Frederic Courbin

Frederic Courbin
Swiss Federal Institute of Technology in Lausanne | EPFL · Physics Section

Dr.

About

425
Publications
39,710
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,971
Citations
Additional affiliations
June 1999 - February 2002
Pontifical Catholic University of Chile
Position
  • PostDoc Position
June 2004 - present
Swiss Federal Institute of Technology in Lausanne
March 2002 - June 2004
University of Liège
Position
  • Université de Liège (Marie Curie fellow)

Publications

Publications (425)
Article
The study of asteroids, particularly near-Earth asteroids, is key to gaining insights into our Solar System and can help prevent dangerous collisions. Beyond finding new objects, additional observations of known asteroids will improve our knowledge of their orbit. We have developed an automated pipeline to process and search for asteroid trails in...
Preprint
Data from the Euclid space telescope will enable cosmic shear measurements with very small statistical errors, requiring corresponding systematic error control level. A common approach to correct for shear biases involves calibrating shape measurement methods using image simulations with known input shear. Given their high resolution, Hubble Space...
Article
Data from the space telescope will enable cosmic shear measurements to be carried out with very small statistical errors, necessitating a corresponding level of systematic error control. A common approach to correct for shear biases involves calibrating shape measurement methods using image simulations with known input shear. Given their high resol...
Preprint
Full-text available
We present a simulation-based method to explore the optimum tomographic redshift binning strategy for 3x2pt analyses with Euclid, focusing on the expected configuration of its first major data release (DR1). To do this, we 1) simulate a Euclid-like observation and generate mock shear catalogues from multiple realisations of the 3x2pt fields on the...
Preprint
The ESA Euclid mission will survey more than 14,000 deg$^2$ of the sky in visible and near-infrared wavelengths, mapping the extra-galactic sky to constrain our cosmological model of the Universe. Although the survey focusses on regions further than 15 deg from the ecliptic, it should allow for the detection of more than about $10^5$ Solar System o...
Article
The mission will measure cosmological parameters with unprecedented precision. To distinguish between cosmological models, it is essential to generate realistic mock observables from cosmological simulations that were run in both the standard Λ-cold-dark-matter ( paradigm and in many non-standard models beyond We present the scientific results from...
Preprint
Full-text available
Deep surveys reveal tidal debris and associated compact stellar systems. Euclid's unique combination of capabilities (spatial resolution, depth, and wide sky coverage) will make it a groundbreaking tool for galactic archaeology in the local Universe, bringing low surface brightness (LSB) science into the era of large-scale astronomical surveys. Euc...
Preprint
Full-text available
A primary target of the \Euclid space mission is to constrain early-universe physics by searching for deviations from a primordial Gaussian random field. A significant detection of primordial non-Gaussianity would rule out the simplest models of cosmic inflation and transform our understanding of the origin of the Universe. This paper forecasts how...
Article
Full-text available
The instruments at the focus of the Euclid space observatory offer superb, diffraction-limited imaging over an unprecedented (from space) wide field of view of 0.57 deg ² . This exquisite image quality has the potential to produce high-precision astrometry for point sources once the undersampling of Euclid’s cameras is taken into account by means o...
Article
Cosmic shear is a powerful probe of cosmological models and the transition from current Stage-III surveys such as the Kilo-Degree Survey (KiDS) to the increased area and redshift range of Stage IV surveys such as will significantly increase the precision of weak lensing analyses. However, with increasing precision, the accuracy of model assumptions...
Preprint
Cluster cosmology can benefit from combining multi-wavelength studies, which can benefit from characterising the correlation coefficients between different mass-observable relations. In this work, we aim to provide information on the scatter, the skewness, and the covariance of various mass-observable relations in galaxy clusters in cosmological hy...
Article
Full-text available
Extragalactic globular clusters (EGCs) are an abundant and powerful tracer of galaxy dynamics and formation, and their own formation and evolution is also a matter of extensive debate. The compact nature of globular clusters means that they are hard to spatially resolve and thus study outside the Local Group. In this work we have examined how well...
Preprint
Full-text available
The Euclid Wide Survey (EWS) is predicted to find approximately 170 000 galaxy-galaxy strong lenses from its lifetime observation of 14 000 deg^2 of the sky. Detecting this many lenses by visual inspection with professional astronomers and citizen scientists alone is infeasible. Machine learning algorithms, particularly convolutional neural network...
Article
Full-text available
We forecast the expected population of active galactic nuclei (AGN) observable in the Euclid Wide Survey (EWS) and Euclid Deep Survey (EDS). Starting from an X-ray luminosity function (XLF), we generated volume-limited samples of the AGN expected in the survey footprints. Each AGN was assigned a spectral energy distribution (SED) appropriate for it...
Article
We study the intracluster light (ICL) and intracluster globular clusters (ICGCs) in the nearby Perseus cluster of galaxies using Early Release Observations. By modelling the isophotal and iso-density contours, we mapped the distributions and properties of the ICL and ICGCs out to radii of $200$--$600$\,kpc (up to $ $ of the virial radius, depending...
Article
Full-text available
Context. The Euclid mission of the European Space Agency will deliver weak gravitational lensing and galaxy clustering surveys that can be used to constrain the standard cosmological model and extensions thereof. Aims. We present forecasts from the combination of the Euclid photometric galaxy surveys (weak lensing, galaxy clustering, and their cros...
Article
Full-text available
Core ellipticals, which are massive early-type galaxies with almost constant inner surface brightness profiles, are the result of dry mergers. During these events, a binary black hole (BBH) is formed, destroying the original cuspy central regions of the merging objects and scattering stars that are not on tangential orbits. The size of the emerging...
Preprint
Full-text available
We report the discovery of the first example of an Einstein zig-zag lens, an extremely rare lensing configuration. In this system, J1721+8842, six images of the same background quasar are formed by two intervening galaxies, one at redshift $z_1 = 0.184$ and a second one at $z_2 = 1.885$. Two out of the six multiple images are deflected in opposite...
Preprint
Core ellipticals, massive early-type galaxies have an almost constant inner surface brightness profile. The size of the core region correlates with the mass of the finally merged black hole. Here we report the first Euclid-based dynamical mass determination of a supermassive black hole. We study the centre of NGC 1272, the second most luminous elli...
Article
Full-text available
Galaxy proto-clusters are receiving increased interest since most of the processes shaping the structure of clusters of galaxies and their galaxy population happen at the early stages of their formation. The Euclid Survey will provide a unique opportunity to discover a large number of proto-clusters over a large fraction of the sky (14\,500 deg$^2$...
Preprint
Full-text available
Gravitational redshift and Doppler effects give rise to an antisymmetric component of the galaxy correlation function when cross-correlating two galaxy populations or two different tracers. In this paper, we assess the detectability of these effects in the Euclid spectroscopic galaxy survey. We model the impact of gravitational redshift on the obse...
Article
Full-text available
Context . The future Euclid space satellite mission will offer an invaluable opportunity to constrain modifications to Einstein’s general relativity at cosmic scales. In this paper, we focus on modified gravity models characterised, at linear scales, by a scale-independent growth of perturbations while featuring different testable types of derivati...
Article
Full-text available
Context . Deviations from Gaussianity in the distribution of the fields probed by large-scale structure surveys generate additional terms in the data covariance matrix, increasing the uncertainties in the measurement of the cosmological parameters. Super-sample covariance (SSC) is among the largest of these non-Gaussian contributions, with the pote...
Preprint
Full-text available
Measurements of galaxy clustering are affected by RSD. Peculiar velocities, gravitational lensing, and other light-cone projection effects modify the observed redshifts, fluxes, and sky positions of distant light sources. We determine which of these effects leave a detectable imprint on several 2-point clustering statistics extracted from the EWSS...
Preprint
We present cosmological parameter forecasts for the Euclid 6x2pt statistics, which include the galaxy clustering and weak lensing main probes together with previously neglected cross-covariance and cross-correlation signals between imaging/photometric and spectroscopic data. The aim is understanding the impact of such terms on the Euclid performanc...
Article
Full-text available
The Euclid mission is expected to image millions of galaxies at high resolution, providing an extensive dataset with which to study galaxy evolution. Because galaxy morphology is both a fundamental parameter and one that is hard to determine for large samples, we investigate the application of deep learning in predicting the detailed morphologies o...
Article
Full-text available
will collect an enormous amount of data during the mission's lifetime, observing billions of galaxies in the extragalactic sky. Along with traditional template-fitting methods, numerous machine learning (ML) algorithms have been presented for computing their photometric redshifts and physical parameters (PPs), requiring significantly less computing...
Article
Full-text available
LensMC is a weak lensing shear measurement method developed for Euclid and Stage-IV surveys. It is based on forward modelling in order to deal with convolution by a point spread function (PSF) with comparable size to many galaxies; sampling the posterior distribution of galaxy parameters via Markov Chain Monte Carlo; and marginalisation over nuisan...
Article
Full-text available
The mission, designed to map the geometry of the dark Universe, presents an unprecedented opportunity for advancing our understanding of the cosmos through its photometric galaxy cluster survey. Central to this endeavor is the accurate calibration of the mass- and redshift-dependent halo bias (HB), which is the focus of this paper. Our aim is to en...
Preprint
Full-text available
To date, galaxy image simulations for weak lensing surveys usually approximate the light profiles of all galaxies as a single or double S\'ersic profile, neglecting the influence of galaxy substructures and morphologies deviating from such a simplified parametric characterization. While this approximation may be sufficient for previous data sets, t...
Preprint
Full-text available
We study the constraint on $f(R)$ gravity that can be obtained by photometric primary probes of the Euclid mission. Our focus is the dependence of the constraint on the theoretical modelling of the nonlinear matter power spectrum. In the Hu-Sawicki $f(R)$ gravity model, we consider four different predictions for the ratio between the power spectrum...
Preprint
Full-text available
To constrain models beyond $\Lambda$CDM, the development of the Euclid analysis pipeline requires simulations that capture the nonlinear phenomenology of such models. We present an overview of numerical methods and $N$-body simulation codes developed to study the nonlinear regime of structure formation in alternative dark energy and modified gravit...
Preprint
Full-text available
The Euclid mission will measure cosmological parameters with unprecedented precision. To distinguish between cosmological models, it is essential to generate realistic mock observables from cosmological simulations that were run in both the standard $\Lambda$-cold-dark-matter ($\Lambda$CDM) paradigm and in many non-standard models beyond $\Lambda$C...
Preprint
We investigate the level of accuracy and precision of cluster weak-lensing (WL) masses measured with the \Euclid data processing pipeline. We use the DEMNUni-Cov $N$-body simulations to assess how well the WL mass probes the true halo mass, and, then, how well WL masses can be recovered in the presence of measurement uncertainties. We consider diff...
Preprint
The Euclid mission, designed to map the geometry of the dark Universe, presents an unprecedented opportunity for advancing our understanding of the cosmos through its photometric galaxy cluster survey. This paper focuses on enhancing the precision of halo bias (HB) predictions, which is crucial for deriving cosmological constraints from the cluster...
Preprint
Full-text available
Euclid will cover over 14000 $deg^{2}$ with two optical and near-infrared spectro-photometric instruments, and is expected to detect around ten million active galactic nuclei (AGN). This unique data set will make a considerable impact on our understanding of galaxy evolution and AGN. In this work we identify the best colour selection criteria for A...
Article
Full-text available
The space mission will cover over $14\,000\ $ with two optical and near-infrared spectro-photometric instruments, and is expected to detect around ten million active galactic nuclei (AGN). This unique data set will make a considerable impact on our understanding of galaxy evolution in general, and AGN in particular. For this work we identified the...
Preprint
Full-text available
We present the framework for measuring angular power spectra in the Euclid mission. The observables in galaxy surveys, such as galaxy clustering and cosmic shear, are not continuous fields, but discrete sets of data, obtained only at the positions of galaxies. We show how to compute the angular power spectra of such discrete data sets, without trea...
Article
Full-text available
Context. The European Space Agency’s Euclid mission is one of a raft of forthcoming large-scale cosmology surveys that will map the large-scale structure in the Universe with unprecedented precision. The mission will collect a vast amount of data that will be processed and analysed by Euclid ’s Science Ground Segment (SGS). The development and vali...
Article
This paper presents a search for high redshift galaxies from the Euclid Early Release Observations program `Magnifying Lens.' The 1.5\,$ area covered by the twin Abell lensing cluster fields is comparable in size to the few other deep near-infrared surveys such as COSMOS, and so provides an opportunity to significantly increase known samples of rar...
Preprint
Full-text available
We investigate the ability of the Euclid telescope to detect galaxy-scale gravitational lenses. To do so, we perform a systematic visual inspection of the $0.7\,\rm{deg}^2$ Euclid ERO data towards the Perseus cluster using both the high-resolution VIS $I_{\scriptscriptstyle\rm E}$ band, and the lower resolution NISP bands. We inspect every extended...
Preprint
Full-text available
The Cosmic Dawn Survey (DAWN survey) provides multiwavelength (UV/optical to mid-IR) data across the combined 59 deg$^{2}$ of the Euclid Deep and Auxiliary fields (EDFs and EAFs). Here, the first public data release (DR1) from the DAWN survey is presented. DR1 catalogues are made available for a subset of the full DAWN survey that consists of two E...
Preprint
Full-text available
Euclid will provide deep NIR imaging to $\sim$26.5 AB magnitude over $\sim$59 deg$^2$ in its deep and auxiliary fields. The Cosmic DAWN survey complements the deep Euclid data with matched depth multiwavelength imaging and spectroscopy in the UV--IR to provide consistently processed Euclid selected photometric catalogs, accurate photometric redshif...
Preprint
Full-text available
Galaxy proto-clusters are receiving an increased interest since most of the processes shaping the structure of clusters of galaxies and their galaxy population are happening at early stages of their formation. The Euclid Survey will provide a unique opportunity to discover a large number of proto-clusters over a large fraction of the sky (14 500 sq...
Article
The near-infrared calibration unit (NI-CU) on board NISP is the first astronomical calibration lamp based on LED to be operated in space. is a mission in ESA's Cosmic Vision 2015--2025 framework to explore the dark universe and provide a next-level characterisation of the nature of gravitation, dark matter, and dark energy. Calibrating photometric...
Preprint
Full-text available
Cosmic shear is a powerful probe of cosmological models and the transition from current Stage-III surveys like the Kilo-Degree Survey (KiDS) to the increased area and redshift range of Stage IV-surveys such as \Euclid will significantly increase the precision of weak lensing analyses. However, with increasing precision, the accuracy of model assump...
Preprint
Full-text available
Euclid will collect an enormous amount of data during the mission's lifetime, observing billions of galaxies in the extragalactic sky. Along with traditional template-fitting methods, numerous Machine Learning algorithms have been presented for computing their photometric redshifts and physical parameters (PP), requiring significantly less computin...
Article
Full-text available
Verifying the fully kinematic nature of the long-known cosmic microwave background (CMB) dipole is of fundamental importance in cosmology. In the standard cosmological model with the Friedman--Lemaitre--Robertson--Walker (FLRW) metric from the inflationary expansion, the CMB dipole should be entirely kinematic. Any non-kinematic CMB dipole componen...
Article
We present the first analysis of the Early Release Observations (ERO) program that targets fields around two lensing clusters, Abell 2390 and Abell 2764. We use imaging data from the Visible instrument (VIS) and the Near-Infrared Spectrometer and Photometer (NISP) to produce photometric catalogs for a total of $ 500\,000$ objects. The imaging data...
Preprint
Full-text available
The Euclid mission of the European Space Agency will provide weak gravitational lensing and galaxy clustering surveys that can be used to constrain the standard cosmological model and its extensions, with an opportunity to test the properties of dark matter beyond the minimal cold dark matter paradigm. We present forecasts from the combination of t...
Article
Full-text available
Multi-object spectroscopic galaxy surveys typically make use of photometric and colour criteria to select their targets. That is not the case of which will use the NISP slitless spectrograph to record spectra for every source over its field of view. Slitless spectroscopy has the advantage of avoiding defining a priori a specific galaxy sample, but...
Article
Full-text available
Multiply lensed images of a same source experience a relative time delay in the arrival of photons due to the path length difference and the different gravitational potentials the photons travel through. This effect can be used to measure absolute distances and the Hubble constant (H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wa...
Article
Full-text available
In anticipation of the upcoming Euclid Wide and Deep Surveys, we present optical emission-line predictions at intermediate redshifts from 0.4 to 2.5. Our approach combines a mock light cone from the Gaea semi-analytic model with advanced photoionisation models to construct emission-line catalogues. This allows us to self-consistently model nebular...
Article
Full-text available
Aims . As ground-based all-sky astronomical surveys will gather millions of images in the coming years, a critical requirement emerges for the development of fast deconvolution algorithms capable of efficiently improving the spatial resolution of these images. By successfully recovering clean and high-resolution images from these surveys, the objec...
Article
As part of the Early Release Observations (ERO) programme, we analysed deep, wide-field imaging from the VIS and NISP instruments of two Milky Way globular clusters (GCs), namely NGC 6254 (M10) and NGC 6397, to look for observational evidence of their dynamical interaction with the Milky Way. We searched for such an interaction in the form of struc...
Preprint
Full-text available
We forecast the expected population of active galactic nuclei (AGN) observable in the Euclid Wide Survey (EWS) and Euclid Deep Survey (EDS). Starting from an X-ray luminosity function (XLF) we generate volume-limited samples of the AGN expected in the survey footprints. Each AGN is assigned an SED appropriate for its X-ray luminosity and redshift,...
Preprint
Full-text available
The near-infrared calibration unit (NI-CU) onboard Euclid's Near-Infrared Spectrometer and Photometer (NISP) is the first astronomical calibration lamp based on light-emitting diodes (LEDs) to be operated in space. Euclid is a mission in ESA's 'Cosmic Vision 2015-2025' framework, to explore the dark universe and provide a next-level characterisatio...
Preprint
Full-text available
This paper presents a search for high redshift galaxies from the Euclid Early Release Observations program "Magnifying Lens." The 1.5 deg$^2$ area covered by the twin Abell lensing cluster fields is comparable in size to the few other deep near-infrared surveys such as COSMOS, and so provides an opportunity to significantly increase known samples o...
Preprint
Full-text available
We study the intracluster light (ICL) and intracluster globular clusters (ICGCs) in the nearby Perseus galaxy cluster using Euclid's EROs. By modelling the isophotal and iso-density contours, we map the distributions and properties of the ICL and ICGCs out to a radius of 600 kpc (~1/3 of the virial radius) from the brightest cluster galaxy (BCG). W...
Preprint
Full-text available
Euclid is poised to make significant advances in the study of nearby galaxies in the local Universe. Here we present a first look at 6 galaxies observed for the Nearby Galaxy Showcase as part of the Euclid Early Release Observations acquired between August and November, 2023. These targets, 3 dwarf galaxies (HolmbergII, IC10, NGC6822) and 3 spirals...
Preprint
Full-text available
We make use of the unprecedented depth, spatial resolution, and field of view of the Euclid Early Release Observations of the Perseus galaxy cluster to detect and characterise the dwarf galaxy population in this massive system. The Euclid high resolution VIS and combined VIS+NIR colour images were visually inspected and dwarf galaxy candidates were...
Preprint
Full-text available
Extragalactic globular clusters (EGCs) are an abundant and powerful tracer of galaxy dynamics and formation, and their own formation and evolution is also a matter of extensive debate. The compact nature of globular clusters means that they are hard to spatially resolve and thus study outside the Local Group. In this work we have examined how well...
Preprint
Full-text available
The Euclid ERO programme targeted the Perseus cluster of galaxies, gathering deep data in the central region of the cluster over 0.7 square degree, corresponding to approximately 0.25 r_200. The data set reaches a point-source depth of IE=28.0 (YE, JE, HE = 25.3) AB magnitudes at 5 sigma with a 0.16" and 0.48" FWHM, and a surface brightness limit o...
Preprint
As part of the Euclid Early Release Observations (ERO) programme, we analyse deep, wide-field imaging from the VIS and NISP instruments of two Milky Way globular clusters (GCs), namely NGC 6254 (M10) and NGC 6397, to look for observational evidence of their dynamical interaction with the Milky Way. We search for such an interaction in the form of s...
Preprint
Full-text available
We present the Flagship galaxy mock, a simulated catalogue of billions of galaxies designed to support the scientific exploitation of the Euclid mission. Euclid is a medium-class mission of the European Space Agency optimised to determine the properties of dark matter and dark energy on the largest scales of the Universe. It probes structure format...
Preprint
Full-text available
We present an analysis of Euclid observations of a 0.5 deg$^2$ field in the central region of the Fornax galaxy cluster that were acquired during the performance verification phase. With these data, we investigate the potential of Euclid for identifying GCs at 20 Mpc, and validate the search methods using artificial GCs and known GCs within the fie...
Preprint
Full-text available
We provide an early assessment of the imaging capabilities of the Euclid space mission to probe deeply into nearby star-forming regions and associated very young open clusters, and in particular to check to what extent it can shed light on the new-born free-floating planet population. This paper focuses on a low-reddening region observed in just on...
Preprint
Full-text available
We present the first analysis of the Euclid Early Release Observations (ERO) program that targets fields around two lensing clusters, Abell 2390 and Abell 2764. We use VIS and NISP imaging to produce photometric catalogs for a total of $\sim 500\,000$ objects. The imaging data reach a $5\,\sigma$ typical depth in the range 25.1-25.4 AB in the NISP...
Article
Full-text available
We investigate the accuracy of the perturbative galaxy bias expansion in view of the forthcoming analysis of the spectroscopic galaxy samples. We compare the performance of a Eulerian galaxy bias expansion using state-of-the-art prescriptions from the eft with a hybrid approach based on Lagrangian perturbation theory and high-resolution simulations...
Article
Full-text available
We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of data previously presented in Vuissoz et al.), five seasons of overlapping data from the Mercator...
Article
Full-text available
Current searches for galaxy-scale strong lenses focus on massive Luminous Red Galaxies but tend to overlook late-type lenses, in part because of their smaller Einstein radii. We take advantage of the superb seeing of the UNIONS survey in the r -band to perform an imaging search for edge-on late-type lenses. We use Convolutional Neural Networks trai...
Article
Full-text available
Aims. We derived galaxy colour selections from Euclid and ground-based photometry, aiming to accurately define background galaxy samples in cluster weak-lensing analyses. These selections have been implemented in the Euclid data analysis pipelines for galaxy clusters. Methods. Given any set of photometric bands, we developed a method for the calibr...
Article
Full-text available
To obtain an accurate cosmological inference from upcoming weak lensing surveys such as the one conducted by the shear measurement requires calibration using galaxy image simulations. As it typically requires millions of simulated galaxy images and consequently a substantial computational effort, seeking methods to speed the calibration up is valua...
Article
Full-text available
Aims. We validate a semi-analytical model for the covariance of the real-space two-point correlation function of galaxy clusters. Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrated a simple model to accurately describe the clustering covariance. Then, we used this model to quantify the l...
Article
Full-text available
Primordial features, in particular oscillatory signals, imprinted in the primordial power spectrum of density perturbations represent a clear window of opportunity for detecting new physics at high-energy scales. Future spectroscopic and photometric measurements from the space mission will provide unique constraints on the primordial power spectrum...
Article
Full-text available
The material composition of asteroids is an essential piece of knowledge in the quest to understand the formation and evolution of the Solar System. Visual to near-infrared spectra or multiband photometry is required to constrain the material composition of asteroids, but we currently have such data, especially in the near-infrared wavelengths, for...
Article
Full-text available
We report the discovery of PS J2107−1611, a fold-configuration 4.3″-separation quadruply lensed quasar with a bright lensed arc. It was discovered using a convolutional neural network on Pan-STARRS g r i images of pre-selected quasar candidates with multiple nearby Pan-STARRS detections. Spectroscopic follow-up with EFOSC2 on the ESO 3.58 m New Tec...
Article
Full-text available
Galaxy-scale gravitational lenses are often modeled with two-component mass profiles where one component represents the stellar mass and the second is a Navarro Frenk White (NFW) profile representing the dark matter. Outside of the spherical case, the NFW profile is costly to implement, and so it is approximated via two different methods; elliptici...