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Abstract: Understanding the fate of dissolved inorganic nitrogen (DIN) sourced from land-based runoff is 

an important element in the development of strategies for managing water quality on the Great Barrier Reef 

(GBR). Direct measurement of the generation and transport of DIN from the landscape is impractical at large 

scale so most of the burden is deferred to water quality models (WQMs) that simulate catchment processes. 

Although WQMs are subject to uncertainty as most environmental models are, until recently WQMs designed 

to quantify nutrient, sediment and pesticide loads being discharged into the GBR lagoon have been 

deterministically calibrated with no reference to uncertainty. To properly assess the reliability and performance 

of WQMs they must be able to produce probabilistic predictions that correctly represent model uncertainty and 

Bayesian inference is an appealing framework for achieving this.   

Although the principles of Bayesian inference can be succinctly expressed as Bayes’ theorem,  

𝑓(M, |d) ∝ 𝑓(d|M, )𝑓(M, ), where M represents the model parameters,  are parameters of the likelihood 

probability density function (pdf) and d some measured data, its application for WQMs can be challenging. In 

all but the most trivial cases, there is no practical way of symbolically deriving the posterior 𝑓(M, |d). In the 

absence of an analytical representation of the posterior, one may resort to Markov chain Monte Carlo (MCMC) 

and sequential Monte Carlo (SMC) methods for sampling from the posterior. Although these stochastic 

processes are a tour de force that can yield high quality results, they require a large number of model 

evaluations to converge to an equilibrated solution.  

Iterative ensemble Kalman inversion (IEKI) encompasses a family of algorithms, such as the ensemble 

randomized maximum likelihood method and ensemble smoother with multiple data assimilations that offer 

an efficient method for gradually propagating error statistics via an ensemble of model outputs to connect 

samples from the prior to an ensemble of posterior samples. The major advantage of these schemes is that they 

consume a fraction of the model evaluations that would be required otherwise and scale favorably with the 

dimensionality of the inverse problem. A major drawback of the ensemble methods in the current context is 

that in their formulation, they require that the likelihood 𝑓(d|M, ) is Gaussian and that the covariance, , is 

known. Unfortunately, measurement error statistics for water quality measurements used to inform the WQM 

calibration are difficult to derive and quite often unavailable. On the other hand, MCMC and SMC methods 

can infer the parametric likelihood given the data.  

The authors recently introduced the component-wise IEKI (CW-IEKI) which hybridizes MCMC and IEKI by 

iteratively updating the model parameters, M, using an ensemble step followed by an MCMC step to adjust the 

likelihood parameters, . Since the MCMC step requires no further model evaluations, the algorithm offers 

efficiency comparable with conventional ensemble methods with the added benefit of likelihood parameter 

inference.  

This paper presents the application of the CW-IEKI method to the problem of identifying parameters of a 

catchment scale DIN model. The results are discussed and found to compare satisfactorily to SMC on a number 

of model performance metrics.  
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1. INTRODUCTION 

Catchment water quality models (WQMs) have been aptly referred to as “over-parameterised, uncertain 

mathematical marionettes” (Wade et al., 2008). Typically, WQM epistemic uncertainty due to model structural 

deficiencies is compounded by noisy and sparse water quality monitoring data for quantification of model 

performance. Despite this, WQMs are valuable tools for supporting catchment management and policy. Fully 

informed decisions arising from WQM modeling results require not only the acknowledgment but also the 

quantification of the uncertainty inherent in the model's predictions 

In most cases, model performance can be optimised by assimilating measurements from the field into the WQM 

to identify model parameters that provide the best possible description of the dynamical system and its 

uncertainty. Of the various options available, formulating the assimilation problem in a Bayesian inference 

framework is both a very popular and satisfying approach. Within the Bayesian ansatz, prior model parameters 

are conditioned on observed data to obtain the posterior probability using Baye’s theorem which is simply 

expressed as 

𝑓(M|d) ∝ 𝑓(d|M)𝑓(M), 

where M are the model parameters and 𝑓(M) is the prior parameter probability density function (pdf). 

Measurement data, d,  is incorporated via the likelihood term 𝑓(d|M). In the context of the WQM, the 

likelihood can be represented as 

𝑓(d|M) = 𝑓(d − G(M)) = 𝑓(ϵ), 

where G(M) is the model output using parameters M which means that something has to be known about the 

pdf of the measurement error, ϵ. If ϵ is known a priori, ensemble-based data assimilation methods such as 

iterative ensemble smoothers (IESs) can efficiently yield high quality approximations of the Bayesian posterior 

in many situations. Unfortunately, useful estimates of ϵ are rarely associated with water quality measurement 

data. Moreover, in the presence of imperfect models such as WQMs, ϵ doesn’t entirely capture the likelihood 

since it ignores uncertainty due to model structural error.  

Exact Bayesian inference can be carried out using Markov chain Monte Carlo (MCMC) and sequential Monte 

Carlo (SMC) methods to sample from the posterior pdf including the parameters of the likelihood distribution, 

thus overcoming the limitation of the IES approach. However, MCMC can be a computationally expensive 

sampler due to the large number of model runs required to reach convergence, particularly when a large number 

of parameters are to be estimated. Even SMC sampling which can be considerably more robust than MCMC 

samplers and can also exploit parallel computing architecture (Dai et al., 2022) may still be of limited 

practicality for models with long computation times.  

Recently, Botha et al. (2022) introduced the component-wise iterative ensemble Kalman inversion (CW-IEKI) 

method which seeks to bridge the gap between IES and Bayesian inference by allowing elements of ϵ to be 

inferred during the ensemble smoother iterations in a manner that adds negligibly to the computational costs.   

This paper presents a case study of CW-IEKI applied to the problem of solving the inverse problem of 

identifying uncertain parameters of a catchment scale model for estimating dissolved inorganic nitrogen (DIN) 

stream loads. It is demonstrated that CW-IEKI results compare favorably with those obtained from SMC 

sampling. Assessment of the model performance by examining how well posterior predictive estimates 

represent measured loads indicate the CW-IEKI model satisfactorily forecasts DIN loads beyond the calibration 

period and very closely emulates the SMC results. This study extends earlier work investigating the use of 

IEKI methods for the uncertainty analysis of rainfall-runoff models and agricultural systems simulations 

(Bennett, 2021; Vilas et al., 2021). 

2. METHODS 

2.1. Component-Wise Iterative Ensemble Kalman Inversion 

CW-IEKI can be thought of as an ensemble smoother that iteratively updates an ensemble of 𝑁𝑒 parameter 

realisations of vector length 𝑁𝑚 using the following equation given a vector of observations of length 𝑁𝑑: 

M =  C𝑀𝐷(C𝐷𝐷 + 𝛼())
−1

(D𝑢𝑐 − D). 

Here, M is an 𝑁𝑚 × 𝑁𝑒 ensemble of model parameters and D is the 𝑁𝑑 × 𝑁𝑒 matrix of model outputs G(M). 

D𝑢𝑐 is an 𝑁𝑑 × 𝑁𝑒 perturbed measurement matrix whose rows are unconditioned samples of the measurement 

noise with covariance  (), and 𝛼 is an inflation parameter that serves to temper the parameter step size. Using 
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the zero-mean anomaly matrices 𝑀 = (M ⊝ M̅) √𝑁𝑒 − 1⁄   and 𝐷 = (D ⊝ D̅) √𝑁𝑒 − 1⁄  where M̅ and D̅ are 

the matrix means, the approximate sensitivity matrices can be constructed as C𝑀𝐷 = 𝑀𝐷
T  and C𝐷𝐷 = 𝐷D

T . 

Note, ⊝ is the broadcast subtraction operator. For the purposes of this paper, 𝛼 is simply set to 𝑁𝑎, the number 

of assimilation iterations.  

The innovation of the CW-IEKI is the way in which the measurement covariance is handled. The application 

of the canonical ensemble smoother with multiple data assimilation algorithm (Emerick and Reynolds, 2013) 

relies on the covariance  being known. By making the reasonable assumption that the model parameters M 

and the elements  of ,   can be treated independently, it is possible to use Bayesian inference to estimate  at 

each iteration allowing  to evolve in a tempered fashion. In principle, the complexity of the structure of () 

is arbitrary with 𝑁 parameters but for the present case () = I with 𝑁 = 1 , where the 𝑁𝑑 × 𝑁𝑑 identity 

matrix, I, is used.  

Algorithm 1 outlines the pseudocode for the CW-IEKI procedure showing the component-wise updating of M 

and  at each assimilation step. It is worth noting that because  is conditioned on 𝑀 and the previously 

assembled 𝐷 ensemble of model outputs, it requires no further evaluation of G(∙).   

 

The reader is referred to Botha et al., (2022) for a detailed presentation of the derivation and application of 

CW-IEKI.  

2.2. Study area 

Despite representing only 2% of the total GBR catchment area, discharge from waterways in the Mackay-

Whitsunday Natural Resource Management (NRM) region is estimated to contribute approximately 11% of 

the average annual GBR DIN load. About 13% of the DIN load is exported through the Pioneer River (Figure 

1) (Packett et al., 2014).  

The Pioneer catchment covers approximately 1573 square kilometres. The main waterway is the Pioneer River 

which is supplemented by smaller waterways including Cattle Creek. The main land uses are grazing (32%), 

forestry (22%), and sugarcane (22%). Most anthropogenic dissolved inorganic nitrogen (DIN) loads come from 

sugarcane with smaller contributions from urban and sewage treatment plants (Folkers et al., 2014).  

2.3. Catchment water quality model 

The WQM model used in this study is part of a larger suite of models that have been developed for the Paddock 

to Reef Integrated Monitoring, Modelling and Reporting Program (P2R) (Carroll et al., 2012) which provides 

Algorithm 1 CW-IEKI  

Input: M𝑓 ∈ ℜ𝑁𝑚×𝑁𝑒 , 
𝑓 ∈ ℜ

𝑁×𝑁
𝑒  𝑑𝑜𝑏𝑠 ∈ ℜ𝑁𝑚×1; 𝑁𝑒 sample drawn from the model parameter prior, 𝑁𝑒 samples 

drawn from the error covariance parameter prior and the observation data vector 

Output: The ensemble estimate of the Bayesian posterior of M and  

Choose the number of assimilation steps, 𝑁𝑎, and inflation factors such that ∑
1

𝛼𝑖
= 1

𝑁𝑎
𝑖=1  

M0 ← M𝑓 , 
0

= 
𝑓
 ; initialise M and  

for i = 1,…, 𝑁𝑎 do 

D𝑢𝑐
𝑗

← 𝑑𝑜𝑏𝑠 + √𝛼𝑖(
𝑖−1
𝑗 )

1 2⁄
𝑧𝑑  ; perturb the observation vector for each ensemble member where 𝑧𝑑~𝒩(0, I𝑁𝑑

) 

D𝑖
𝑗

← G(M𝑖−1
𝑗

) ; build ensemble of model outputs 

𝑀,𝑖 ← (M𝑖−1 ⊝ M𝑖−1
̅̅ ̅̅ ̅̅ ) √𝑁𝑒 − 1⁄   

𝐷,𝑖 ← (D𝑖 ⊝ D�̅�) √𝑁𝑒 − 1⁄   

C𝑀𝐷,𝑖 ← 𝑀,𝑖𝐷,𝑖
T   

C𝐷𝐷,𝑖 ← 𝐷,𝑖𝐷,𝑖
T   

M𝑖
𝑗

← M𝑖−1
𝑗

+ C𝑀𝐷,𝑖 (C𝐷𝐷,𝑖 + 𝛼𝑖(
𝑖−1
𝑗 ))

−1
(D𝑢𝑐

𝑗
− D𝑖

𝑗
); update the ensemble of model parameters 


𝑖
𝑗 ← 𝑓(|M𝑖

𝑗
, D𝑖

𝑗
) ; MH-MCMC update of 

𝑖
𝑗
 conditional on M𝑖

𝑗
 and D𝑖

𝑗
 

end for 

𝑀 ← 𝑀𝑁𝑎
  

 ← 
𝑁𝑎

   

The superscript j denotes the jth realisation from the respective ensemble.  
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the framework for evaluating and tracking progress towards achieving GBR water quality targets outlined in 

the Reef 2050 Water Quality Improvement Plan (Queensland, 2018). The models have been described in detail 

elsewhere (McCloskey et al., 2021a, 2021b), but essentially DIN is modelled two ways in the Pioneer 

catchment model. Agricultural Production Systems Simulator (APSIM) (Shaw et al., 2013) paddock scale 

agricultural models are used to estimate DIN generation and transport into the wider catchment from sugarcane 

landuse areas. Two delivery ratio parameters that describe the mean attenuation of total load generated from 

the paddock relative to that which appears at the monitoring point are considered here. seep_dr is the leached 

DIN delivery ratio and surf_dr is the surface runoff delivery ratio. The DIN loads generated from the remaining 

landuses are treated using a simple Event Mean Concentration/Dry Weather Concentration (EMC/DWC) 

approach. In all, the 11 parameters listed in Table 1 in section 3 are calibrated.  

2.4. Loads data 

Estimates of dissolved ammonium (NH4) and oxides in nitrogen (NOx) daily total loads at the Dumbleton Pump 

on the Pioneer River Station (Fig. 1) from July 2006 to June 2018 have been aggregated up to monthly total 

DIN loads (DIN = NH4 + NOx) resulting in a 144 month timeseries used for this study. The observed load 

estimates are based on monitoring data collected through the Great Barrier Reef Catchment Loads Monitoring 

Program (GBRCLMP) whose data provides the point of truth to validate loads predicted by the P2R Catchment 

models (Turner et al., 2013). The 144 samples have been partitioned into two subsets; data from the first 96 

months of the timeseries were used for the calibration, and the remaining 48 monthly samples were used for 

validation. 

Figure 1. The Pioneer River catchment showing the location of the Dumbleton Pump Station 

upstream of the city of Mackay and the Cattle Creek tributary. 

2.5. CW-IEKI and SMC-Bayes implementation 

Bayesian inference implemented using likelihood tempering SMC sampling (denoted SMC-Bayes) and CW-

IEKI proceeded from truncated normal priors 𝒩(𝜇, 𝜎2, 𝑎, 𝑏) on the model parameters where 𝜇 is the mean, 𝜎
is the standard deviation and 𝑎 and 𝑏 are the lower and upper truncation limits. Referring to Table 1, for each 

parameter, 𝜇 is set to the midpoint of the range, 𝑎 and 𝑏 are the lower and upper range values, and 𝜎 is 

determined such that the span of the range is four standard deviations, i.e. 𝜎 = (𝑏 − 𝑎) 4⁄ . Parameter values 

were rescaled into a unit hypercube and then logit transformed. A half normal distribution, |𝒩(0, 102)| was

used for the prior on the noise parameter . Both the model output and observational data were square root 

transformed to allow for error heteroscedasticity. CW-IEKI and SMC-Bayes results presented in Section 3 are 

based on 1000 samples from their respective posteriors. 12 assimilation steps of the CW-IEKI required 12000 

model runs compared to approximately 374000 model runs for an analogous sequence of SMC-Bayes 

likelihood tempering steps.   
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3. RESULTS AND DISCUSSION

CW-IEKI and SMC-Bayes marginal prior and posterior densities of the model and noise parameters are shown 

in Figure 2. A statistical summary of the prior and posterior pdf’s is also provided in Table 1.  

Figure 2. SMC-Bayes and CW-IEKI marginal prior and posterior density plots for eleven DIN model 

parameters and the noise noise parameter, . 

Table 1. Posterior means and standard deviations (std) from SMC-Bayes and CW-IEKI samples for 

each of the parameters for the full model. The mean and standard deviations of the parameter prior 

pdf’s can be derived from the parameter range as described in Section 2.5.  

Parameter Landuse Range 
SMC-Bayes CW-IEKI 

mean std mean std 

EMC1 Forestry, 

Conservation 

0.0 – 5.0 mg/L 0.06 0.04 0.03 0.03 

DWC1 0.0 – 5.0 mg/L 0.07 0.06 0.06 0.06 

EMC2 
Grazing 

0.0 – 5.0 mg/L 0.12 0.09 0.11 0.09 

DWC2 0.0 – 5.0 mg/L 0.22 0.17 0.23 0.26 

EMC3 Urban, 

Cropping 

0.0 – 5.0 mg/L 1.63 0.91 2.01 1.01 

DWC3 0.0 – 5.0 mg/L 1.89 1.05 1.93 1.04 

EMC4 Horticulture, 

Other 

0.0 – 5.0 mg/L 2.27 1.15 2.60 1.09 

DWC4 0.0 – 5.0 mg/L 2.43 1.12 2.66 1.10 

DWC5 

Sugarcane 

0.0 – 5.0 mg/L 0.20 0.16 0.24 0.23 

surf_dr 0.0 – 100.0  % 55.82 10.82 62.42 14.49 

seep_dr 0.0 – 100.0 % 0.55 0.51 0.36 0.44 

On examination, it is clear that the CW-IEKI and SMC-Bayes posterior pdfs are characteristically comparable. 

Parameters related to urban, cropping and horticulture, other landuses are not well identified. This is due to the 

small landuse areas for these categories which results in a diminutive contribution to the variance of the model 

response associated with these parameters. For the remaining parameters, there are some small divergences 

between the CW-IEKI and Bayes densities. Further insight into the relative performance of each method can 

be gained through the analysis of their respective posterior predictive distributions.  

Figure 3 shows the posterior predictive densities using CW-IEKI and SMC-Bayes. Once again both methods 

yield similar results from inspection.  

Various performance measures can be used to quantitatively compare the performance of the two models with 

respect to each other. Table 2 lists several statistics that address the performance of both the probabilistic model 

and a point estimate model that is given by the median value of the posterior predictive density. The P-factor 

is the percentage of measured data enveloped by the 95% credible interval and can be thought of as an indicator 

of the model reliability. The R-factor is a measure of the width of the 95% credible interval band and is 
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calculated as the average 95% credible interval width divided by the standard deviation of the observation data. 

The average continuous-ranked probability score (CRPS) is a useful metric for quantifying the precision and 

accuracy of ensemble predictions (Hersbach, 2000). Lower performance results are indicated by the higher 

values of CRPS. The root mean square error-observations standard deviation ratio (RSR), Nash-Sutcliffe 

coefficient (NSE) and percent bias (PBIAS) are commonly used metrics for assessing performance of point-

estimate hydrological and water quality models (Moriasi et al., 2007). 

Figure 3. Comparison of the observed DIN loads data to the 95% central credible intervals (CI) for the 

posterior predictive distribution of the model fitted to this data. The models were fitted using CW-IEKI and 

SMC-Bayes (red dashed line). Data points to the left of the vertical green line were used for model fitting 

and those to the right for validation. The y-axis has been transformed for improved perspective. 

Table 2. Performance summary statistics of calibration and uncertainty analysis for calibration, forecast and 

combined data periods for CW-IEKI and SMC-Bayes methods.  

CW-IEKI SMC-Bayes 

Statistic All Calibration Forecast All Calibration Forecast 

P-factor 94.4 93.8 95.8 93.1 91.7 95.8 

R-factor 0.94 1.05 0.73 0.90 1.00 0.70 

CRPS 4.92 6.10 2.56 4.93 6.13 2.55 

RSR 0.44 0.47 0.31 0.44 0.46 0.32 

NSE 0.81 0.78 0.90 0.81 0.79 0.90 

PBIAS -0.88 -2.11 4.11 -2.69 -3.65 1.19 

In all cases, the P-factor is close to the theoretically expected value for the 95% CI. As an indicative reference 

point, depending on the situation an R-factor of <1.5 (Abbaspour et al., 2015) would be desirable so the 

sharpness of the 95% CI seems to be satisfactory by comparative standards. Moriasi et al. suggest the 0.0 ≤ 

RSR ≤ 0.5, 0.75 ≤ NSE ≤ 1.00 and PBIAS < ±25 gives a performance rating of “very good” for monthly DIN 

load models (Moriasi et al., 2007).  

4. CONCLUSIONS

CW-IEKI and SMC-Bayes provide similar behavior based on all the performance metrics considered here. 

This is a single catchment scale DIN model case study, but several other environmental modelling case studies 

presented elsewhere have also demonstrated that  CW-IEKI  can substitute as a computationally efficient 

alternative to both MCMC and SMC for static Bayesian models of the form 𝒩(G(M),()) where M and  

are unknown, and when G(M) is expensive to compute (Botha et al., 2022). In the present case, a 31 fold 

efficiency dividend was achieved when comparing SMC inference to CW-IEKI, as summarised in Section 2.5. 
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