Frederic Chedin

Frederic Chedin
University of California, Davis | UCD · Department of Molecular and Cellular Biology

Ph.D.

About

101
Publications
15,280
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,492
Citations
Introduction
My research aims to characterize the mechanisms driving the formation, resolution, and function of R-loop structures in mammalian genomes. R-loops are three-stranded nucleic acid structures that form during transcription when the nascent RNA hybridizes with the template DNA strand, leaving the non-template strand unpaired and looped out. R-loops are now recognized as one of the most abundant non-B DNA structure in genomes and have been linked to many aspects of genome dynamics. My lab has contributed key methods to profile and predict R-loops from single molecule to genome scale.
Additional affiliations
January 2004 - present
University of California, Davis
Position
  • Professor (Associate)
Description
  • Mammalian Epigenomics
January 2003 - December 2003
City of Hope National Medical Center
Position
  • Research Associate
Description
  • Mammalian DNA methyltransferases
February 2000 - December 2002
University of Southern California
Position
  • Research Associate
Description
  • R-loop formation and mammalian DNA methyltransferases
Education
January 1991 - March 1995
Université Paris-Sud 11
Field of study
  • Molecular Biology / Microbiology

Publications

Publications (101)
Article
R-loops are three-stranded nucleic acid structures formed from the hybridization of RNA and DNA. While the pathological consequences of R-loops have been well-studied to date, the locations, classes, and dynamics of physiological R-loops remain poorly understood. R-loop mapping studies provide insight into R-loop dynamics, but their findings are ch...
Article
Full-text available
Conflicts between transcription and replication machinery are a potent source of replication stress and genome instability; however, no technique currently exists to identify endogenous genomic locations prone to transcription–replication interactions. Here, we report a novel method to identify genomic loci prone to transcription–replication intera...
Preprint
R-loops are three-stranded nucleic acid structures formed from the hybridization of RNA and DNA during transcription. While the pathological consequences of R-loops have been well-studied to date, the locations, classes, and dynamics of physiological R-loops remain poorly understood. R-loop mapping studies provide insight into R-loop dynamics, but...
Preprint
R-loops are three-stranded nucleic acid structures formed from the hybridization of RNA and DNA during nascent transcription. In 2012, Ginno et al. introduced the first R-loop mapping method, DNA:RNA immunoprecipitation (DRIP) sequencing. Since that time, dozens of studies have implemented R-loop mapping and new high-resolution techniques have been...
Article
Full-text available
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a criti...
Article
Full-text available
R-loops are three-stranded nucleic acid structures with both physiological and pathological roles in cells. R-loop imaging generally relies on detection of the RNA-DNA hybrid component of these structures using the S9.6 antibody. We show that the use of this antibody for imaging can be problematic because it readily binds to double-stranded RNA (ds...
Article
R-loops are non-B DNA structures that form during transcription when the nascent RNA anneals to the template DNA strand forming a RNA:DNA hybrid. Understanding the genomic distribution and function of R-loops is an important goal, since R-loops have been implicated in a number of adaptive and maladaptive processes under physiological and pathologic...
Article
Full-text available
The S9.6 antibody is broadly used to detect RNA:DNA hybrids but has significant affinity for double-stranded RNA. The impact of this off-target RNA binding activity has not been thoroughly investigated, especially in the context of immunofluorescence microscopy. We report that S9.6 immunofluorescence signal observed in fixed human cells arises pred...
Preprint
Conflicts between transcription and replication machinery are a potent source of replication stress and genome stability; however, no technique currently exists to identify endogenous genomic locations prone to transcription-replication interactions. Here, we report a novel method to identify genomic loci prone to transcription-replication interact...
Article
Full-text available
A number of cancer drugs activate innate immune pathways in tumor cells but unfortunately also compromise anti-tumor immune function. We discovered that inhibition of Carm1, an epigenetic enzyme and co-transcriptional activator, elicited beneficial anti-tumor activity in both cytotoxic T cells and tumor cells. In T cells, Carm1 inactivation substan...
Article
R-loops represent an abundant class of large non-B DNA structures in genomes. Even though they form transiently and at modest frequencies, interfering with R-loop formation or dissolution has significant impacts on genome stability. Addressing the mechanism(s) of R-loop-mediated genome destabilization requires a precise characterization of their di...
Article
Full-text available
Displacement loops (D-loops) are critical intermediates formed during homologous recombination. Rdh54 (a.k.a. Tid1), a Rad54 paralog in Saccharomyces cerevisiae, is well-known for its role with Dmc1 recombinase during meiotic recombination. Yet contrary to Dmc1, Rdh54/Tid1 is also present in somatic cells where its function is less understood. Whil...
Article
Full-text available
Displacement loops (D-loops) are signature intermediates formed during homologous recombination. Numerous factors regulate D-loop formation and disruption, thereby influencing crucial aspects of DNA repair, including donor choice and the possibility of crossover outcome. While D-loop detection methods exist, it is currently unfeasible to assess the...
Article
Full-text available
R-loops have both positive and negative impacts on chromosome functions. To identify toxic R-loops in the human genome, here, we map RNA:DNA hybrids, replication stress markers and DNA double-strand breaks (DSBs) in cells depleted for Topoisomerase I (Top1), an enzyme that relaxes DNA supercoiling and prevents R-loop formation. RNA:DNA hybrids are...
Chapter
R-loops are three-stranded structures that form during transcription when the nascent RNA hybridizes with the template DNA resulting in a DNA:RNA hybrid and a looped-out single-stranded DNA (ssDNA) strand. These structures are important for normal cellular processes and aberrant R-loop formation has been implicated in a number of pathological outco...
Article
Full-text available
SETX (senataxin) is an RNA/DNA helicase that has been implicated in transcriptional regulation and the DNA damage response through resolution of R-loop structures. Mutations in SETX result in either of two distinct neurodegenerative disorders. SETX dominant mutations result in a juvenile form of amyotrophic lateral sclerosis (ALS) called ALS4, wher...
Preprint
Efficient co-transcriptional splicing is thought to suppress the formation of genome-destabilizing R-loops upon interaction between nascent RNA and the DNA template. Inhibition of the SF3B splicing complex using Pladienolide B (PladB) in human K562 cells caused widespread intron retention and nearly 2,000 instances of R-loops gains. However, only m...
Preprint
Full-text available
Displacement loops (D-loops) are signature intermediates formed during homologous recombination. Numerous factors regulate D-loop formation and disruption, thereby influencing crucial aspects of DNA repair, including donor choice and the possibility of a crossover outcome. While D-loop detection methods exist, it is currently unfeasible to assess t...
Preprint
Full-text available
Displacement loops (D-loops) are intermediates formed during homologous recombination that play a pivotal role in the fidelity of repair. Rdh54 (a.k.a. Tid1), a Rad54 paralog in Saccharomyces cerevisiae , is well-known for its role with Dmc1 recombinase during meiotic recombination. Yet contrary to Dmc1, Rdh54 is also present in somatic cells where...
Article
Full-text available
Polycomb Group (PcG) proteins form memory of transient transcriptional repression that is necessary for development. In Drosophila, DNA elements termed Polycomb Response Elements (PREs) recruit PcG proteins. How PcG activities are targeted to PREs to maintain repressed states only in appropriate developmental contexts has been difficult to elucidat...
Article
Full-text available
R-loop structures are a prevalent class of alternative non-B DNA structures that form during transcription upon invasion of the DNA template by the nascent RNA. R-loops form universally in the genomes of organisms ranging from bacteriophages, bacteria and yeasts to plants and animals, including mammals. A growing body of work has linked these struc...
Article
R-loops are a prevalent class of non-B DNA structures that have been associated with both positive and negative cellular outcomes. DNA:RNA immunoprecipitation (DRIP) approaches based on the anti-DNA:RNA hybrid S9.6 antibody revealed that R-loops form dynamically over conserved genic hotspots. We have developed an orthogonal approach that queries R-...
Preprint
Full-text available
The contribution of RNA:DNA hybrid metabolism to cellular processes and disease states has become a prominent topic of study. The S9.6 antibody recognizes RNA:DNA hybrids with a subnanomolar affinity, making it a broadly used tool to detect and study RNA:DNA hybrids. However, S9.6 also binds double-stranded RNA in vitro with significant affinity. T...
Conference Paper
With limited therapeutic options, poor overall 5-year survival rates, and increasing incidence, pancreas cancer is estimated to become the second leading cause of cancer deaths by 2030. Recognizing the need for transformative advances in pancreas cancer management, we developed an target discovery platform to uncover molecular vulnerabilities in pa...
Conference Paper
With limited therapeutic options, poor overall 5-year survival rates, and increasing incidence, pancreas cancer is estimated to become the second leading cause of cancer deaths by 2030. Recognizing the need for transformative advances in pancreas cancer management, we developed an target discovery platform to uncover molecular vulnerabilities in pa...
Article
Full-text available
Friedreich’s Ataxia (FA) is an inherited neurodegenerative disorder resulting from decreased expression of the mitochondrial protein frataxin, for which there is no approved therapy. High throughput screening of clinically used drugs identified Dimethyl fumarate (DMF) as protective in FA patient cells. Here we demonstrate that DMF significantly inc...
Preprint
Full-text available
R-loops are a prevalent class of non-B DNA structures that form during transcription upon reannealing of the nascent RNA to the template DNA strand. R-loops have been profiled using the S9.6 antibody to immunoprecipitate DNA:RNA hybrids. S9.6-based DNA:RNA immunoprecipitation (DRIP) techniques revealed that R-loops form dynamically over conserved g...
Preprint
Full-text available
Epigenetic regulation is conveyed through information encoded by specific chromatin features. Non-canonical nucleic acid structures could in principle also convey biological information but their role(s) in epigenetic regulation is not known. Polycomb Group (PcG) proteins form memory of transient transcriptional repression events that is necessary...
Article
Full-text available
Three-stranded R-loop structures have been associated with genomic instability phenotypes. What underlies their wide-ranging effects on genome stability remains poorly understood. Here we combined biochemical and atomic force microscopy approaches with single molecule R-loop footprinting to demonstrate that R-loops formed at the model Airn locus in...
Article
Full-text available
R-loops are prevalent three-stranded non-B DNA structures composed of an RNA–DNA hybrid and a single strand of DNA. R-loops are implicated in various basic nuclear processes, such as class-switch recombination, transcription termination and chromatin patterning. Perturbations in R-loop metabolism have been linked to genomic instability and have bee...
Preprint
Full-text available
Three-stranded R-loop structures have been associated with genomic instability phenotypes. What underlies their wide-ranging effects on genome stability remains poorly understood. Here we combined biochemical and atomic force microscopy approaches with single molecule R-loop footprinting to demonstrate that R-loops formed at the model Airn locus in...
Article
Full-text available
R-loops are abundant three-stranded nucleic-acid structures that form in cis during transcription. Experimental evidence suggests that R-loop formation is affected by DNA sequence and topology. However, the exact manner by which these factors interact to determine R-loop susceptibility is unclear. To investigate this, we developed a statistical mec...
Article
Full-text available
Background: Co-transcriptional R-loops are abundant non-B DNA structures in mammalian genomes. DNA Topoisomerase I (Top1) is often thought to regulate R-loop formation owing to its ability to resolve both positive and negative supercoils. How Top1 regulates R-loop structures at a global level is unknown. Results: Here, we perform high-resolution...
Preprint
Background Co-transcriptional R-loops are abundant non-B DNA structures in mammalian genomes. DNA Topoisomerase I (Top1) is often thought to regulate R-loop formation owing to its ability to resolve both positive and negative supercoils. How Top1 regulates R-loop structures at a global level is unknown. Results Here, we performed high-resolution s...
Article
Full-text available
R-loops, which result from the formation of stable DNA:RNA hybrids, can both threaten genome integrity and act as physiological regulators of gene expression and chromatin patterning. To characterize R-loops in fission yeast, we used the S9.6 antibody-based DRIPc-seq method to sequence the RNA strand of R-loops and obtain strand-specific R-loop map...
Preprint
Full-text available
R-loops, which result from the formation of stable DNA:RNA hybrids, can both threaten genome integrity and act as physiological regulators of gene expression and chromatin patterning. To characterize R-loops in fission yeast, we used the S9.6 antibody-based DRIPc-seq method to sequence the RNA strand of R-loops and obtain strand-specific R-loop map...
Article
New genomic maps reveal that R-loop structures formed upon hybridization of nascent RNA transcripts to the DNA template are a common characteristic of Arabidopsis chromatin that may have a broad impact on gene expression.
Article
Full-text available
Most BRCA1-associated breast tumours are basal-like yet originate from luminal progenitors. BRCA1 is best known for its functions in double-strand break repair and resolution of DNA replication stress. However, it is unclear whether loss of these ubiquitously important functions fully explains the cell lineage-specific tumorigenesis. In vitro studi...
Article
DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm...
Data
Supplementary Figures, Supplementary Tables, and Supplementary References
Article
Full-text available
Ischemic stroke represents a major, worldwide health burden with increasing incidence. Patients affected by ischemic strokes currently have few clinically approved treatment options available. Most currently approved treatments for ischemic stroke have narrow therapeutic windows, severely limiting the number of patients able to be treated. Mesenchy...
Article
RNA molecules, such as long noncoding RNAs (lncRNAs), have critical roles in regulating gene expression, chromosome architecture, and the modification states of chromatin. Recent developments suggest that RNA also influences gene expression and chromatin patterns through the interaction of nascent transcripts with their DNA template via the formati...
Article
R-loops are three-stranded nucleic acid structures formed upon annealing of an RNA strand to one strand of duplex DNA. We profiled R-loops using a high-resolution, strand-specific methodology in human and mouse cell types. R-loops are prevalent, collectively occupying up to 5% of mammalian genomes. R-loop formation occurs over conserved genic hotsp...
Article
Full-text available
Mesenchymal stem cells (MSC) are known to facilitate healing of ischemic tissue related diseases through proangiogenic secretory proteins. Recent studies further show that MSC derived exosomes function as paracrine effectors of angiogenesis, however, the identity of which components of the exosome proteome responsible for this effect remains elusiv...
Chapter
Epigenetic mechanisms, including DNA methylation and histone modifications, account for a highly sophisticated regulatory system that is fundamental to the regulation of many cellular processes, including gene and microRNA expression, DNA-protein interactions, suppression of transposable element mobility, cellular differentiation, embryogenesis, X-...
Article
Full-text available
GC skew is a measure of the strand asymmetry in the distribution of guanines and cytosines. GC skew favors R-loops, a type of three stranded nucleic acid structures that form upon annealing of an RNA strand to one strand of DNA, creating a persistent RNA:DNA hybrid. Previous studies show that GC skew is prevalent at thousands of human CpG island (C...
Data
Significantly up- and down-regulated genes in Aicardi–Goutières syndrome fibroblasts and their gene ontology analysis. DOI: http://dx.doi.org/10.7554/eLife.08007.015
Data
Primer sequences for real-time reverse-transcription PCR and bisulfite sequencing. DOI: http://dx.doi.org/10.7554/eLife.08007.016
Data
Pearson's correlation between each pair of RNA-seq biological replicates. DOI: http://dx.doi.org/10.7554/eLife.08007.017
Data
Genotype and high-throughput sequencing information for DRIP-seq, MethylC-seq, and RNA-seq. DOI: http://dx.doi.org/10.7554/eLife.08007.014
Article
Full-text available
Expansion of a trinucleotide (CGG) repeat element within the 5' untranslated region (5'UTR) of the human FMR1 gene is responsible for a number of heritable disorders operating through distinct pathogenic mechanisms: gene silencing for fragile X syndrome (>200 CGG) and RNA toxic gain-of-function for FXTAS (∼55-200 CGG). Existing models have focused...
Article
Tudor domain-containing protein 3 (TDRD3) is a major methylarginine effector molecule that reads methyl-histone marks and facilitates gene transcription. However, the underlying mechanism by which TDRD3 functions as a transcriptional coactivator is unknown. We identified topoisomerase IIIB (TOP3B) as a component of the TDRD3 complex. TDRD3 serves a...
Article
Full-text available
DNA methyltransferase 1 (DNMT1) is the enzyme most responsible for epigenetic modification of human DNA and the intended target of approved cancer drugs such as 5-aza-cytidine and 5-aza-2'-deoxycytidine. 5-aza nucleosides have complex mechanisms of action that require incorporation into DNA, and covalent trapping and proteolysis of DNMT isozymes. D...
Article
Full-text available
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are oppositely imprinted autism-spectrum disorders with known genetic bases, but complex epigenetic mechanisms underlie their pathogenesis. The PWS/AS locus on 15q11-q13 is regulated by an imprinting control region that is maternally methylated and silenced. The PWS imprinting control region is...
Article
Full-text available
Inactive DNA methyltransferase (DNMT) 3B splice isoforms are associated with changes in DNA methylation, yet the mechanisms by which they act remain largely unknown. Using biochemical and cell culture assays, we show here that the inactive DNMT3B3 and DNMT3B4 isoforms bind to and regulate the activity of catalytically competent DNMT3A or DNMT3B mol...