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Intraoperative brain cancer detection with Raman
spectroscopy in humans
Michael Jermyn,1,2* Kelvin Mok,3* Jeanne Mercier,2 Joannie Desroches,4

Julien Pichette,2 Karl Saint-Arnaud,2 Liane Bernstein,2 Marie-Christine Guiot,1,5

Kevin Petrecca,1†‡ Frederic Leblond2†‡

Cancers are often impossible to visually distinguish from normal tissue. This is critical for brain cancer where
residual invasive cancer cells frequently remain after surgery, leading to disease recurrence and a negative
impact on overall survival. No preoperative or intraoperative technology exists to identify all cancer cells that
have invaded normal brain. To address this problem, we developed a handheld contact Raman spectroscopy
probe technique for live, local detection of cancer cells in the human brain. Using this probe intraoperatively,
we were able to accurately differentiate normal brain from dense cancer and normal brain invaded by cancer
cells, with a sensitivity of 93% and a specificity of 91%. This Raman-based probe enabled detection of the
previously undetectable diffusely invasive brain cancer cells at cellular resolution in patients with grade 2 to
4 gliomas. This intraoperative technology may therefore be able to classify cell populations in real time, making
it an ideal guide for surgical resection and decision-making.
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INTRODUCTION

Diffusely invasive brain cancers, which include World Health Organi-
zation (WHO) grade 2 to 3 astrocytomas, grade 2 to 3 oligodendrogliomas,
and grade 4 glioblastomas (GBMs), locally invade the normal brain,
generating a decreasing gradient of cancer cells that extends from the
main cancer mass into healthy tissue. These invasive cancer cells can-
not be detected using the technologies that are currently used clinically.
Visual detection of this cancer cell gradient using state-of-the-art bright-
field neurosurgical microscopes is not possible. Magnetic resonance
imaging (MRI), which serves as a preoperative, and occasionally intra-
operative, navigational guide to surgery, is also unable to detect the full
extent of cancer cell invasion and suffers from inaccuracies owing to
brain shift (1–3). A newer fluorescence-guided approach to GBM sur-
gery involves protoporphyrin IX (PpIX) and 5-aminolevulinic acid
(5-ALA) but has shown limitations in its ability to detect grade 2 gliomas
and the invasive cancer cells (4–8).

The inability to fully visualize invasive brain cancers results in
subtotal surgical resections, and owing to the absence of effective ad-
juvant therapies such as radiotherapy and chemotherapy (for example,
temozolomide and bevacizumab), incomplete resections negatively af-
fect survival. Hence, more than 85% of GBM recurrences occur at the re-
section cavity margin (9). Retrospective and prospective outcome studies
based on postoperative imaging have shown that the volume of residual
cancer after surgery directly affects progression-free survival and overall
survival for all grades of invasive gliomas and that complete resection—
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based on MRI T2 signal (grades 2 and 3) or contrast enhancement
(grade 4)—is a major factor in inhibiting recurrence and improving sur-
vival (10, 11). Conversely, unnecessary removal of brain tissue that does
not contain cancer cells can lead to neurological deficits that affect quality
of life, such as impaired cognition, memory, and vision (12, 13). Neuro-
surgery can thus benefit immensely fromcomplementary techniques being
introduced into the surgical workflow that can detect not only dense can-
cer but also invasive cancer cells around and beyond the tumor margins.

Advances have been made using a range of techniques to detect
brain tumors with the goal of surpassing standard MRI and intra-
operative visual assessment to improve the volume of tumor resection
in brain surgery. Fluoro-ethyl-tyrosine positron emission tomography
has been used preoperatively for surgical planning, showing greater sen-
sitivity thanMRI for cancer invasion, with 88% sensitivity for detecting
grade 3 to 4 gliomas, but with 54% sensitivity for lower-grade gliomas
(14). Modalities such as ultrasound (US) and optical coherence tomog-
raphy (OCT) have been shown to provide structural information (large
scale for US and microscopic scale for OCT) in real time (15, 16). US is
unable to detectmicroscopic invasion, but intraoperativeOCThas been
able to distinguish high- versus low-density cancer in nine patients with
high-grade gliomas (17). Intraoperative confocalmicroscopy has shown
evidence for invasion detection using 5-ALA fluorescence in grade 1 to
2 gliomas on 10 patients (18). Although very promising, the statistical
power of this study was limited, and the requirement for a contrast agent,
as well as the need for surgeons to interpret complex, depth-resolved
microscopy images during surgery, might deter clinical adoption.

Raman spectroscopy is a noninvasive modality that gives spectral
tissue characteristics based on molecular signatures resulting from in-
elastic scattering of incident light. Inelastic scattering occurs when light
interacts with matter, but its relative importance is diminished by com-
peting phenomena, including elastic scattering and absorption. Hence,
measuring the Raman effect in time frames compatible with the neuro-
surgical workflow is a challenge, requiring sophisticated optical technol-
ogies, including ultrastablemonochromatic light sources, highly sensitive
and high-speed spectroscopic sensors, as well as interference light filtering
methods.Ramanspectroscopy is used toobserve low-frequency vibrational
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modes in a system. Light from a near-infrared (NIR) laser interacts with
those modes, resulting in the inelastic scattered photons being shifted
in energy to values different than that of the excitation. This shift is
measured in terms of the difference between the inverse of the excita-
tion and detected wavelengths (units: cm−1) and gives information that
is specific to chemical bonds. The resulting spectra provide a finger-
print by which different molecular species can be identified and their
relative concentration evaluated on the basis of the strength of different
peaks. Biological tissues, including the brain, contains a large number
of Raman-active molecules, resulting in spectroscopic measurements
that are in effect a weighted sum of spectra from all molecular species
contained within the interrogated tissue volume.

Haka et al. were among the first to investigate intraoperative in situ
Raman spectroscopy for breast cancer margin detection (19). Other
studies used the technique in vivo as a complement to endoscopy for
human gastrointestinal applications (20), for the assessment of cor-
neum hydration in dermatology applications (21), for the detection of
precancerous cervical lesions with a sensitivity of 82% and a specificity
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of 92% (22), and for the diagnosis of bladder can-
cer with a sensitivity of 85% and specificity of 79%
(23). Most Raman spectroscopy studies of brain
cancer have been in rodent models and ex vivo
human brain tissue (24–28). Toward surgical use,
Ji et al. detected glioma invasion intraoperatively
with Raman microscopy in a mouse model of hu-
man glioma, with spectral shift ranges higher than
those probed in this study, therefore shedding light
on differentmolecular features (29). Although these
are impressive advances, Raman spectroscopy has
yet to be tested in patients during surgical resection
of brain cancer.

Here, we tested an intraoperative Raman-based
probe technique to detect invasive brain cancer in
situ in real time in patients. We demonstrate that
Raman spectroscopy can accurately detect grade 2
to 4 gliomas in vivo during human brain cancer
surgery, with the ability to distinguish cancer cell–
invaded brain from normal brain, with sensitivity
and specificity of >90%. This was accomplished
using a handheld contact Raman spectroscopy probe
illuminating a 0.5-mm-diameter tissue area with
a depth sampling up to ~1mm and a total acquisi-
tion time of 0.2 s. The technology was integrated
into the neurosurgical workflow for live identifica-
tion of invasive cancer with sensitivity beyond cur-
rent imaging capabilities.
RESULTS

A handheld Raman spectroscopy probe
Wedeveloped a technique using a handheld contact
fiber optic Raman spectroscopy probe (Emvision,
LLC) capable of single-point submillimeterRaman
signal detection (Fig. 1) with the goal of distinguish-
ing brain cancer (glioma) from normal brain. The
probe contained fiber optic cables connected to a
NIR spectrum–stabilized laser emitting at 785 nm.
www.Science
The probe was also connected to a high-speed and high-resolution
charge-coupled device (CCD) spectroscopic detector. The laser and
the imaging spectrometer were connected to a computer to visualize
the Raman spectra in real time. The spectra covered a range of shifts
from 381 to 1653 cm−1, with a spectral resolution varying between 1.6
and 2.1 cm−1.

During each tumor resection procedure, the probe measured the
Raman signal at several points in the surgical cavity (Fig. 1B). The inelastic
scattering (Raman) signal is several orders of magnitude smaller than
that associated with Rayleigh scattering (elastic scattering). As a result,
the main challenge was to detect and isolate the tissue inelastic scat-
tering from the inelastic signal of the instrument itself and the elastic
signal at the 785-nm excitation wavelength. To do this, the probe was
fabricated usingmicrometer-scale in-line filters that were placed direct-
ly at the tip of the optical fibers (Fig. 1A). A narrow 785 nm–centered
band-pass filter was used at the tip of the excitation fiber, and a long-
pass filter was used to further attenuate the elastically scattered light
from the excitation laser. The total acquisition time was 0.2 s, which
Fig. 1. The handheld contact fiber optic probe for Raman spectroscopy. (A) Experimental
setup diagram with the 785-nm NIR laser and the high-resolution CCD spectroscopic detector

used with the Raman fiber optic probe. The core material was fused silica. BP, band-pass; LP,
long-pass. (B) The probe (Emvision, LLC) was used to interrogate brain tissue during surgery. A
schematic diagram illustrates the excitation of different molecular species, such as cholesterol
and DNA, to produce the Raman spectra of cancer versus normal brain tissue. The spectral
differences occur owing to the vibrational modes of various molecular species. A simple mo-
lecular vibrational mode is conceptually depicted (individual atoms in blue and green) inter-
acting with the laser light (in red) to produce Raman scattering (in purple).
TranslationalMedicine.org 11 February 2015 Vol 7 Issue 274 274ra19 2
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corresponded to three acquisitions of Raman spectra plus a background
measurement (no laser excitation). The circular laser spot size of the
probe had a diameter of 0.5 mm (area of 0.2 mm2).

Light transport simulations in tissue were performed (fig. S1) using
Mesh-based Monte Carlo (30, 31), demonstrating that the sampling
depth of the probe associatedwith 95%of the Raman signal comes from
the first ~1 mm beneath the surface. A signal-to-noise ratio of 15.8 was
calculated for the system [as in (20)] as the ratio of the Raman peak size
versus the noise, with noise defined as the difference between the max-
imum and minimum intensities in the baseline of the Raman spectra
(20). The acetaminophen spectrum was used as a standard for this cal-
culation, with peaks in the spectrum chosen closest in size to those seen
in the spectra of brain tissue.

In vivo imaging protocol
A total of 161 measurements were collected (Table 1) using the fiber
optic probe (Fig. 1) in 17patientswithWHOgrade 2 to 4 gliomas under-
going brain cancer surgery. Here, emphasis was placed on interrogating
brain regions both within the MRI-defined dense cancer and outside
(up to 1.5 cm)of theT1-gadoliniumenhancing andT2-weightedhyper-
intense regions in grade 2 to 4 gliomas. Although state-of-the-art neuro-
navigation techniques are used in this study,MRI information was used
only qualitatively for visualization and for estimating the location of
each Raman measurement on the preoperative images (that is, the po-
sition of the crosshairs in Fig. 2 and figs. S2 and S4). As a result, this
information (and the inherent inaccuracies associated with the neuro-
navigation tracking system) had no impact on our ability to spatially
relate the biopsied samples and the probe measurement locations.

Each probe interrogation site was biopsied and archived for post-
surgery, blinded, histopathological analysis. At each of the 161 inter-
www.Science
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rogation points, the surgeon also commented, on the basis of tissue
appearance (visual assessment through the surgical microscope) and
navigation guidance data (preoperative MRI spatially registered with
the surgical field), whether the interrogated area likely corresponded
to normal brain (negative for cancer cells) or cancer.

Blinded neuropathological analysis of each biopsy sample was per-
formed using hematoxylin and eosin (H&E) staining. For samples arising
from tumors containing the isocitrate dehydrogenase 1 (IDH1) (R132H)
mutation, immunohistochemistry using an anti-IDH1 (R132H)–specific
antibody was used as a complementary technique to identify cancer
cells. On the basis of these neuropathological analyses, each sample
was classified as either normal brain (no cancer cells present), normal
brain infiltrated with invasive cancer cells (≤90% cancer cells present),
or dense cancer (>90% cancer cells present) (Table 1). For 77 of the 161
biopsy samples collected, the background could clearly be identified
by the pathologist as either white matter or graymatter (n = 36 samples
in graymatter,n= 41 samples inwhitematter). Figure S3 shows the aver-
age Raman spectrum of all samples with gray matter and the average
spectrumof all sampleswithwhitematter. Some samples consisted of part
white matter and part gray matter and so were not included in fig. S3.

Figure 2A and movie S1 show the preoperative MRI in 3D of a pa-
tient with a grade 2 glioma, with the Raman spectroscopymeasurement
locations identified as blue (normal) and yellow (cancer) dots. For three
of the measurement locations, in dense cancer, invasive cancer, and
normal brain, the 2D MRI slices are provided with corresponding pa-
thology images, as well as the Raman spectra obtained at these mea-
surement locations (Fig. 2B). Sample Raman spectra, preoperative
MRI, and pathology images are also provided for a patientwith a grade
3 glioma (fig. S2) and a patient with a grade 4 glioma (Fig. 2C).

Intraoperative Raman spectroscopy for real-time detection
of brain cancer
We found that the measured average Raman spectra for all normal
brain and cancer (either normal brain infiltrated with invasive cancer
cells or dense cancer) tissue samples showed differences in the molec-
ular signature of the specimens (Fig. 3A) consistent with past work on
ex vivo brain tissue samples (26, 27, 32). The specimenswith cancer cells
showeddifferences in the lipid bands at 700 and 1142 cm−1 compared to
normal brain, corresponding to cholesterol and phospholipids (26). The
presence of cancer cells also showed an increase of the bands from 1540
to 1645 cm−1, corresponding to a higher nucleic acid content than
normal brain tissue, as observed previously for GBM (27). Cancer tissue
also showed an increase in the 1005 cm−1 band, associated with the
breathing mode of phenylalanine in proteins (26).

To utilize all of the spectral information available in the Raman
signals we acquired, we used the boosted trees machine learning meth-
od to analyze the spectra and determine classification criteria, al-
lowing samples from all cancer tissue categories to be separated from
samples corresponding to normal brain (33). Using this technique, we
were able to distinguish normal brain from tissue with the presence of
cancer cells (including both invasive and dense cancers) with an accuracy
of 92%, sensitivity of 93%, and specificity of 91% (Table 2, Eqs. 1 to 3). For
the classification of normal brain from all samples with cancer cells (from
all grades of glioma and including both dense and invasive cancers), we
obtained a ROC curve with AUC of 0.96 (Fig. 3B). In comparison, the
sample labels (either normal brain or cancer) given by the surgeon after
visual inspection using a bright-field microscope and MR guidance
produced an accuracy of 73%, sensitivity of 67%, and specificity of 86%.
Table 1. Patient demographics and histological diagnosis. Diagnoses
were made according to the WHO, on the basis of the consensus of pathol-
ogists and international experts, providing definition for brain tumors in
cancer research (47). For the “Other” classification, only normal brain sam-
ples were used from the indicated patients; no samples with cancer cells
present were acquired.
n patients
 n samples
Age (years), median (range)
 53 (30–89)
WHO grade
 Grade 2
 4
 35
Astrocytoma
 3
 26
Oligodendroglioma
 1
 9
Grade 3
 3
 29
Astrocytoma
 1
 10
Oligodendroglioma
 1
 10
Oligoastrocytoma
 1
 9
Grade 4 (GBM)
 8
 68
Other: metastatic
 2
 29
Tissue type
 Normal brain
 66
Dense cancer
 39
Invasive cancer cells
 56
Total
 17
 161
TranslationalMedicine.org 11 February 2015 Vol 7 Issue 274 274ra19 3

http://stm.sciencemag.org/


R E S EARCH ART I C L E

 o
n 

F
eb

ru
ar

y 
12

, 2
01

5
st

m
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

As reported in Table 2, using Raman spectra, we obtained classifica-
tion accuracies of 90% or more between normal brain and all tumor
grades, as well as between normal brain and either dense cancer or
the invasive cancer cell categories. We were further able to distinguish
WHO grade 2 from grade 3 and 4 gliomas in the dense cancer popula-
tion with 82% accuracy based on Raman spectroscopy. However, we
were unable (accuracy, sensitivity, and specificity lower than 60%) to
distinguish between different WHO grades in the normal brain infil-
trated with invasive cancer cells or between grade 3 and 4 gliomas.

Cancer cell threshold
To estimate the cancer cell density threshold that can be detected by the
Raman spectroscopy technique, we performed histological cell counting
for a subset (n = 14) of the 56 samples designated as normal brain in-
filtrated by invasive cancer cells (Table 2). The 14 samples were selected
because they were determined by the pathologist to correspond (on the
basis of the analysis of all H&E images) to those with the lowest density
of cancer cells. Of these 14 samples, 5 were false negatives by Raman
spectroscopy classification; that is, the spectral classificationwas normal
brain, but cancer cells were found in the corresponding H&E-stained
biopsy samples. The remaining nine samples were true positive by
Raman spectroscopy classification.

For eachof the 14 samples,multiple regions of interest (each250mm×
250 mm)were delineated by the neuropathologist on the digitally scanned
H&E images. The total number of normal and cancer cells was deter-
mined, and the average over the multiple regions of interest was estab-
lished for cell count per area. The cancer cell counting was validated with
mutant IDH1 (R132H) immunohistochemistry. The cancer cell count
per area, the total cell count per area, and the cancer cell burden (cancer
cell count divided by the total cell count) determined by H&E are re-
ported in Table 3. All false-negative Raman spectroscopy classifications
corresponded to <15% cancer cell burden, and all samples having tested
positive for cancer (basedon spectroscopy)had>15%cancer cell burden.
In absolute terms, the Raman probe was able to detect the presence of
as few as 17 human cancer cells/0.0625 mm2.
DISCUSSION

The prognosis for patients with grade 2 gliomas is better than that of
grade 3 and 4 gliomas because these cancers, in general, grow more
www.Science
slowly, have a more favorable response to adjuvant radiotherapy and
chemotherapy, andmost often occur in younger patients with excellent
performance status who are able to tolerate the adjuvant therapies. In-
variably, grade 2 cancers progress to grades 3 and 4. This understanding
of the natural history of grade 2 gliomas has led to an interest in earlier
and more aggressive treatments, which include surgical cytoreduction.
Retrospective data suggest that maximal surgical resection provides a
major survival benefit for patients with grade 2 gliomas, in some cases
up to additional decades (34–38). There is similarly strong evidence
showing that the extent of tumor resection for grade 3 and 4 gliomas
also affects survival (10, 11, 39, 40). As a result, the main goal of glioma
surgery is to minimize the volume of residual cancer remaining after
surgery to prolong survival and alleviate symptoms while minimizing
Fig. 2. Raman spectroscopy measurements colocated on preoperative
MRI–grade 2 and 4 gliomas. (A) Three-dimensional (3D) volume render-

ing of a preoperative T2-weighted MRI overlaid with the segmentation of a
grade 2 astrocytoma in red. MRI information is used only qualitatively for
visualization, not for spatial registration between histology and the location
of the Raman probe measurement. Regions associated with dots were in-
terrogated by Raman spectroscopy and were histologically analyzed. Yel-
low sample locations indicate the presence of cancer cells; blue locations
were negative for cancer cells. Representative samples for each tissue type
are indicated by P1, P2, and P3. (B) Corresponding pathology images for re-
gions P1 to P3 in (A). P1, P2, and P3 are dense cancer, invasive cancer, and
normal brain, respectively. T2-weightedMRI images are accompaniedby his-
topathology. The acquired Raman spectra are shown below for P1 to P3. (C)
In a different patient than (A) and (B) with grade 4 GBM, sample locations for
dense cancer, invasive cancer, andnormal brain are shownona T1-weighted
MRI. Histopathology images are below. MRI and histopathology images are
shown for a patient with grade 3 anaplastic astrocytoma in fig. S2. The
acquired Raman spectra are shown below for P1 to P3. a.u., arbitrary unit.
TranslationalMedicine.org 11 February 2015 Vol 7 Issue 274 274ra19 4

http://stm.sciencemag.org/


R E S EARCH ART I C L E

 o
n 

F
eb

ru
ar

y 
12

, 2
01

5
st

m
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

the risk for neurological injury associated with the unnecessary resec-
tion of normal tissue.

Attaining this goal is challenging because grade 2 to 4 gliomas are
highly invasive, which is manifested by the fact that these cancers are
not restricted to areas ofMRI contrast uptake and/or T2 hyperintensity.
Gliomas invade beyond the visibleMRI borders, with distant cancer cell
invasion not being grossly detectable during surgery using standard-
of-care technologies (41). For example, it is because grade 2 to 4 gliomas
are not associated with a defined biological interface between cancerous
www.ScienceTranslationalMedicine.org 11
and normal tissue that radiotherapy pro-
tocols include radiation to fields that are
typically up to 2 cm beyond the total MRI
signal abnormality.

We show here that in vivo Raman spec-
troscopy is capable of accurate, sensitive,
and specific tissue classification of invasive
brain cancers for grade 2 to 4 gliomas. This
is achieved using a small-footprint hand-
held fiber optic probe technique designed
for rapid (<0.2 s) intraoperative inelastic
scattering spectroscopic measurements.
The resulting spectra capture the biolog-
ical information associated with a multi-
tude of molecular components within a
tissue surface diameter of 0.5 mm and a
depth no larger than ~1 mm. This level of
tissue sampling is appropriate for surgery
because it is consistent with the level of
precision neurosurgeons can reach using
state-of-the-art neurosurgical microscopes
and tissue dissection techniques. The handheld Raman probe is small
and operates in real time, making it convenient during brain cancer re-
sectionwithminimal disruption to the neurosurgical workflow (movie S2).
This makes the probe useful during surgery, because it can rapidly de-
tect cancer at a point of interest without the need for biopsy and frozen
neuropathology assessment, which can disrupt the surgical workflow
when performed several times during a procedure. Contrary to other
pathologies (for example, skin cancer, breast cancer, mouth and throat
cancer, and colon cancer), the standard of care in neurosurgical oncol-
ogy does not include multiple tissue biopsies around the tumor bulk to
identify clean margins.

Specifically, we have shown that Raman spectroscopy is highly sen-
sitive and specific to brain cancer tissue.With this technology, wewere
able to distinguish normal brain from cancer (normal brain infiltrated
with invasive cancer cells and dense cancer) with an accuracy of at
least 90% for grade 2 to 4 gliomas. We have also demonstrated that
the probe can distinguish normal brain from normal brain infiltrated
with invasive cancer cells with an accuracy of 90%. We have further
shown the estimated cellular resolution of the Raman probe, with de-
tection of as few as 17 cancer cells/0.0625 mm2. These findings are
important because minimizing the volume of residual cancer has a
measurable impact on patient survival. Molecular fingerprinting based
on Raman-active molecules may also shed new light on our under-
standing of human brain cancer biology. Here, however, we are report-
ing on an automated tissue classification technique that is using the
full spectrum—rather than separation based on the identification of
a few distinguishing bands—to use all of the molecular information to
provide a diagnosticmeasure. Detection at this cellular resolution level
goes beyond the current standard-of-care capabilities of visual inspec-
tion through a bright-field neurosurgical microscope, intraoperative
MRI, and 5-ALA–PpIX imaging, which primarily reveal bulk tumor
(dense cancer) (4, 5, 14).

Although the current study was not designed to guide surgical re-
section (the Raman spectroscopy results were blinded to the surgeon),
in the future, optical diagnostics information could be provided in real
time to the surgeon because signal computations, including preprocess-
ing and tissue classification, occur in <1 s. The ability of the instrument
Fig. 3. Raman spectra for discrimination of cancer tissue. (A) Average Raman spectra of in vivo mea-
surements for normal brain (all 66 spectra averaged) and tissue containing glioma cancer cells (all 95 spectra

averaged). The corresponding molecular contributors are identified for the most significant differences
between the spectra for normal and cancer tissues. Chol., cholesterol. (B) Receiver operating characteristic
(ROC) curve analysis of in vivo detection of glioma based on Raman spectroscopy. This was generated using
the boosted trees classification method. AUC, area under the curve.
Table 2. Comparison of tissue classification based on Raman spectros-
copy with histopathology, categorized by grade of glioma or tissue
type.Accuracy, sensitivity, and specificity results are listed. The “Clinical
practice” category indicates the performance based on the neurosurgeon’s
assessment (from visual inspection and MRI). All “normal brain” measure-
ments (n = 66 tissue samples; Table 1) were used in calculating specificity,
because it is not related to grade or type. See Table 1 for the number of sam-
ples per category. A two-sided normal-based 95% confidence interval (CI) of
smaller than ±5% was obtained for each category.
Accuracy
(%)
Sensitivity
(%)
Specificity
(%)
WHO grade

2
 91
 91
 91
3
 91
 89
 91
4
 93
 94
 91
Tissue type

Dense
cancer
93
 97
 91
Invasive
cancer cells
90
 89
 91
Total
 92
 93
 91
Clinical practice
 73
 67
 86
February 2015 Vol 7 Issue 274 274ra19 5
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to detect even a low level of invasive cancer may prove to be important
in glioma surgery.

Raman spectroscopy does not require the use of an exogenous com-
pound to provide optical contrast, simplifying clinical use. The utility of
this technique is in providing rapid cancer detection for a specific loca-
tion of interest for the surgeon, particularly in white matter tracts with
invasion. Tissue removal from such areas occurs using microdissection
techniques, often with functional monitoring, making the probe an ap-
propriate tool for intraoperative neurosurgical guidance. Despite its
high cancer detection accuracy and ease of use, the instrument is intrin-
sically limited by its relatively restricted field of view (when compared to
that of a neurosurgical microscope) and the requirement for an extra
instrument to be introduced into the surgical workflow. Thus, there is
potential for using complementary imaging techniques for guidance
during glioma surgery. 5-ALA–PpIX fluorescence-guided surgery al-
lows for wide-field identification of bulk cancer in GBMs with the same
field of view as neurosurgical microscopes (4, 8). Fluorescence imaging
can complement Raman spectroscopy for single-point detection of the
peripherally invasive non-enhancing locations. A major advantage of
www.Science
the probe is to detect invasive cancer within normal brain that may not
be grossly enhancing with 5-ALA–PpIX andMRI. Although this would
also require the introduction of a handheld probe, the structural infor-
mation obtained using OCT could be used to identify disrupted myelin
fibers as a surrogatemarker of possible locations of glioma invasion along
white matter tracts, to be further interrogated by Raman spectroscopy
to verify the presence of cancer tissue.

The ability of Raman spectroscopy to detect invasive brain cancer in
all grades of glioma fills a needed role in neurosurgical guidance. Only
relatively recently has photodetection technology been made available
that is capable of detecting the effect in a fraction of a second with neg-
ligible disruption of the surgical workflow. Furthermore, isolation of
the tissue-specific signature requires sophisticated micrometer-scale
light filtering components. Technological advances in instrumentation
have allowed Raman spectroscopy to be used in a clinical setting. A lim-
itation associated with the routine clinical use of Raman spectroscopy
(as with other optical techniques, such as fluorescence andOCT) is that
it requires a proper illumination setup to limit extraneous light sources
in the measured signal. Optical filters and other engineering solutions
(for example, automated ambient light source adjustments) can be used
to limit the effect of these sources when designing future operating rooms
optimized for the detection of low-intensity spectroscopic signals. This
work presents a technique for rapid in vivo intraoperative identification
of invasive brain cancerwith >90%accuracy and sets the stage for a clin-
ical trial to evaluate its effectiveness for surgical guidance and early
glioma detection with standard-of-care technology.
MATERIALS AND METHODS

Study design
The objective of this studywas to evaluate the potential of Raman spec-
troscopy to distinguish brain cancer (either normal brain invaded by
cancer cells or dense cancer) fromnormal brain in grade 2 to 4 gliomas.
This study investigated the use of single-point Raman spectroscopy for
intraoperative use in adult neurosurgical patients (n = 17) at the Mon-
treal Neurological Institute and Hospital with grade 2 to 4 gliomas.
Consecutive patients with suspected gliomas were included. Informed
consentwas obtained fromeach patient andmonitored by theMontreal
Neurological Institute Ethics Review Board. Patients received a com-
plete preoperative neurological examination and standard clinical im-
aging. Sample sizes are in Table 1 and were chosen to give 95% CIs of
less than ±5% for the classification accuracy in each category (tissue
type or grade of glioma). The surgeon was blinded to any information
about the acquired Raman spectra during the resection procedure.
The pathologist was blinded to any information about the Raman
spectra before performing the histological analyses. Samples were
excluded from analysis if they were entirely necrotic, if saturation
of the CCD occurred, if they were determined by the pathologist to
have substantial heterogeneity in cancer cell density (part of the sam-
ple with the presence of cancer cells and part with no cancer cells), or in
the presence of noticeable signal artifacts from theMedtronic system or
operating room lights.

Handheld contact Raman spectroscopy probe
The probe contained fiber optic cables (Emvision, LLC) connected to a
NIR spectrum–stabilized laser emitting at 785 nm (Innovative Photonic
Solutions). The probewas connected to a high-speed and high-resolution
Table 3. Estimating the cancer cell resolution capability of the hand-
held Raman spectroscopy probe. The total number of cells (both normal
and cancer cells) and the number of cancer cells were quantified in 14 dif-
ferent patient samples of normal brain invaded with cancer cells. Cells were
counted in multiple areas of 250 mm × 250 mm (0.0625 mm2), and the aver-
age was determined. Samples with an asterisk (*) are those for which cancer
cell density was quantified using both H&E and IDH1 (R132H) immunohisto-
chemistry (IHC). These samples have the cell count values obtainedusing IHC
in parentheses. Note that 1 of the 14 samples consisted of both gray matter
and white matter explaining why cell counting information is presented for
both in that case. Each of the other samples was either all gray matter or all
white matter.
Biopsy
sample
Raman
classification
(positive or
negative for
cancer cells)
Total
cell count
per area
Cancer
cell count
per area
Cancer
cell burden

(%)
1
 Positive
 95
 17
 18
2
 Positive*
 104 (IHC: 70)
 30 (IHC: 19)
 29 (IHC: 27)
3
 Positive
 78
 55
 71
4
 Positive
 85
 58
 69
5
 Positive
 113
 98
 87
6
 Positive
 92
 83
 90
7
 Positive
 65
 52
 80
8
 Positive*
 76 (IHC: 74)
 65 (IHC: 59)
 85 (IHC: 80)
9
 Positive
 49
(gray matter)

74
(white matter)
25
(gray matter)

60
(white matter)
51
(gray matter)

81
(white matter)
10
 Negative
 25
 2
 8
11
 Negative*
 35 (IHC: 51)
 4 (IHC: 6)
 11 (IHC: 12)
12
 Negative
 43
 5
 12
13
 Negative
 56
 6
 11
14
 Negative*
 136 (IHC: 118)
 17 (IHC: 10)
 13 (IHC: 9)
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CCDspectroscopic detector (AndorTechnology). The laser and the im-
aging spectrometer were connected to a PC computer with a LabVIEW
interface. The spectra covered a range of spectral shifts from 381 to
1653 cm−1, with a spectral resolution varying between 1.6 and 2.1 cm−1

across the spectral domain.
All data processing was performed in MATLAB (MathWorks Inc.).

The probe had a navigation attachment (Medtronic SureTrak) for spa-
tial registrationwith theMedtronic StealthStation system, allowing for
intraoperativeMRguidance ofmeasurement and tissue sample collec-
tion locations. To correct for brain shift during surgery and thusmaxi-
mize probe positioning accuracy, we recorded several landmarks using
preoperative MRI before taking measurements. These fiducial markers
were compared with a reconstructed cortical surface (from segmented
preoperative MR images) and used to estimate brain shift.

Intraoperative optical data acquisition and tissue sample
collection procedures
Before the surgical procedure, the probe and connecting equipment are
sterilized using the STERRAD system. The CCD was cooled to −40°C,
and all extraneous lights in the operating room were turned off, with
only two operating room lights at low power left active (Dr. Mach,
model 380). During surgery, the neurosurgeon used a white light from
the OPMI Pentero surgical microscope system (Zeiss). Suitable mea-
surement locations were selected by the neurosurgeon using MR guid-
ance from the navigation system. For this study, the goal was to select
normal brain, dense cancer, and normal brain infiltrated with invasive
cancer cells at various locations in and around the tumor area detected
on the MR images. Samples were acquired in both gray matter and
white matter.

Before probe measurements, the surgeon minimized blood in the
area being sampled. A measurement was then made with the Raman
spectroscopy probe in direct contact with the brain tissue, with the
bright-field microscope’s white light turned off temporarily. The
measurement location was marked on the MRI using the Medtronic
StealthStation (crosshairs in Fig. 2 and fig. S2). Because the latter uses
optical tracking for navigation with a strong NIR signal, the tracking
mountwas temporarily pointed away from the patient while the Raman
measurement was taken. A reference measurement was first taken with
the laser off with an integration time of 0.05 s. Then, three Raman
measurements were taken with an integration time of 0.05 s each. The
total measurement time was 0.2 s. Every time a Raman measurement
was made, the probe was gently placed in contact with brain tissue to
ensure that no air gap existed between probe and tissue surface. This
invariably left (on white matter or any other brain tissue type) a tempo-
rary circular demarcation on the tissue surface, which was used by the
surgeon as target location where a tissue biopsy sample was collected
immediately after the measurement. The sample—on average with a size
of ~0.5 mm × ~0.5 mm and a depth (from the surface) of ~3 mm—was
then removed from the patient and preserved in formalin, to be archived
and analyzed by a neuropathologist at a later date.

Laser power was adjusted before each procedure to account for
differences in ambient light and intrinsic tissue fluorescence to avoid
saturating the CCD. The laser power output as measured at the tip
of the Raman probe ranges from 37 to 64 mW. The neurosurgeon’s
impression for each sample was also recorded (that is, whether the
sample was thought to correspond to cancer or normal brain) to al-
low for comparison with the classification efficacy associated with the
Raman probe.
www.Science
Neuropathology assessment
All pathology analyses were performed by a neuropathologist special-
ized in neuro-oncology (M.-C.G.). On the basis of standard clinical
practice, atypical cells were identified on H&E-stained sections on
the basis of their morphological features, including nuclear atypia
and nuclear polymorphism. As part of the standard neuropathologi-
cal analysis, each tumor is also tested for the IDH1 (R132H)mutation,
a known glioma marker (42). On the subset of tumors positive for the
mutation, IDH1 (R132H) immunohistochemistry analyses were also
conducted. Cell counting (total cell count per area, cancer cell count
per area, and cancer cell burden) was done for 14 samples on the basis
of H&E stain images. Further, cell counting based on immunohisto-
chemistry was also done on n = 4 invasive cancer samples from three
different patients (two of the four samples belonged to the same pa-
tient) having tested positive for the IDH1 (R132H) mutation. For
those samples, the normal and cancer cell (positively stained cells) count
per unit area was computed, and the cancer cell burden was evaluated.
The immunohistochemistry for the IDH1 R132H antibody clone H09
(Dianova) was performed on an automatic immunostainer BenchMark
XT (Ventana), using a pretreatmentwithCell Conditioning 1 (CC1) and
the XT OptiView DAB kit. The antibody was diluted 1:100. Immuno-
stains were not performed on the next serial section from the H&E;
therefore, although the absolute number of cells might differ, the cancer
cell burden is comparable.

This studywas designed tominimize spatial inconsistencies between
the biopsied tissue and the actual volume sampled with light by the
Raman. The average biopsy sample surface area was the same as the
surface area sampled with the probe (0.5 mm × 0.5 mm). Biopsy sam-
ples were taken superficially using standard microdissection surgical
instruments.

Statistical analysis and tissue classification
The background reference measurement was subtracted from each
corresponding spectrum to account for ambient light sources. The
spectra were then preprocessed to normalize for laser power and to re-
move intrinsic tissue fluorescence via an iterative fourth-order polyno-
mial fit method (43). A variety of classification algorithms have been
used to analyze Raman spectra in previous studies, including support
vector machines, linear discriminant analysis, and artificial neural
networks (27, 32, 44). The boosted trees method was chosen for anal-
ysis based on comparisons of learning algorithms, with superior per-
formance overall (45, 46). It is robust to noise in the training data as well
as the test data, an important quality given the rarity of the Raman effect
relative to background signal. Furthermore, the algorithm does not
make assumptions about feature independence and performs consist-
ently even for a large amount of spectral information.

Boosted trees operates by constructing an ensemble of decision
trees from training data. Each decision tree has a classification rule
and operates on the residual of the classification determined by the
previous decision tree (33). Classification was applied using a leave-
one-out cross-validation approach. Cross-validation analysis was
also used to determine the optimal number of decision trees for
use in the classification, resulting in the use of eight decision trees.
This was to avoid overfitting the data while maintaining sufficient
complexity for proper classification. Statistical analysis on classifi-
cation accuracy was performed using two-sided normal-based 95%
CIs. Classification accuracy, sensitivity, and specificity were deter-
mined by Eqs. 1 to 3 on the basis of cancer detection outcomes of
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true positive (TP), true negative (TN), false positive (FP), and false
negative (FN):

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð1Þ

Sensitivity ¼ TP
TPþ FN

ð2Þ

Specificity ¼ TN

FPþ TN
ð3Þ
ry
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2,
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SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/7/274/274ra19/DC1
Fig. S1. Sampling volume based on light transport modeling.
Fig. S2. Raman spectroscopy measurements colocated on preoperative MRI–grade 3 glioma.
Fig. S3. Raman spectra for gray matter and white matter.
Fig. S4. Preoperative MRI navigation location for the patient in movie S2.
Movie S1. 3D brain rendering with Raman spectroscopy cancer detection.
Movie S2. Use of the handheld probe in vivo with biopsy sample.
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resections and, in turn, for extending survival times of glioma patients.
Such label-free, portable, intraoperative imaging technologies will be important in improving the efficiency of tumor 
surgical tools like the bright-field microscope and magnetic resonance imaging, identified cancer with 73% accuracy.
detect both invasive and dense cancer cells with an accuracy of 92%. By comparison, the surgeon, using standard 
surgery and compared imaging results with 161 biopsy samples. Intraoperative Raman imaging allowed the authors to
using certain algorithms. The authors tested the probe in 17 patients with grade 2 to 4 gliomas who were undergoing 
Raman scattering signal, which was separated from background signals and differentiated from ''normal'' tissues
computer to visualize resulting spectra in real time. When held against human brain tissue, the probe measured the 
connected to a near-infrared laser, for stimulating tissue molecules; in turn, these components were linked to a
technique that uses a commercially available, handheld contact fiber optic probe. The probe's optic cables were 
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surgeons who try to remove all cancer cells during resection; leaving any cancer behind can lower the patient's 

Gliomas are invasive cancers, spreading quietly throughout the brain. They pose a formidable challenge to
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