upon mutations; they are known to exh...
Article
Full-text available
Both protease- and reactive oxygen species (ROS)-mediated proteolysis are thought to be key effectors of tissue remodeling. We have previously shown that comparison of amino acid composition can predict the differential susceptibilities of proteins to photo-oxidation. However, predicting protein susceptibility to endogenous proteases remains challe...
Article
Full-text available
Antimicrobial peptides (AMPs) are a unique and diverse group of molecules that play a crucial role in a myriad of biological processes and cellular functions. AMP-related studies have become increasingly popular in recent years due to antimicrobial resistance, which is becoming an emerging global concern. Systematic experimental identification of A...
Article
Neopeptide-based immunotherapy has been recognised as a promising approach for the treatment of cancers. For neopeptides to be recognised by CD8+ T cells and induce an immune response, their binding to human leukocyte antigen class I (HLA-I) molecules is a necessary first step. Most epitope prediction tools thus rely on the prediction of such bindi...
Preprint
Full-text available
Age, disease, and exposure to environmental factors can induce tissue remodelling and alterations in protein structure and abundance. In the case of human skin, ultraviolet radiation (UVR)-induced photo-ageing has a profound effect on dermal extracellular matrix (ECM) proteins. We have previously shown that ECM proteins rich in UV-chromophore amino...
Article
Anti-cancer peptides (ACPs) are known as potential therapeutics for cancer. Due to their unique ability to target cancer cells without affecting healthy cells directly, they have been extensively studied. Many peptide-based drugs are currently evaluated in the preclinical and clinical trials. Accurate identification of ACPs has received considerabl...
Article
Full-text available
Beta-lactamases are enzymes localized in the periplasmic space of bacterial pathogens, where they confer resistance to beta-lactam antibiotics. Experimental identification of beta-lactamases is costly yet crucial to understanding beta-lactam resistance mechanisms. To address this issue, we present DeepBL, a deep learning-based approach by incorpora...
Article
A promoter is a region in the DNA sequence that defines where the transcription of a gene by RNA polymerase initiates, which is typically located proximal to the transcription start site (TSS). How to correctly identify the gene transcription start site and the core promoter is essential for our understanding of the transcriptional regulation of ge...
Article
Full-text available
Recent studies have increasingly shown that the chemical modification of mRNA plays an important role in the regulation of gene expression. N7-methylguanosine (m7G) is a type of positively-charged mRNA modification that plays an essential role for efficient gene expression and cell viability. However, the research on m7G has received little attenti...
Article
Full-text available
Multi-drug resistance (MDR) has become one of the greatest threats to human health worldwide, and novel treatment methods of infections caused by MDR bacteria are urgently needed. Phage therapy is a promising alternative to solve this problem, to which the key is correctly matching target pathogenic bacteria with the corresponding therapeutic phage...
Article
In recent years, high-throughput experimental techniques have significantly enhanced the accuracy and coverage of protein-protein interaction identification, including human-pathogen protein-protein interactions (HP-PPIs). Despite this progress, experimental methods are, in general, expensive in terms of both time and labor costs, especially consid...
Article
X-ray crystallography is the major approach for determining atomic-level protein structures. Because not all proteins can be easily crystallized, accurate prediction of protein crystallization propensity provides critical help in guiding experimental design and improving the success rate of X-ray crystallography experiments. This study has develope...