• Home
  • Frédéric Gazeau
Frédéric Gazeau

Frédéric Gazeau
Laboratoire d'Océanographie de Villefranche

PhD - HDR

About

123
Publications
50,318
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,695
Citations
Additional affiliations
January 2019 - present
Institut de la Mer de Villefranche
Position
  • Researcher
April 2001 - October 2004
Observatoire Océanologique de Villefranche sur Mer
Position
  • PhD Student
April 2001 - October 2004
University of Liège
Position
  • PhD Student
Education
April 2001 - October 2004
University of Liège
Field of study
  • Marine Biology
April 2001 - October 2004
Sorbonne University
Field of study
  • Marine biology

Publications

Publications (123)
Preprint
Full-text available
Total alkalinity (AT) and dissolved inorganic carbon (CT) in the oceans are important properties to understand the ocean carbon cycle and its link with global change (ocean carbon sinks and sources, ocean acidification) and ultimately find carbon based solutions or mitigation procedures (marine carbon removal). We present an extended database (SNAP...
Article
Full-text available
The Arctic is projected to warm by 2 to 5 °C by the end of the century. Warming causes melting of glaciers, shrinking of the areas covered by sea ice, and increased terrestrial runoff from snowfields and permafrost thawing. Warming, decreasing coastal underwater irradiance, and lower salinity are potentially threatening polar marine organisms, incl...
Article
Full-text available
Fjord systems in the Norwegian Arctic are experiencing an increasing frequency and magnitude of marine heatwaves. These episodic heat stress events can have varying degrees of acute impacts on primary production and nutrient uptake of mixed kelp communities, as well as modifying the biogeochemical cycling in nearshore systems where vast areas of ke...
Article
Bivalve farming was usually considered as a CO 2 source through respiration and cal-cification, but recent studies suggest its potential as a CO 2 sink, prompting exploration of its inclusion in carbon markets. Here we reviewed the scientific basis behind this idea and found that it is not supported by observational and experimental studies. This i...
Article
Full-text available
Human activities over the past 150 yr have led to significant carbon dioxide (CO2) emissions, causing global warming and ocean acidification. Surface ocean temperature has risen by 0.93°C since 1850, with projections of an additional +1.42°C to 3.47°C by 2080–2099. Ocean acidification, driven by CO2 absorption, has already lowered seawater pH by 0....
Article
Full-text available
Since the beginning of the industrial revolution, atmospheric carbon dioxide (CO2) concentrations have risen steadily and have induced a decrease of the averaged surface ocean pH by 0.1 units, corresponding to an increase in ocean acidity of about 30 %. In addition to ocean warming, ocean acidification poses a tremendous challenge to some marine or...
Article
Full-text available
The rapid environmental changes in aquatic systems as a result of anthropogenic forcings are creating a multitude of challenging conditions for organisms and communities. The need to better understand the interaction of environmental stressors now, and in the future, is fundamental to determining the response of ecosystems to these perturbations. T...
Article
Full-text available
Total alkalinity (AT) and dissolved inorganic carbon (CT) in the oceans are important properties with respect to understanding the ocean carbon cycle and its link to global change (ocean carbon sinks and sources, ocean acidification) and ultimately finding carbon-based solutions or mitigation procedures (marine carbon removal). We present a databas...
Article
Full-text available
Iron (Fe) is an essential micronutrient for diazotrophs, which are abundant in the Western Tropical South Pacific Ocean (WTSP). Their success depends on the numerous trace metals, particularly Fe, released from shallow hydrothermal vents along the Tonga Arc. This study aimed to explore the spatio‐temporal impact of hydrothermal fluids on particulat...
Preprint
Full-text available
Since the beginning of the industrial revolution, atmospheric carbon dioxide (CO2) concentrations have risen steadily and have induced a decrease of the averaged surface ocean pH by 0.1 units, corresponding to an increase in ocean acidity of about 30 %. In addition to ocean warming, ocean acidification poses a tremendous challenge to some marine or...
Preprint
Full-text available
The Arctic is projected to warm by 2 to 5 °C by the end of the century. Warming causes melting of glaciers, shrinking of the areas covered by sea ice, and increased terrestrial runoff from snowfields and permafrost thawing. Warming, decreasing coastal underwater irradiance, and lower salinity are potentially threatening polar marine organisms, incl...
Preprint
Full-text available
Arctic coastal ecosystems include benthic communities that hold an important role within the marine food chain. Kelps, fucoid species, and coralline algae dominate rocky habitats, offering food and shelter for various species. Kelps and fucoid species also aid in carbon sequestration, sediment stabilization, and erosion mitigation. In summer, the i...
Preprint
Full-text available
Total alkalinity (AT) and total dissolved inorganic carbon (CT) in the oceans are important properties to understand the ocean carbon cycle and its link with climate change (ocean carbon sinks and sources) or global change (ocean acidification). We present a data-base of more than 44 400 AT and CT observations in various ocean regions obtained sinc...
Article
Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown. In this work, we show that f...
Article
Full-text available
In the Western Tropical South Pacific (WTSP) Ocean, a hotspot of dinitrogen fixation has been identified. The survival of diazotrophs depends, among others, on the availability of dissolved iron (DFe) largely originating, as recently revealed, from shallow hydrothermal sources located along the Tonga-Kermadec arc that fertilize the Lau Basin with t...
Preprint
Full-text available
The rapid environmental changes in aquatic systems as a result of anthropogenic forcings are creating a multitude of challenging conditions for organisms and communities. The need to better understand the interaction of environmental stressors now, and in the future, is fundamental to determining the response of ecosystems to these perturbations. T...
Preprint
Iron (Fe) is an essential micronutrient for phytoplankton, particularly diazotrophs, which are abundant in the Western Tropical South Pacific Ocean (WTSP). Their success depends on the numerous trace metals, particularly iron, released from shallow hydrothermal vents along the Tonga Arc. This study aimed to explore the impact of hydrothermal fluids...
Article
Full-text available
The Arctic region faces a warming rate that is more than twice the global average. Sea ice loss, increase in precipitation and freshwater discharge, changes in underwater light, and amplification of ocean acidification modify benthic habitats and the communities they host. Here we synthesize existing information on the impacts of climate change on...
Article
Full-text available
In the Western Tropical South Pacific, a hotspot of dinitrogen‐fixing organisms has been identified. The survival of these species depends on the availability of dissolved iron (DFe); however, the source of this DFe is still unclear. DFe was measured along a transect from 175°E to 166°W near 19–21°S. The distribution of DFe showed high spatial vari...
Article
Full-text available
In the oligotrophic waters of the Mediterranean Sea, during the stratification period, the microbial loop relies on pulsed inputs of nutrients through the atmospheric deposition of aerosols from both natural (e.g., Saharan dust), anthropogenic, or mixed origins. While the influence of dust deposition on microbial processes and community composition...
Article
Full-text available
N2 fixation rates were measured in the 0–1000 m layer at 13 stations located in the open western and central Mediterranean Sea (MS) during the PEACETIME cruise (late spring 2017). While the spatial variability in N2 fixation was not related to Fe, P nor N stocks, the surface composition of the diazotrophic community indicated a strong longitudinal...
Article
Full-text available
Although atmospheric dust fluxes from arid as well as human-impacted areas represent a significant source of nutrients to surface waters of the Mediterranean Sea, studies focusing on the evolution of the metabolic balance of the plankton community following a dust deposition event are scarce, and none were conducted in the context of projected futu...
Article
Full-text available
In low-nutrient low-chlorophyll areas, such as the Mediterranean Sea, atmospheric fluxes represent a considerable external source of nutrients likely supporting primary production, especially during periods of stratification. These areas are expected to expand in the future due to lower nutrient supply from sub-surface waters caused by climate-driv...
Preprint
Full-text available
In the oligotrophic waters of the Mediterranean Sea, during the stratification period, the microbial loop relies on pulsed inputs of nutrients through atmospheric deposition of aerosols from both natural (Saharan dust) and anthropogenic origins. While the influence of dust deposition on microbial processes and community composition is still not ful...
Article
Full-text available
Lithogenic elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (232Th and 230Th, given as Th) and protactinium (Pa) are often assumed to be insoluble. In this study, their dissolution from Saharan dust reaching Mediterranean seawater was studied through tank experiments over 3 to 4 d under controlled conditions including...
Preprint
Full-text available
Although atmospheric dust fluxes from arid as well as human-impacted areas represent a significant source of nutrients to surface waters of the Mediterranean Sea, studies focusing on the evolution of the metabolic balance of the plankton community following a dust deposition event are scarce and none were conducted in the context of projected futur...
Preprint
Full-text available
In Low Nutrient Low Chlorophyll areas, such as the Mediterranean Sea, atmospheric fluxes represent a considerable external source of nutrients likely supporting primary production especially during stratification periods. These areas are expected to expand in the future due to lower nutrient supply from sub-surface waters caused by enhanced stratif...
Preprint
Full-text available
The release of lithogenic elements (which are often assumed to be insoluble) such as Aluminum (Al), Iron (Fe), Rare Earth Elements (REE), Thorium (Th) and Protactinium (Pa) by Saharan dust reaching Mediterranean seawater was studied through tank experiments over 3 to 4 days under controlled conditions including control without dust addition and dus...
Article
Full-text available
Ocean acidification is thought to benefit seagrasses because of increased carbon dioxide (CO2) availability for photosynthesis. However, in order to truly assess ecological responses, effects of ocean acidification need to be investigated in a variety of coastal environments. We tested the hypothesis that ocean acidification would benefit seagrasse...
Article
Full-text available
Coral reefs are constructed by calcifiers that precipitate calcium carbonate to build their shells or skeletons through the process of calcification. Accurately assessing coral calcification rates is crucial to determine the health of these ecosystems and their response to major environmental changes such as ocean warming and acidification. Several...
Article
Full-text available
The energetically costly transition from free-swimming larvae to benthic life stage and maintenance of a calcareous structure can make calcifying marine invertebrates vulnerable to ocean acidification. The first goal of this study was to evaluate the impacts of ocean acidification on calcified tube growth for two Serpulidae polychaete worms. Spiror...
Article
Full-text available
Free Ocean CO2 Enrichment (FOCE) experiments are a relatively recent development in ocean acidification research, designed to address the need for in situ, long-term, community level experiments. FOCE studies have been conducted across different marine benthic habitats and regions, from Antarctica to the tropics. Based on this previous research we...
Article
Full-text available
Marine sediments are an important carbonate reservoir whose partial dissolution could buffer seawater pH decreases in the water column as a consequence of anthropogenic CO2 uptake by the ocean. This study investigates the impact of ocean acidification on the carbonate chemistry at the sediment-water interface (SWI) of shallow-water carbonate sedime...
Article
Alterations to colonization or early post-settlement stages may cause the reorganization of communities under future ocean acidification conditions. Yet, this hypothesis has been little tested by in situ pH manipulation. A Free Ocean Carbon Dioxide Enrichment (FOCE) system was used to lower pH by a ~ 0.3 unit offset within a partially enclosed port...
Article
The Mediterranean basin receives among the highest dust fluxes in the world ocean, and also appears to be one of the regions the most strongly impacted by ocean acidification. The aim of this study was to assess, on a short time scale (one-week), the effect of ocean acidification on the dissolution of nutrients (inorganic nitrogen, phosphate and ir...
Article
Full-text available
Coastal time series of ocean carbonate chemistry are critical for understanding how global anthropogenic change manifests in near-shore ecosystems. Yet, they are few and have low temporal resolution. At the time series station Point B in the northwestern Mediterranean Sea, seawater was sampled weekly from 2007 through 2015, at 1 and 50 m, and analy...
Article
Full-text available
Alterations in seagrass epiphytic communities are expected under future ocean acidification conditions, yet this hypothesis has been little tested in situ. A Free Ocean Carbon Dioxide Enrichment system was used to lower pH by a ~0.3 unit offset within a partially enclosed portion (1.7 m3) of a Posidonia oceanica meadow (11 m depth) between June 21 a...
Article
Full-text available
The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopo...
Data
Heterotrophic prokaryote abundance (cell mL-1) along the course of the three CHIPIE experiments in the two minicosms (non-acidified and acidified). (TIF)
Data
Concentration of dissolved organic carbon ([DOC] in μmol L-1) along the course of the three CHIPIE experiments in the two minicosms (non-acidified and acidified). “C1” and “C2” refer to samplings performed before and after acidification, respectively. The x-axis (in log-scale) represents the number of hours after the artificial dust deposition at t...
Article
Oligotrophic areas account for about 30% of oceanic primary production and are projected to expand in a warm, high-CO2 world. Changes in primary production in these areas could have important impacts on future global carbon cycling. To assess the response of primary production and respiration of plankton communities to increasing partial pressure o...
Article
In order to identify how ocean acidification will influence biological interactions and fluxes among planktonic organisms and across trophic levels, a large-scale mesocosm experiment was performed in the oligotrophic Northwestern Mediterranean Sea in the framework of the European MedSeA project. Nine mesocosms were deployed in the Bay of Calvi (Cor...
Article
The frequency of lytically infected and lysogenic cells (FLIC and FLC, respectively) was estimated during an in situ mesocosm experiment studying the impact of ocean acidification on the plankton community of a low nutrient low chlorophyll (LNLC) system in the north-western Mediterranean Sea (Bay of Villefranche, France) in February/March 2013. No...
Presentation
Full-text available
Abstract of my EGU presentation about the sediment acidification experiment (ACIBIOS) we carried out in 2015 at the Laboratoire Océanographique de Villefranche sur Mer. An article is in progress.
Article
Full-text available
Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipul...
Article
The effects of elevated partial pressure of CO2 (pCO2) on plankton communities in oligotrophic ecosys- tems were studied during two mesocosm experiments: one during summer 2012 in the Bay of Calvi, France, and another during winter 2013 in the Bay of Villefranche, France. Here we report on the relative abundances of coccolithophores versus siliceou...
Article
The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Thr...
Article
Two pelagic mesocosm experiments were conducted to study the impact of ocean acidification on Mediterranean plankton communities. A first experiment took place in summer 2012 in the Bay of Calvi (France) followed by an experiment in winter 2013 in the Bay of Villefranche (France) under pre-bloom conditions. Nine mesocosms were deployed: three serve...
Data
1. Biological interactions can alter predictions that are based on single-species physiological response. It is known that leaf segments of the seagrass Posidonia oceanica will increase photosynthesis with lowered pH, but it is not clear whether the outcome will be altered when the whole plant and its epiphyte community, with different respiratory...
Article
Biological interactions can alter predictions that are based on single‐species physiological response. It is known that leaf segments of the seagrass Posidonia oceanica will increase photosynthesis with lowered pH , but it is not clear whether the outcome will be altered when the whole plant and its epiphyte community, with different respiratory an...
Article
Full-text available
Human-induced climate change and ocean acidification are global environmental phenomena with a common driver: anthropogenic emissions of carbon dioxide. Both processes potentially threaten the Mediterranean bivalve mollusc aquaculture sector, which is economically relevant to several regions and countries. Detrimental effects on bivalve mollusc spe...