
Frederic A Meunier- PhD
- Professor (Full) at The University of Queensland
Frederic A Meunier
- PhD
- Professor (Full) at The University of Queensland
About
264
Publications
39,895
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,452
Citations
Introduction
Professor Frederic Meunier obtained his Masters degree in Neurophysiology at the Paris XI University, France in 1992 and completed his Ph.D in Neurobiology at the CNRS in Gif-sur-Yvette, France in 1996. He was the recipient of a European Biotechnology Fellowship and went on to postgraduate work at the Department of Biochemistry at Imperial College (1997-1999) and at Cancer Research UK (2000-2002) in London, UK. After a short sabbatical at the LMB-MRC in Cambridge (UK), he became a group leader at the School of Biomedical Sciences at the University of Queensland (Australia) in 2003. He joined the Queensland Brain Institute of the University of Queensland in 2007 and obtained an NHMRC senior research fellowship in 2009 renewed in 2014 with promotion. He became full Professor in 2014.
Current institution
Publications
Publications (264)
Synaptic neurotransmission is a critical hallmark of brain activity and one of the first processes to be affected in neural diseases. Monitoring this process, and in particular synaptic vesicle recycling, in living cells has been instrumental in unraveling mechanisms responsible for neurotransmitter release. However, currently available reporters s...
Mammalian receptor-mediated endocytosis (RME) often involves at least one of three isoforms of the large GTPase dynamin (Dyn). Dyn pinches-off vesicles at the plasma membrane and mediates uptake of many viruses, although some viruses directly penetrate the plasma membrane. RME is classically interrogated by genetic and pharmacological interference,...
Neuronal communication in the brain is controlled by synaptic vesicles (SVs) containing chemical neurotransmitters at the presynapse. SVs fuse with the plasma membrane thereby releasing the neurotransmitters into the synaptic cleft that can bind receptors present at the post‐synaptic membrane of abutting neurons, ensuring propagation of electrical...
Synaptic structural plasticity, the expansion of dendritic spines in response to synaptic stimulation, is essential for experience-dependent plasticity and is driven by branched actin polymerization. The WAVE regulatory complex (WRC) is confined to nanodomains at the postsynaptic membrane where it catalyzes actin polymerization. As the netrin/RGM r...
Whether, to what extent, and how the axons in the central nervous system (CNS) can withstand sudden mechanical impacts remain unclear. By using a microfluidic device to apply controlled transverse mechanical stress to axons, we determined the stress levels that most axons can withstand and explored their instant responses at nanoscale resolution. W...
Neurotransmitter release relies on the regulated fusion of synaptic vesicles (SVs) that are tightly packed within the presynaptic bouton of neurons. The mechanism by which SVs are clustered at the presynapse, while preserving their ability to dynamically recycle to support neuronal communication, remains unknown. Synapsin 2a (Syn2a) tetramerization...
The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation...
The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain’s lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation...
Polyunsaturated free fatty acids (FFAs) such as arachidonic acid, released by phospholipase activity on membrane phospholipids, have long been considered beneficial for learning and memory and are known modulators of neurotransmission and synaptic plasticity. However, the precise nature of other FFA and phospholipid changes in specific areas of the...
Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most cellular physiological processes and their regulations. As for all intracellular proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrates a...
The synapse is the communication unit of the brain, linking billions of neurons through trillions of synaptic connections. The lipid landscape of the synaptic membrane underpins neurotransmitter release through the exocytic fusion of neurotransmitter-containing vesicles, endocytic recycling of these synaptic vesicles, and the postsynaptic response...
Background
Despite almost two decades of research, the physiologic role of α‐synuclein remains unclear. Mice lacking α‐syn only show mild phenotypes, and most mechanistic studies have been done either in α‐syn over‐expressing systems, or in mice lacking all three synuclein genes (α/β/γ). However, over‐expression of proteins can induce unwanted phen...
Munc18-interacting proteins (Mints) are multidomain adaptors that regulate neuronal membrane trafficking, signaling, and neurotransmission. Mint1 and Mint2 are highly expressed in the brain with overlapping roles in the regulation of synaptic vesicle fusion required for neurotransmitter release by interacting with the essential synaptic protein Mun...
The reduced pathogenicity of the omicron BA.1 sub-lineage compared to earlier variants is well described, although whether such attenuation is retained for later variants like BA.5 and XBB remains controversial. We show that BA.5 and XBB isolates were significantly more pathogenic in K18-hACE2 mice than a BA.1 isolate, showing increased neurotropic...
Long noncoding RNAs (lncRNAs) represent a multidimensional class of regulatory molecules that are involved in many aspects of brain function. Emerging evidence indicates that lncRNAs are localized to the synapse; however, a direct role for their activity in this subcellular compartment in memory formation has yet to be demonstrated. Using lncRNA ca...
Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles co-exist within a single cluster suggesting that small synaptic biomolecular condensates could regulate their nanoscale...
Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most of the cellular physiological processes and their regulations. As for all cellular proteins, they are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrate...
SNARE-mediated secretory vesicle (SV) exocytosis underpins neuronal communication. Munc18-1 orchestrates SNARE complex formation by controlling the opening of syntaxin-1A. How the SV-plasma membrane interface becomes fusion-competent at the nanoscale level is poorly understood. Here, we propose that the interaction of Munc18-1 with VAMP2 during ves...
Neurotransmitters are released from synaptic and secretory vesicles following calcium-triggered fusion with the plasma membrane. These exocytotic events are driven by assembly of a ternary SNARE complex between the vesicle SNARE synaptobrevin and the plasma membrane-associated SNAREs syntaxin and SNAP-25. Proteins that affect SNARE complex assembly...
In recent years, the number of studies implicating lipids in the regulation of synaptic vesicle exocytosis has risen considerably. It has become increasingly clear that lipids such as phosphoinositides, lysophospholipids, cholesterol, arachidonic acid and myristic acid play critical regulatory roles in the processes leading up to exocytosis. Lipids...
Pan et al found that actomyosin-II-driven radial contractility underpins the resilience of central axons to mild mechanical stress by suppressing the propagation and firing of injurious Ca ²⁺ waves. Boosting actomyosin-II activity alleviates axon degeneration in mice with traumatic brain injury.
Traumatic brain injury (TBI) remains a significant an...
The cell entry mechanism of SARS-CoV-2, the causative agent of the COVID-19 pandemic, is not fully understood. Most animal viruses hijack cellular endocytic pathways as an entry route into the cell. Here, we show that in cells that do not express serine proteases such as TMPRSS2, genetic depletion of all dynamin isoforms blocked the uptake and stro...
Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect important temporal information such as cluster lifetim...
Numerous viruses use specialized surface molecules called fusogens to enter host cells. Many of these viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect the brain and are associated with severe neurological symptoms through poorly understood mechanisms. We show that SARS-CoV-2 infection induces fusion be...
The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, w...
The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. Saturated FFAs, particularly myristic acid (C14:0), strongly increase during neuronal stimulation and memory acqui...
Growth hormone (GH) acts via JAK2 and LYN to regulate growth, metabolism, and neural function. However, the relationship between these tyrosine kinases remains enigmatic. Through an interdisciplinary approach combining cell biology, structural biology, computation, and single-particle tracking on live cells, we find overlapping LYN and JAK2 Box1-Bo...
Duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A) and is known to disrupt the lipid metabolism in myelinating Schwann cells by unknown mechanisms. By using two CMT1A mouse models overexpressing human PMP22 , we discovered that PMP22 dose-dependently downregulates genes that are involved in lipid and cholesterol metabolism. Lip...
The reduced pathogenicity of the omicron BA.1 sub-lineage compared to earlier variants is well described, although whether such attenuation is retained for later variants like BA.5 remains controversial. We show that a BA.5 isolate was significantly more pathogenic in K18-hACE2 mice than a BA.1 isolate, with BA.5 infections showing increased neuroi...
Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutati...
The traditional medicinal mushroom Hericium erinaceus is known for enhancing peripheral nerve regeneration through targeting nerve growth factor (NGF) neurotrophic activity. Here, we purified and identified biologically new active compounds from H. erinaceus, based on their ability to promote neurite outgrowth in hippocampal neurons. N‐de phenyleth...
A frequently repeated premise is that viruses evolve to become less pathogenic. This appears also to be true for SARS-CoV-2, although the increased level of immunity in human populations makes it difficult to distinguish between reduced intrinsic pathogenicity and increasing protective immunity. The reduced pathogenicity of the omicron BA.1 sub-lin...
Fyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer’s disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to unde...
Neuronal and hormonal communication relies on the exocytic fusion of vesicles containing neurotransmitters and hormones with the plasma membrane. This process is tightly regulated by key protein–protein and protein–lipid interactions and culminates in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formatio...
Children typically experience more mild symptoms of Coronavirus Disease 2019 (COVID-19) when compared to adults. There is a strong body of evidence that children are also less susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of conce...
The entanglement of long axons found in cultured dissociated hippocampal neurons restricts the analysis of the machinery underlying directed axonal trafficking. Further, hippocampal neurons exhibit “en passant” presynapses that may confound the analysis of long-range retrograde axonal transport. To solve these issues, we and others have developed m...
Chemical communication is underpinned by the fusion of neurotransmitter-containing synaptic vesicles with the plasma membrane at active zones. With the advent of super-resolution microscopy, the door is now opened to unravel the dynamic remodeling of synapses underpinning learning and memory. Imaging proteins with conventional light microscopy cann...
Neuronal activity and neurotransmitter release cause use-dependent decline in protein function. However, it is unclear how this is coupled to local protein turnover and quality control mechanisms. Here we show that the endocytic protein Endophilin-A (EndoA/ENDOA1) couples activity-induced calcium influx to synaptic autophagy and neuronal survival....
Children typically experience more mild symptoms of COVID-19 when compared to adults. There is a strong body of evidence that children are also less susceptible to SARS-CoV-2 infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of concern (VOCs) has been associated with an increased number of pediatric infection...
Long noncoding RNAs (lncRNAs) represent a multidimensional class of regulatory molecules involved in many aspects of brain function. Emerging evidence indicates that lncRNAs are expressed at the synapse; however, a direct role for their activity in this subcellular compartment in memory formation has yet to be demonstrated. Using lncRNA capture-seq...
The extreme neurotoxicity of botulinum neurotoxins (BoNTs), broadly used as a therapeutics, is mediated by their direct binding to two plasma membrane receptors: polysialogangliosides (PSGs) and serotype-dependently either synaptotagmin 1/2 (Syt1/2) or synaptic vesicle glycoprotein 2 (SV2). Here, we demonstrate that although BoNT/A serotype binds d...
Following exocytosis, the recapture of vesicular proteins stranded at the plasma membrane in recycling synaptic vesicles (SVs) is essential to sustain neurotransmission. Nanoclustering is emerging as a mechanism through which proteins may be pre-assembled prior to endocytosis, to ensure high fidelity of retrieval for subsequent rounds of vesicle fu...
Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(-) enantiomers: the R(+) enantiomer is largely devoid of beta blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSCs) in...
Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of...
Single-molecule localization microscopy (SMLM) techniques are emerging as vital tools to unravel the nanoscale world of living cells. However, current analysis methods primarily focus on defining spatial nanoclusters based on detection density, but neglect important temporal information such as cluster lifetime and recurrence in "hotspots" on the p...
Numerous enveloped viruses use specialized surface molecules called fusogens to enter host cells. During virus replication, these fusogens decorate the host cells membrane enabling them the ability to fuse with neighboring cells, forming syncytia that the viruses use to propagate while evading the immune system. Many of these viruses, including the...
Axons are the longest cellular structure reaching over a meter in the case of human motor axons. They have a relatively small diameter and contain several cytoskeletal elements that mediate both material and information exchange within neurons. Recently, a novel type of axonal plasticity, termed axonal radial contractility, has been unveiled. It is...
Polyunsaturated free fatty acids (FFAs) such as arachidonic acid, released by phospholipase activity on membrane phospholipids, have long been considered beneficial for learning and memory and are known modulators of neurotransmission and synaptic plasticity. However, the precise nature of other FFA and phospholipid changes in specific areas of the...
Caveolae are specialized domains of the vertebrate cell surface with a well-defined morphology and crucial roles in cell migration and mechanoprotection. Unique compositions of proteins and lipids determine membrane architectures. The precise caveolar lipid profile and the roles of the major caveolar structural proteins, caveolins and cavins, in se...
The fusion of synaptic vesicles with the plasma membrane underpins neurotransmission. A number of presynaptic proteins play a critical role in overcoming the energy barrier inherent to the fusion of the negatively charged vesicular and plasma membranes. Emerging concepts suggest that this process is hierarchical and dependent on rapid and transient...
Significance
Proteins moving freely on the plasma membrane can become transiently trapped in functionally essential clusters. This capability is likely to be influenced by subtle conformational states of the protein promoting or preventing such confinement. The downside of conventional imaging of overexpressed tagged proteins is that it precludes s...
The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrat...
Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of...
Fyn is a Src kinase that controls critical signalling cascades and its postsynaptic enrichment underpins synaptotoxicity in Alzheimer’s disease (AD) and frontotemporal dementia (FTLD-tau). Previously, we found that pathogenic FTLD tau mutant (P301L) expression promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites via an unk...
CAV1 (caveolin 1) expression and secretion is associated with prostate cancer (PCa) disease progression, but the mechanisms underpinning CAV1 release remain poorly understood. Numerous studies have shown CAV1 can be secreted within exosome-like vesicles, but antibody-mediated neutralization can mitigate PCa progression; this is suggestive of an inv...
The traditional medicinal mushroom Hericium erinaceus has long been known for enhancing the peripheral nerve regeneration through targeting nerve growth factor (NGF) neurotrophic activity. It was also reported to protect against ageing-dependent cognitive decline in wildtype and in Alzheimer's disease mouse models suggesting a yet to be defined act...
The capacity of neurons to communicate and store information in the brain critically depends on neurotransmission, a process which relies on the release of chemicals called neurotransmitters stored in synaptic vesicles at the presynaptic nerve terminals. Following their fusion with the presynaptic plasma membrane, synaptic vesicles are rapidly refo...
The epilepsy-linked gene SV2A, has a number of potential roles in the synaptic vesicle life cycle. However, how loss of SV2A function translates into presynaptic dysfunction and ultimately seizure activity is still undetermined. In this study, we examined whether the first SV2A mutation identified in human disease (R383Q) could provide information...
Caveolin-1 (Cav1) expression and secretion is associated with prostate cancer (PCa) disease progression but the mechanisms underpinning Cav1 release remain poorly understood. Numerous studies have shown Cav1 can be secreted within exosome-like vesicles, but antibody-mediated neutralization can mitigate PCa progression; this is suggestive of an inve...
Most mammalian neurons have a narrow axon, which constrains the passage of large cargoes such as autophagosomes that can be larger than the axon diameter. Radial axonal expansion must therefore occur to ensure efficient axonal trafficking. In this study, we reveal that the speed of various large cargoes undergoing axonal transport is significantly...
Despite the human brain being made of nearly 60% fat, the vast majority of studies on the mechanisms of neuronal communication which underpin cognition, memory and learning, primarily focus on proteins and/or (epi)genetic mechanisms. Phospholipids are the main component of all cellular membranes and function as substrates for numerous phospholipid‐...
Caveolae are specialized domains of the vertebrate cell surface with a well-defined morphology and crucial roles in cell migration and mechanoprotection. Unique compositions of proteins and lipids determine membrane architectures. The precise caveolar lipid profile and the roles of the major caveolar structural proteins, caveolins and cavins, in se...
Alzheimer's disease (AD) is associated with the cleavage of the amyloid precursor protein (APP) to produce the toxic amyloid-β (Aβ) peptide. Accumulation of Aβ, together with the concomitant inflammatory response, ultimately leads to neuronal death and cognitive decline. Despite AD progression underpinned by both neuronal and immunological componen...
De novo pathogenic variants in STXBP1 encoding syntaxin1-binding protein (STXBP1, also known as Munc18-1) lead to a range of early onset neurocognitive conditions, most commonly early infantile epileptic encephalopathy type 4 (EIEE4, also called STXBP1-encephalopathy), a severe form of epilepsy which is associated with developmental delay/intellect...
The Src kinase Fyn plays critical roles in memory formation and Alzheimer’s disease. Its targeting to neuronal dendrites is regulated by Tau via an unknown mechanism. As nanoclustering is essential for efficient signaling, we used single-molecule tracking to characterize the nanoscale distribution of Fyn in mouse hippocampal neurons, and manipulate...
Traumatic spinal cord injury (SCI) triggers an acute-phase response that leads to systemic inflammation and rapid mobilization of bone marrow (BM) neutrophils into the blood. These mobilized neutrophils then accumulate in visceral organs and the injured spinal cord where they cause inflammatory tissue damage. The receptor for complement activation...
Communication between cells relies on regulated exocytosis, a multi-step process that involves the docking, priming and fusion of vesicles with the plasma membrane, culminating in the release of neurotransmitters and hormones. Key proteins and lipids involved in exocytosis are subjected to Brownian movement and constantly switch between distinct mo...
Most mammalian neurons have a narrow axon, which constrains the passage of large cargoes such as autophagosomes that can be larger than the axon diameter. Radial axonal expansion must therefore occur to ensure efficient axonal trafficking. In this study we consistently find that the trafficking speed of various large axonal cargoes is significantly...
Cellular communication relies on fusion of secretory vesicles with the plasma membrane, following dynamic events that change the micro- and nanoscale environment of the approaching vesicles in the vicinity of docking sites. Visualization of fine cortical actin network structures and their interactions with vesicle and plasma membrane has recently b...
This corrects the article DOI: 10.1038/ncomms13660.
Both humans and mice lacking functional growth hormone (GH) receptors are known to be resistant to cancer. Further, autocrine GH has been reported to act as a cancer promoter. Here we present the first example of a variant of the GH receptor (GHR) associated with cancer promotion, in this case lung cancer. We show that the GHRP495T variant located...
An increasing number of super-resolution microscopy techniques are helping to uncover the mechanisms that govern the nanoscale cellular world. Single-molecule imaging is gaining momentum as it provides exceptional access to the visualization of individual molecules in living cells. Here, we describe a technique that we developed to perform single-p...
Propofol is the most commonly used general anesthetic in humans. Our understanding of its mechanism of action has focused on its capacity to potentiate inhibitory systems in the brain. However, it is unknown whether other neural mechanisms are involved in general anesthesia. Here, we demonstrate that the synaptic release machinery is also a target....
Most neurodegenerative diseases are proteinopathies, which are characterized by the aggregation of misfolded proteins. Although many proteins have an intrinsic propensity to aggregate, particularly when cellular clearance systems start to fail in the context of ageing, only a few form fibrillar aggregates. In Alzheimer disease, the peptide amyloid-...
Background
We present the first molecular characterization of glycerotoxin (GLTx), a potent neurotoxin found in the venom of the bloodworm Glycera tridactyla (Glyceridae, Annelida). Within the animal kingdom, GLTx shows a unique mode of action as it can specifically up-regulate the activity of Cav2.2 channels (N-type) in a reversible manner. The la...
Our understanding of endocytic pathway dynamics is restricted by the diffraction limit of light microscopy. Although super-resolution techniques can overcome this issue, highly crowded cellular environments, such as nerve terminals, can also dramatically limit the tracking of multiple endocytic vesicles such as synaptic vesicles (SVs), which in tur...
Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique called the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to track anti-GFP Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) in crowded live...
While the resolution of conventional optical microscopy is diffraction-limited, isolated light-emitting molecules can be localized within a far smaller volume using nanoscopic methods. Advances in imaging methodologies have provided crucial information on neuronal endocytic pathways, increasing our understanding of synaptic vesicle (SV) recycling,...
Alzheimer's disease is characterized by cognitive decline, neuronal degeneration, and the accumulation of amyloid-beta (Aβ). Although, the neurotoxic Aβ peptide is widely believed to trigger neuronal dysfunction and degeneration in Alzheimer's disease, the mechanism by which this occurs is poorly defined. Here we describe a novel, Aβ-triggered apop...
In neurosecretory cells, myosin VI associated with secretory granules (SGs) mediates their activity-dependent recruitment to the cortical actin network and is necessary to sustain exocytosis. The mechanism by which myosin VI interacts with SGs is unknown. Using a myosin VI pull-down assay and mass spectrometry we identified Mena, a member of the EN...
Bulk endocytosis allows stimulated neurons to take up a large portion of the presynaptic plasma membrane in order to regenerate synaptic vesicle pools. Actin, one of the most abundant proteins in eukaryotic cells, plays an important role in this process, but a detailed mechanistic understanding of the involvement of the cortical actin network is st...
Presynaptic terminals are metabolically active and accrue damage through continuous vesicle cycling. How synapses locally regulate protein homeostasis is poorly understood. We show that the presynaptic lipid phosphatase synaptojanin is required for macroautophagy, and this role is inhibited by the Parkinson's disease mutation R258Q. Synaptojanin dr...
This review critically assesses the recent advances in MS-based lipidomics and their current and future contribution in our understanding of the essential function of exocytosis. Exocytosis is a complex process during which the membranes of two compartments fuse. In neurons, neuroexocytosis involves the calcium-dependent release of neurotransmitter...