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S U M M A R Y
In situ stress has a significant effect on the properties of underground formations, including
seismic wave velocity, porosity and permeability, and further affects seismic reflectivity and
transmissivity. Research works on the effect of in situ stress are helpful to construct more
precise seismic reflection and transmission coefficient equations. However, previous studies on
seismic reflectivity equations did not take the effect of normal in situ stress into consideration.
The mechanism of stress on seismic reflectivity and transmissivity is still ambiguous. In this
study, we propose new explicit equations to help analyse the changes of seismic reflectivity
and transmissivity under the effect of normal in situ stress. First, we deduce the Christoffel
equation on the basis of solid acoustoelastic theory. Then, we utilize appropriate boundary
conditions to formulate analytical equations of the reflectivity at the interface between two
stressed formations, which can provide some new insights into the role of in situ stress. The
shear wave birefringence will vanish because we assume that the wave propagates in the X–Z
plane. Different rock models with different lithology and saturation are used to analyse the
variation of seismic reflectivity and transmissivity with normal stress and incident angle at
the interface. The main effect of normal stress on reflection and transmission coefficients is to
change amplitude and critical incident angle. When the upper and lower layers are sandstones,
the critical incident angle decreases with the increase of normal in situ stress, which is
consistent with previous studies. In addition, the reflectivity equation can be degenerated to
the Zoeppritz equation when the normal in situ stress vanishes, which further validates that
the equation proposed is correct. Seismic reflectivity equations that couple the effect of stress
can lay a foundation for direct prediction of in situ stress.

Key words: High-pressure behaviour; Numerical solutions; Acoustic properties; Wave prop-
agation.

I N T RO D U C T I O N

Seismic reflection and transmission coefficient equations are the ba-
sis for formation property prediction, which is significant for fluid
identification and reservoir prediction (Robert & Lloyd 1983; Wang
2012; Zong et al. 2013; Yin et al. 2015). The AVO (amplitude vari-
ation with offset) technology based on the Zoeppritz equation and
its approximations has been well developed over the decades and
widely applied in seismic exploration (Aki & Richards 1980; Shuey
1985; Fatti 1994; Chen et al. 2020). The target of seismic reflec-
tion and transmission gradually transforms from elastic, isotropic
and homogeneous media to inelastic, anisotropic and heterogeneous
media. This transformation makes the derived reflection and trans-
mission equations more suitable for real underground formations.
Even so, there are still some factors that have been ignored in the
derivation of these equations, for example the in situ stress. In situ
stress exists extensively underground, which has great effect on

seismic wave velocity, porosity and permeability of the stratum,
and further affects the seismic wave reflectivity and transmissiv-
ity at the stratum interface (Simmons 1964; Zhang 2013; Wang
& Wang 2015). However, most of the former reflection and trans-
mission coefficient equations were derived without considering the
effect of in situ stress (Song et al. 2020). And it is widely believed
that the accuracy of reflection and transmission coefficient equa-
tions can be improved through taking the effect of in situ stress into
consideration.

Hughes proposed the third-order elastic modulus to describe the
relationship between seismic wave velocity of the rock and stress
(Hughes & Kelly 1953), and then a number of researchers began to
study the solid acoustoelas-Kirchhoff stress tensor can ticity, that
is the velocity of seismic wave changes with the change of stress.
In the following decades, researchers have established a complete
system of solid acoustoelastic theory that describes the nonlin-
ear relation between strain and stress (Tatsuo & Masakatsu 1969;
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1600 F. Chen et al.

Figure 1. Coordinate systems for a pre-deformed rock point at the natural,
initial and final configurations.

Figure 2. Reflection and transmission of seismic waves at the interface of
two stressed strata.

Pao et al. 1984; Norris 1995; Abiza et al. 2012). Solid acoustoe-
lasticity theory uses quantitative formulae to describe the relation
between stress and seismic wave velocity in different directions,
which lays a foundation for the derivation of seismic reflectiv-
ity and transmissivity equations considering the effect of in situ
stress.

Birefringence occurs when seismic wave propagates to the inter-
face separating two stressed solids, which means applied stress can
make S wave split into fast S wave and slow S wave. Thus, the inci-
dent P wave would be converted to reflected P wave, reflected fast
S wave, reflected slow S wave and transmitted P wave, transmitted
fast S wave and transmitted slow S wave at the interface between two
stressed solids (Pao et al. 1984; Degtyar & Rokhlin 1995). In this
study, we assume that the transverse principal strains (e11 and e22)
are equal, so there will be no birefringence in the X–Z plane; that is
the incident wave will only generate reflected P and SV waves, and
transmitted P and SV waves at the interface between two stressed
solids in the X–Z plane (Degtyar 1998).

Some physicists have studied the acoustic wave reflection and
transmission at the interface between two stressed materials on the
basis of solid acoustoelastic theory. The energy reflection coef-
ficient equations at the interface between fluid and stressed alu-
minium, as well as between two stressed alloys, are established.
And some other researchers have studied the amplitude reflec-
tion of stressed aluminium and alloy material (Degtyar 1998; Song
2020). With a similar derivation method, the energy reflection and
transmission coefficient equations at the interface between fluid
and a stressed rock were derived, followed by the establishment
of the energy flow reflection and transmission coefficient equa-
tions at the interface between two rocks under transverse stress
(Liu et al. 2010, 2012). However, the numerical expressions of am-
plitude reflection equations are not given. Moreover, the previous
reflection equations at the interface with the effect of transverse
stress were presented, failing to take vertical normal stress into
consideration. It is necessary to establish the reflectivity equations
under normal stress because underground rocks are subjected to nor-
mal stress caused by the gravity of the overlying formations in the
field.

In the field of seismic exploration, researchers are greatly inter-
ested in the seismic amplitude reflection coefficient at the interface
between two stressed strata, which gives us great motivation to es-
tablish seismic reflectivity and transmissivity equations considering
the effect of in situ stress. These equations can be applied to make
the prediction of in situ stress based on seismic data more accurate,
more stable and faster than conventional empirical formulae from
the logging and drilling data.

In this paper, we assume that seismic waves are plane waves and
the strata are isotropic. We also assume that only normal in situ
stress exists according to the actual stress distribution of the strata.
Based on the theory of solid acoustoelasticity, we established the
analytical reflectivity and transmissivity equations in the X–Z plane
at the interface between two solids under normal stress, which can
provide new insights into the effect of in situ stress. Then, we anal-
yse the variation of seismic reflection and transmission coefficients
with stress and incident angle at the interface between strata with
different lithology and saturation. The results distinctly show that
the normal stress has an important effect on the seismic reflection
and transmission of the interface separating two strata with differ-
ent lithology and saturation. The critical incident angle of P wave
decreases continuously with the increase of in situ stress, which is
consistent with the previous studies on acoustic energy reflection
and transmission. In addition, the reflectivity and transmissivity
equations can be degenerated to the traditional Zoeppritz equation
when the in situ stress becomes zero, which further validates the
accuracy of equations we proposed.

M E T H O D O L O G Y

Solid acoustoelastic theory

Rocks underground have undergone very complicated loading, un-
loading, heating and cooling processes that produce corresponding
stresses and strains. The rock’s state without stress and strain is
called its natural state, and a rock in deformation or under stress is
called its initial state. When a seismic wave motion is superposed on
the rock in the initial state, the rock deforms to the final state. Phys-
ical variables of the natural, initial or final state are distinguished
by the superscripts 0, i and f, respectively. And the positions of a
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Seismic reflectivity and transmissivity parametrization 1601

Table 1. Rock samples properties.

Rock

Property Saturation state
Portland

sandstone
Indiana

limestone Granite
Berea1

sandstone
Berea2

sandstone
Berea3

sandstone
Castlegate
sandstone Tight rock

Compressional
velocity (m s−1)

Dry 2190 3730 4599 2051 2644 4677.6

Saturated 3234 4216 2841 3230 3022 2000 4899.0
Shear velocity
(m s−1)

Dry 1948 2216 2865 1423 1761 2988.5

Saturated 1726 2166 1340 1855 1745 1275 3042.4
Density (kg m−3) Dry 2140 2210 2638 2040 2100 2600

Saturated 2330 2390 2280 2310 2135 2000 2622
A (GPa) Dry −268 −10 550 125 030 −316 −1206 −6839

Saturated −3692 −18 754 −17 574 −27 470 −1541 −95.9 −4544
B (GPa) Dry −161 −5643 −54 303 −1692 −1437 0

Saturated −1310 −11 715 −4939 −13 723 193 −162.5 0
C (GPa) Dry −418 −985.7 15 318 −1252.8 −1409.3 −1564.5

Saturated −590.5 −1639.8 558.5 −2295.7 −385.5 −340.8 −872

Figure 3. The seismic reflection coefficients and transmission coefficients at the interface between dry Berea1 sandstone and dry Berea2 sandstone under
normal in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks, respectively.
(a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient of SV wave.
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1602 F. Chen et al.

Figure 4. The seismic reflection coefficients and transmission coefficients at the interface between dry Berea1 sandstone and dry tight rock under normal
in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks, respectively.
(a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient of SV
wave.

particle inside the rock at its natural, initial and final states are de-
termined by position vectors ξ , X and x , respectively, which direct
from the origin of a common Cartesian coordinate system (Tian &
Wang 2006), as shown in Fig. 1.

By introducing the third-order elastic modulus, the solid acous-
toelastic theory constructs a nonlinear stress–strain relationship and
describes the motion process of a solid particle under the effect of
stress. The static displacement of rock particles from the natural
state to the initial state is ui, and displacement from the natural state
to the final state is uf . The relations between displacements and
position vectors are as follows:

ui(ξ ) = X − ξ, (1)

uf (ξ, t) = x − ξ. (2)

The displacement increment from the initial state to the final
state caused by seismic wave perturbation is the difference between
eqs (1) and (2), as

u(ξ, t) = x − X = uf − ui. (3)

The deformation of a rock particle in adjacent state can be mea-
sured by the deformation gradient. The Lagrangian strain of a rock
particle at the initial state and final state in the natural coordinate
system can be obtained by squaring the tension tensor as

E i
αβ = 1

2

(
∂ui

α

∂ξβ

+ ∂ui
β

∂ξα

+∂ui
λ

∂ξα

∂ui
λ

∂ξβ

)
, (4)

E f
αβ = 1

2

(
∂uf

α

∂ξβ

+ ∂uf
β

∂ξα

+∂uf
λ

∂ξα

∂uf
λ

∂ξβ

)
, (5)

where the repeated subscript indicates the sum, if not specified. As-
suming that the superposed seismic wave perturbation is infinitesi-
mal, the deformation increment caused by seismic wave perturba-
tion can be expressed as

Eαβ = 1

2

(
∂uα

∂ξβ

+ ∂uβ

∂ξα

+∂ui
λ

∂ξα

∂uλ

∂ξβ

+ ∂ui
λ

∂ξβ

∂uλ

∂ξα

)
. (6)

The Kirchhoff stress increment caused by seismic wave pertur-
bation in the initial state is

TJK=T f
JK − T i

JK. (7)
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Seismic reflectivity and transmissivity parametrization 1603

Figure 5. The seismic reflection coefficients and transmission coefficients at the interface between dry Berea1 sandstone and dry Portland sandstone under
normal in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks, respectively.
(a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient of SV
wave.

For hyperelastic rock, the internal energy per unit mass of the
deformed rock is W , which obeys the law of balance of energy.
Therefore, the constitutive equation of hyperelastic rock can be
built from the assumed internal energy function. The internal energy
function (Pao et al. 1984) can be expanded as

ρ0W (E) = 1

2
cαβγ δ Eαβ Eγ δ + 1

6
cαβγ δεη Eαβ Eγ δ Eεη + · · ·, (8)

where cαβγ δ denotes the second-order elastic modulus and cαβγ δεη

denotes the third-order elastic modulus. For isotropic rocks, if
Voigt’s notation is adopted to contract the indices of cαβγ δ and
cαβγ δεη(11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6), the
independent components of second-order elastic modulus cij are
c11 = λ + 2μ, c12 = λ + 2μ and c44 = μ; the independent compo-
nents of third-order elastic modulus cijk are c111 = 2A + 6B + 2C ,
c123 = 2C and c112 = 2B + 2C . Relationship between respective
components of second-order elastic modulus and third-order elas-
tic modulus can be found in Pao et al (1984) and Rasolofosaon
(1998).

Ignoring the higher order terms in the equation, the rock consti-
tutive equations can be obtained as

T i
αβ = cαβγ δ E i

γ δ + 1

2
cαβγ δεη E i

γ δ E i
εη, (9)

T f
αβ = cαβγ δ E f

γ δ + 1

2
cαβγ δεη E f

γ δ E f
εη. (10)

Substituting eqs (9) and (10) into eq. (7), the rock constitutive
equation can be expressed as

Tαβ = cαβγ δ Eγ δ + cαβγ δεηei
γ δeεη, (11)

where ei and e are infinitesimal strains, eαβ = 1
2 ( ∂uα

∂ξβ
+ ∂uβ

∂ξα
).

Substituting eq. (6) into eq. (11), according to the relationship
between TIJ and Tαβ , the stress increment in the initial coordinate
system can be obtained as,

TIJ = δIαδJβ

[
Tαβ

(
1 − ∂ui

γ

∂ξγ

)
+ Tαγ

∂ui
β

∂ξγ

+ Tβγ

∂ui
α

∂ξγ

]
. (12)
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1604 F. Chen et al.

Figure 6. The seismic reflection coefficients and transmission coefficients at the interface between dry Berea1 sandstone and dry Indiana limestone under normal
in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks, respectively.
(a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient of SV
wave.

Eq. (12) can be further described as

TIJ=CIJKL
∂uK

∂ X L
, (13)

where

CIJKL = cIJKL(1 − ei
NN) + cIJKLMNei

MN + cMJKL
∂ui

I

∂ X M

+ cIMKL
∂ui

J

∂ X M
+ cI J M L

∂ui
K

∂ X M
+ cI J K M

∂ui
L

∂ X M
. (14)

The pre-deformation from the natural state to the initial state is
static, and the Cauchy stress tensor and Kirchhoff stress tensor must
meet the equilibrium equation

∂t i
JK

∂ X K
= 0. (15)

And the motion equation of a rock particle from the initial state
to the final state is

∂

∂ X K
T f

K J + T f
K L

∂u J

∂ X L
= ρ i ∂

2u J

∂t2
. (16)

Subtracting eq. (15) from eq. (16), and ignoring high-order small
terms, we can get a rock particle motion equation described by the
displacement increment caused by the seismic wave perturbation

∂

∂ X J

[
TIJ + t i

JK

∂uI

∂ X K

]
= ρ i ∂

2uI

∂t2
. (17)

Only two assumptions have been made in the derivation. The
pre-deformation is static, and the seismic wave perturbations are
infinitesimal. Therefore, the motion equation (17) can be applied to
pre-deformed, elastic and inelastic rocks (Tian & Hu 2010).

Substituting eq. (13) into eq. (17), the motion equation of a
rock particle caused by seismic wave perturbation, that is the solid
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Seismic reflectivity and transmissivity parametrization 1605

Figure 7. The seismic reflection coefficients and transmission coefficients at the interface between dry Berea1 sandstone and dry granite under normal in
situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks, respectively. (a)
Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient of SV wave.

acoustoelastic equation, can be expressed as

∂

∂ X J

[
(δIKt i

JL + CIJKL)
∂uK

∂ X L

]
= ρ i ∂

2uI

∂t2
. (18)

Assuming that the medium is homogeneously deformed, the
acoustoelastic equation can be reduced to

BIJKL
∂2uK

∂ X J ∂ X L
= ρ i ∂

2uI

∂t2
, (19)

in which

BIJKL = δIKt i
JL + CIJKL. (20)

Under the assumption that the seismic waves are plane waves.
The displacement equation of seismic plane wave in the initial
coordinate system is

uk = a Pk exp [iK (NJ X J − V t)] , (21)

where a, V , K and Pk respectively denote the amplitude, veloc-
ity, wave number and polarization vector. Substitute eq. (21) into

eq. (19), then we can obtain a system of equations for the polariza-
tion vector Pk ,

(BIJKLm J mL − ρ iδIK)PK = 0. (22)

The polarization vector has non-zero solutions, and the charac-
teristic equation satisfies

|BIJKLm J mL − ρ iδIK| = 0, (23)

in which m J and mL can be interpreted as seismic wave slowness.
The seismic wave slowness in different propagation directions can
be obtained according to the above equation.

Normal in situ stress

Normal in situ stress is generated from the gravity of the overlying
strata. Hence, it can be obtained by integrating the density of the
strata obtained from well logging data. Normal initial stress can
be calculated by the following formula (Abdideh & Moghimzadeh
2019):
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1606 F. Chen et al.

Figure 8. The seismic reflection coefficients and transmission coefficients at the interface between saturated Berea1 sandstone and saturated Berea2 sandstone
under normal in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks,
respectively. (a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient
of SV wave.

t0 = ρ f gz f + g

z∫
zw

ρs(z)dz, (24)

where ρ f is the density of the sea water for offshore drilling; g is
gravity acceleration; z f is the depth of water, for onshore drilling
z f = 0; z is the depth from the sea level to the seabed; and ρs(z) is
the stratum bulk density expressed as a function of depth.

Reflectivity and transmissivity equations

At the solid–solid interface, the Cauchy stress values are equal, so
the first Piola–Kirchhoff stress tensor can be expressed as (Degtyar
1998)

σIJ = CIJKLeK L + uI,K t0
K J . (25)

Assuming that the transverse principal strains e11 and e22 are
equal. When the seismic P wave propagates to the interface be-
tween two different stressed strata, it is converted into two kinds of
reflected wave and two kinds of transmitted wave in the upper and
lower strata in the X–Z plane, respectively, as shown in Fig. 2.

The displacement u and the normal stress at the solid–solid inter-
face are continuous. Thus, the boundary condition (Degtyar 1998)
at the interface is

(
u0

I +
3∑

α=1

uα
I

)
z=0

=
(

6∑
α=4

uα
I

)
z=0

, (26)

(
σ 0

I 3+
3∑

α=1

σα
I 3

)
z=0

=
(

6∑
α=4

σα
I 3

)
z=0

, I = 1, 2, 3. (27)

Substitute eqs (21) and (25) into the boundary condition. Ac-
cording to Snell’s law, we utilize the relationship between velocity
and slowness to derive the reflection coefficient and transmission
coefficient equations as

⎡
⎢⎢⎢⎢⎢⎢⎣

P1
1 P2

1 P3
1 −P4

1 −P5
1 −P6

1

P1
2 P2

2 P3
2 −P4

2 −P5
2 −P6

2

P1
3 P2

3 P3
3 −P4

3 −P5
3 −P6

3

Y41 Y42 Y43 Y44 Y45 Y46

Y51 Y52 Y53 Y54 Y55 Y56

Y61 Y62 Y63 Y64 Y65 Y66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

R1

R2

R3

T1

T2

T3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−P0
1

−P0
2

−P0
3

Z1

Z2

Z3

⎤
⎥⎥⎥⎥⎥⎥⎦

, (28)
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Seismic reflectivity and transmissivity parametrization 1607

Figure 9. The seismic reflection coefficients and transmission coefficients at the interface between saturated Berea1 sandstone and saturated tight rock under
normal in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks, respectively.
(a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient of SV wave.

where

Y41 = Cup
13K L P1

K m1
L + P1

1 m1
K t0

K 3, Y42 = Cup
13K L P2

K m2
L + P2

1 m2
K t0

K 3,

Y43 = Cup
13K L P3

K m3
L + P3

1 m3
K t0

K 3, Y44 =−C low
13K L P4

K m4
L − P4

1 m4
K t0

K 3,

Y45 =−C low
13K L P5

K m5
L − P5

1 m5
K t0

K 3, Y46 =−C low
13K L P6

K m6
L − P6

1 m6
K t0

K 3,

Y51 = Cup
23K L P1

K m1
L + P1

2 m1
K t0

K 3, Y52 = Cup
23K L P2

K m2
L + P2

2 m2
K t0

K 3,

Y53 = Cup
23K L P3

K m3
L + P3

2 m3
K t0

K 3, Y54 =−C low
23K L P4

K m4
L − P4

2 m4
K t0

K 3,

Y55 =−C low
23K L P5

K m5
L − P5

2 m5
K t0

K 3, Y56 =−C low
23K L P6

K m6
L − P6

2 m6
K t0

K 3,

Y61 = Cup
33K L P1

K m1
L + P1

3 m1
K t0

K 3, Y62 = Cup
33K L P2

K m2
L + P2

3 m2
K t0

K 3,

Y63 = Cup
33K L P3

K m3
L + P3

3 m3
K t0

K 3, Y64 =−C low
33K L P4

K m4
L − P4

3 m4
K t0

K 3,

Y65 =−C low
33K L P5

K m5
L − P5

3 m5
K t0

K 3, Y66 =−C low
33K L P6

K m6
L − P6

3 m6
K t0

K 3,

Z1 =−Cup
13K L P0

K m0
L − P0

1 m0
K t0

K 3, Z2 =−Cup
23K L P0

K m0
L − P0

2 m0
K t0

K 3,

Z3 =−Cup
33K L P0

K m0
L − P0

3 m0
K t0

K 3.

(29)

According to Snell’s law, the projections of the slowness vec-
tors along the interface mα

1 (α = 0, 1, 2, 3, 4, 5, 6) are equal to m0
1,

which is already known. The unknown mα
3 can be precisely deter-

mined from the eq. (23). Then, the polarization vector correspond-
ing to each slowness can be obtained by substituting slowness into
eq. (24). In this case, no birefringence occurs in the X–Z plane, so

the reflection coefficient R3 and transmission coefficient T3 of SH
wave vanish.

N U M E R I C A L A NA LY S I S

Various rocks, such as Castalegeta sandstone, tight rock
(porosity≈1.9 per cent), limestone and granite, are used to con-
struct stratigraphic models to obtain corresponding seismic reflec-
tion and transmission coefficients. Parameters of the rocks used in
stratigraphic models (Wang 2002; Prioul et al. 2004; Winkler &
Larry 2004; Liu et al. 2012) are shown in Table 1. Two kinds of
model are used in our analysis: the interface between two forma-
tions which have different lithology and the same saturated state,
and the interface between two formations which have same lithol-
ogy and the different saturated state. By observing the seismic
reflection and transmission coefficients of the above two models,
the effect of in situ stress under different models is preliminarily
determined.

First, we discuss the effect of in situ stress on the reflection
and transmission at the interface between two formations which
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Figure 10. The seismic reflection coefficients and transmission coefficients at the interface between saturated Berea1 sandstone and saturated Portland
sandstone under normal in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in
rocks, respectively. (a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission
coefficient of SV wave.

have different lithology and the same saturated state. Figs 3(a)–(d)
respectively show the P-wave reflection coefficient, SV-wave re-
flection coefficient, P-wave transmission coefficient and SV-wave
transmission coefficient at the interface between dry Berea1 sand-
stone (upper layer) and dry Berea2 sandstone (lower layer). With
the continuous increase of the normal in situ stress caused by the
increasing burial depth of the formation, the values of the reflection
coefficients of the P wave and SV wave gradually decrease, while
the transmission coefficients of the P wave and SV wave gradu-
ally increase. The SV-wave reflection coefficient is negative. This
phenomenon is consistent with that shown from Figs 4 to 7 at low
incident angle (lower than critical angle). However, the transmis-
sion coefficients of the P wave and SV wave are almost not affected
by the increase of the stress at the interface between dry Berea1
sandstone (upper layer) and tight rock (lower layer), as shown in
Fig. 4, and at the interface dry Berea1 sandstone (upper layer) and
granite (lower layer), as shown in Fig. 7.

Similar analyses were implemented on saturated rocks. Fig. 8
shows the seismic reflection and transmission coefficients at the
interface between saturated Berea1 sandstone (upper layer) and
saturated Berea2 sandstone (lower layer). The in situ stress has little

effect on the reflection and transmission coefficient of SV wave at
low incident angle. Compared with the results shown in Fig. 3,
when the rock is filled with fluid, the effect of in situ stress on the P-
wave transmission coefficient remains nearly unchanged, while the
effect of stress on the SV-wave transmission coefficient decreases.
Comparison between Figs 9 and 4 or comparison between Figs 10
and 5 shows when the dry rock is filled with fluid, the effect of in
situ stress on the reflection and transmission coefficient of P wave
remains the same as before. Nevertheless, the presence of fluid
increases the critical incident angle (shown in Figs 9 and 4). Seismic
reflection and transmission coefficients of P wave are still sensitive
to in situ stress. However, the reflection coefficient and transmission
coefficient of SV wave become very insensitive to in situ stress.
According to the results shown in Figs 11 and 6, it can be found
that the stress has a great effect on the P-wave reflection coefficient
and the critical angle increase when the rock is filled with fluid.
While the effect of stress on the SV-wave reflection coefficient, P-
wave transmission coefficient and SV-wave transmission coefficient
is significantly reduced, which is almost negligible.

We also make a discussion of the effect of in situ stress on the
reflection and transmission at the interface between two formations
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Seismic reflectivity and transmissivity parametrization 1609

Figure 11. The seismic reflection coefficients and transmission coefficients at the interface between saturated Berea1 sandstone and saturated Indiana limestone
under normal in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks,
respectively. (a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient
of SV wave.

with same lithology and different saturated state. This part is de-
signed to analyse the effects of fluids on reflection and transmission
at the interface of two stressed rocks. We set dry Portland sandstone
as the upper layer and saturated Portland rock as the lower one.
Figs 12(a)–(d) show the P-wave reflection coefficient, SV-wave re-
flection coefficient, P-wave transmission coefficient and SV-wave
transmission coefficient at the interface of this model respectively.
It is obvious that when the in situ stress increases, the reflection
coefficient of P wave and SV wave and the transmission coefficient
of SV increase gradually. However, the transmission coefficient of
P wave decreases gradually with the increase of stress. The trans-
mission coefficient of SV is negative and shows a good sensitivity
to normal in situ stress in this model. The effect of normal stress on
reflection and transmission at the interface between dry and satu-
rated tight rock is investigated, as shown in Fig. 13. Because of the
low porosity(≈ 1.9 per cent) of tight rock, the reflection coefficient
of P wave, the transmission coefficient of P and SV wave are greatly
small; the transmission coefficient of P wave is about 1. That means

that the effect of the fluid on seismic reflection and transmission of
tight rock is tiny, and all of the energy of incident P wave is almost
transmitted, reflects little. We further use dry Indiana limestone as
the upper layer and saturated Indiana limestone as the lower layer.
The variation of reflection coefficient and transmission coefficient
with the normal in situ stress as it is shown in Fig. 14. The reflection
coefficient of both the absolute value of P wave and the SV wave
increase with the increase of in situ stress. The transmission coeffi-
cient of SV wave is negative and very small, almost not affected by
stress.

According to the results shown in Figs 12–14, the values of
reflection coefficient and transmission coefficient of the Portland
sandstone model, the tight rock model and the Indiana limestone
model are very different. This phenomenon may be related to the
difference of saturation, porosity and internal structure of the upper
and lower formation. In spite of this, the variation trend of reflec-
tivity, transmissivity and in situ stress sensitivity are quite similar.
And the stress sensitivity of three models are very low. To sum
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Figure 12. The seismic reflection coefficients and transmission coefficients at the interface between dry Portland sandstone and saturated Portland sandstone
under normal in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks,
respectively. (a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient
of SV wave.

up, when the lower layer is sandstone, the critical incident angle
decreases with the increase of normal stress; when the lower layer
is limestone, the critical incident angle increases as normal stress
increases; when the lower layer is tight rock or granite, the critical
incident angle is invariable with the increase of normal stress. And
the fluid of the rock creates the small impedance contrast between
dry rock and saturated rock. The existence of the fluid has little
influence on the behaviour of the normal stress.

F O R M U L A V E R I F I C AT I O N

In this section, saturated Castlegate sandstone and saturated Berea3
sandstone are selected as the upper and lower medium respec-
tively. This model will be used to verify the correctness of the
reflectivity and transmissivity equations considering the effect of
normal in situ stress. Fig. 15 shows the reflection coefficient and
transmission coefficient at the interface of this model. The in situ
stress has little influence on the SV-wave reflection coefficient, P-
wave transmission coefficient and SV-wave transmission coefficient.

The reflection coefficient of P wave decreases with the increase
of stress at low incident angles, which is different from the par-
tial results of the models used in previous sections. This indicates
that the effect of stress on the reflection and transmission coeffi-
cients is closely related to the properties of rocks as well, such as
third-order elastic modulus, seismic velocity, density and saturation
state.

The solid curve in Fig. 15 represents the calculated result of
eq. (28) when the normal in situ stress is zero, and the curve
marked with hollow circle represents the calculated result of Zoep-
pritz equation. We can find that the solid and the red hollow circle
are identical. In other words, when the in situ stress becomes zero,
eq. (28) can be degenerated to the Zoeppritz equation, which pre-
liminarily verifies the correctness of eq. (28) we proposed. From
Figs 3, 5, 8 and 10, we can find that the critical incident angles
of the reflection coefficient or transmission coefficient equation at
the interface between Beare1 sandstone (dry or saturated, upper
layer) and Berea2 or Portland sandstone (dry, saturated, lower layer)
decrease continuously with the increase of stress. This is consis-
tent with the previous conclusion that the critical incident angles
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Seismic reflectivity and transmissivity parametrization 1611

Figure 13. The seismic reflection coefficients and transmission coefficients at the interface between dry tight rock and saturated tight rock under normal in
situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks, respectively. (a)
Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient of SV wave.

of the energy reflection and transmission coefficients decrease with
the increase of stress, which further demonstrates the accuracy of
eq. (28).

D I S C U S S I O N

Based on the main assumption of planar seismic wave and isotropic
medium, the exact seismic amplitude reflectivity and transmissivity
equations under the vertical normal in situ stress at the horizontal
interface were derived by combining the acoustoelastic theory and
elastic wave dynamics.

Through analysing different rock models, the effect of stress on
the reflection and transmission coefficients at the interface between
two formations with different lithology and saturated state was ob-
tained. The stress mainly affects the amplitude and critical incident
angle of reflectivity and transmissivity. The upper layer was given
as sandstone; the critical incident angle decreased when the lower
layer was sandstone (dry or saturated), was invariable when the lower
layer was tight or granite rock (dry or saturated) and increased when

the lower layer was limestone (dry or saturated). In all rock models,
the P-wave reflectivity and SV-wave reflectivity (absolute values)
decreased and the P wave increased with the increase of stress. The
SV-wave transmissivity was insensitive to stress.

Previous studies mainly focused on seismic amplitude reflection
and transmission coefficients in stress-free state, or seismic energy
reflection and transmission under transverse stress at the rock inter-
face, without considering the effect of the vertical normal stress. In
fact, the underground rocks always are subjected to normal in situ
stress. The proposed equation is expected to lay the foundation for
seismic prediction of in situ stress.

However, the hypothesis of this study will cause some inherent
limitations of the exact equation. The main limitation is that the
rock is assumed to be isotropic, without considering the influence of
rock porosity on seismic wave propagation. Therefore, we can find
that the reflection coefficient increases or decreases almost linearly
with the increase of stress. In addition, because of the assumption
that saturated rocks are regarded as equivalent isotropic rocks, we
can find that the effect of stress on the reflection coefficient is not
very different for dry and saturated rocks of the same lithology.
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Figure 14. The seismic reflection coefficients and transmission coefficients at the interface between dry Indiana limestone and saturated Indiana limestone
under normal in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in rocks,
respectively. (a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c) transmission coefficient of P wave and (d) transmission coefficient
of SV wave.

Therefore, it is difficult to analyse the detailed influence of fluid in
stressed rock on seismic reflection by the equation proposed in this
paper. In fact, due to the existence of pores, the reflection coefficient
increases almost linearly with the increase of stress at low stress.
Then, the growth rate of the reflection coefficient becomes slow.
Finally, the reflection coefficient tends to be stable gradually with
the increase of stress due to the closure of rock pores. Therefore,
the equation presented in this paper has good stability and accuracy
only when the stress is low.

In the future work, the reflection coefficient equation considering
rock pore and fluid should be constructed to solve the above limita-
tions, which can describe the reflection and transmission of seismic
wave with the effect of in situ stress more accurately.

C O N C LU S I O N S

According to the results of the above comparison, we can reach
the following conclusions: (1) The in situ stress has the great-
est effect on reflection coefficient and transmission coefficient at

the interface of two sandstones, followed by the interface between
sandstone and limestone, and has the least effect on the interface
between sandstone and granite or tight rock. (2) When the dry
rock is filled with fluid, the effect of in situ stress on the reflec-
tivity and transmissivity at all interfaces is slightly reduced. The
reflection and transmission of SV wave are almost not affected
by the in situ stress. (3) The model test shows that the in situ
stress has the most significant effect on the P-wave reflection co-
efficient, but has almost no effect on the SV-wave transmission
coefficient.

When the normal in situ stress becomes zero, eq. (28) can
be degenerated to the classic Zoeppritz equation, which prelim-
inarily proves the correctness of the proposed eq. (28). Previ-
ous studies on the reflection and transmission coefficients of en-
ergy have shown that the critical incident angle decreases with
the increase of normal in situ stress when the upper and lower
layers are sandstone, which is consistent with observed phe-
nomenon in this paper. This can further verify the proposed
equations.
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Figure 15. The seismic reflection coefficients and transmission coefficients at the interface between saturated Castlegate sandstone and saturated Berea3
sandstone under normal in situ stress. The dotted, dashed, solid, star marked and cross marked lines denote unstressed state, −25, −50, −75 and −100 MPa in
rocks, respectively; the red hollow circle denotes the Zoeppritz equation. (a) Reflection coefficient of P wave, (b) reflection coefficient of SV wave, (c)
transmission coefficient of P wave and (d) transmission coefficient of SV wave.
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