Freddy T Nguyen

Freddy T Nguyen
Massachusetts Institute of Technology | MIT · MIT Innovation Initiative

MD, PhD

About

53
Publications
6,851
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,255
Citations
Additional affiliations
July 2019 - present
Mount Sinai Hospital
Position
  • Medical Doctor
March 2019 - June 2019
Massachusetts General Hospital
Position
  • Fellow
January 2019 - present
Massachusetts Institute of Technology
Position
  • PostDoc Position
Education
August 2003 - June 2016
August 2003 - June 2016
University of Illinois at Chicago
Field of study
  • Medicine
August 1998 - May 2002
Rice University
Field of study
  • Mathematics

Publications

Publications (53)
Article
Full-text available
Label-free live cell imaging was performed using a custom-built high-speed confocal Raman microscopy system. For various cell types, cell-intrinsic Raman bands were monitored. The high-resolution temporal Raman images clearly delineated the intracellular distribution of biologically important molecules such as protein, lipid, and DNA. Furthermore,...
Article
Vitamins such as riboflavin and ascorbic acid are frequently utilized in a range of biomedical applications as drug delivery targets, fluidic tracers, and pharmaceutical excipients. Sensing these biochemicals in the human body has the potential to significantly advance medical research and clinical applications. In this work, a nanosensor platform...
Article
Full-text available
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a new human disease with few effective treatments1. Convalescent plasma, donated by persons who have recovered from COVID-19, is the acellular component of blood that contains antibodies, including those that specifically recognize SARS-C...
Article
Full-text available
Background Convalescent plasma (CP) for treatment of SARS‐CoV‐2 has shown preliminary signs of effectiveness in moderate to severely ill patients in reducing mortality1, 2. While studies have demonstrated a low risk of serious adverse events, the comprehensive incidence and nature of the spectrum of transfusion reactions to convalescent plasma is...
Article
Full-text available
Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration’s (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies...
Article
Dynamic measurements of steroid hormones in vivo are critical, but steroid sensing is currently limited by the availability of specific molecular recognition elements due to the chemical similarity of these hormones. In this work, a new, self-templating synthetic approach is applied using corona phase molecular recognition (CoPhMoRe) targeting the...
Article
Full-text available
The COVID-19 virus is a formidable global threat, impacting all aspects of society and exacerbating the existing inequities of our current social systems.1 2 As we battle the virus across multiple fronts, data are critical for understanding this disease and for coordinating an effective global response. Given the current digitisation of so many asp...
Preprint
Full-text available
Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration′s (FDA) guidelines for convalescent plasma recommends target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera fr...
Preprint
Full-text available
New York City has been recognized as the world's epicenter of the novel Coronavirus pandemic. To identify the key inherent factors that are highly correlated to the Increase Rate of COVID-19 new cases in NYC, we propose an unsupervised machine learning framework. Based on the assumption that ZIP code areas with similar demographic, socioeconomic, a...
Article
Full-text available
Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic cancer with limited treatment options. There is an urgent need for tools that monitor therapeutic responses in real-time. Drugs such as gemcitabine (GEM) and irinotecan elicit their therapeutic effect in cancer cells by producing hydrogen peroxide (H2O2). In this study, specific DNA-...
Article
Full-text available
In recent decades, biologists have sought to tag animals with various sensors to study aspects of their behavior otherwise inaccessible from controlled laboratory experiments. Despite this, chemical information, both environmental and physiological, remains challenging to collect despite its tremendous potential to elucidate a wide range of animal...
Article
Full-text available
We describe a label-free approach based on Raman spectroscopy, to study drug-induced apoptosis in vivo. Spectral-shifts at wavenumbers associated with DNA, proteins, lipids, and collagen have been identified on breast...
Article
Full-text available
Magnetic iron-oxide nanoparticles have been developed as contrast agents in magnetic resonance imaging (MRI) and as therapeutic agents in magnetic hyperthermia. They have also recently been demonstrated as contrast and elastography agents in magnetomotive optical coherence tomography and elastography (MM-OCT and MM-OCE, respectively). Protein-shell...
Article
Full-text available
Due to its label-free and non-destructive nature, applications of Raman spectroscopic imaging in monitoring therapeutic responses at the cellular level are growing. We have recently developed a high-speed confocal Raman microscopy system to image living biological specimens with high spatial resolution and sensitivity. In the present study, we have...
Patent
Full-text available
A method of forming an image of tissue. The method includes beginning an invasive procedure on a patient exposing tissue. The method then includes acquiring OCT data from the exposed tissue and converting the OCT data into at least one image. The method also includes ending the invasive procedure after the converting of the data.
Article
Full-text available
Physician-scientists, with in-depth training in both medicine and research, are uniquely poised to address pressing challenges at the forefront of biomedicine. In recent years, a number of organizations have outlined obstacles to maintaining the pipeline of physician-scientists, classifying them as an endangered species. As in-training and early-ca...
Article
Carbon nanotube uptake was measured via high-speed confocal Raman imaging in live cells. Spatial and temporal tracking of two cell-intrinsic and nine nanotube-derived Raman bands was conducted simultaneously in RAW 264.7 macrophages. Movies resolved single (n, m) species, defects, and aggregation states of nanotubes transiently as well as the cell...
Article
Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL Optical coherence tomography (OCT) is a novel technology that has been developed for various clinical applications from ophthalmology to oncology. OCT is analogous to ultrasound but with micron-scale resolution by using light waves instead of sound waves to provide detailed s...
Conference Paper
Full-text available
Magnetomotive microscopy techniques are introduced to investigate cell dynamics and biomechanics. These techniques are based on magnetomotive transducers present in cells and optical coherence imaging techniques. In this study, magnetomotive transducers include magnetic nanoparticles (MNPs) and fluorescently labeled magnetic microspheres, while the...
Article
Full-text available
In this study, protein-shell microspheres filled with a suspension of iron oxide nanoparticles in oil are demonstrated as multimodal contrast agents in magnetic resonance imaging (MRI), magnetomotive optical coherence tomography (MM-OCT), and ultrasound imaging. The development, characterization, and use of multifunctional multimodal microspheres a...
Article
Optical coherence tomography (OCT) is a novel technology that has been developed for various clinical applications ranging from ophthalmology to oncology. OCT is analogous to ultrasound technology but with micron by using light waves instead of sound waves providing detailed morphological or structural information at the cellular level about the ti...
Article
Full-text available
Fourier transform light scattering (FTLS) has been recently developed as a novel, ultrasensitive method for studying light scattering from inhomogeneous and dynamic structures. FTLS relies on quantifying the optical phase and amplitude associated with a coherent image field and propagating it numerically to the scattering plane. In this paper, we r...
Article
Full-text available
During breast-conserving surgeries, axillary lymph nodes draining from the primary tumor site are removed for disease staging. Although a high number of lymph nodes are often resected during sentinel and lymph-node dissections, only a relatively small percentage of nodes are found to be metastatic, a fact that must be weighed against potential comp...
Article
Full-text available
Needle biopsy of small or nonpalpable breast lesions has a high nondiagnostic sampling rate even when needle position is guided by stereotaxis or ultrasound. We assess the feasibility of using a near-infrared fiber optic probe and computer-aided detection for the microscopic guidance of needle breast biopsy procedures. Specimens from nine consented...
Article
Full-text available
We employ Fourier-transform light scattering, a technique recently developed in our laboratory, to study the scattering properties of rat organ tissues. Using the knowledge of the complex field associated with high-resolution microscope images of tissue slices, we extracted the scattering mean-free path l(s) and anisotropy factor g, which character...
Article
CTRC-AACR San Antonio Breast Cancer Symposium: 2008 Abstracts Abstract #802 Background: The decrease in the number of breast cancer deaths has largely been attributed to increased awareness, earlier detection, and improved treatment options. However, as the number of breast-conserving surgeries rose over the years, the need for negative margins...
Article
Full-text available
Fourier transform light scattering (FTLS) is a novel experimental approach that combines optical microscopy, holography, and light scattering for studying inhomogeneous and dynamic media. In FTLS the optical phase and amplitude of a coherent image field are quantified and propagated numerically to the scattering plane. Because it detects all the sc...
Article
Breast cancer continues to be one of the most widely diagnosed forms of cancer in women and the second leading type of cancer deaths for women. The metastatic spread and staging of breast cancer is typically evaluated through the nodal assessment of the regional lymphatic system, and often this is performed during the surgical resection of the tumo...
Article
Full-text available
The American Society for Clinical Investigation (ASCI) was started a century ago to foster and to address the needs of the younger physician-scientists. A hundred years later, ASCI remains one of the premier organizations for physician-scientists and one of most well-respected organizations in the medical community. I have had the opportunity and p...
Article
Full-text available
Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been developed over the last 15 years. More recently, OCT has been used for the intraoperative imaging of tumor margins in breast cancer and axillary lymph nodes providing a real time in-vivo assessment of the tissue morphology. Traditional OCT images are limited...
Conference Paper
Refractive index measurements offer high contrast between normal fatty tissue and diagnostically significant structures. We have developed a needle-based device capable of measuring internal tissue properties. We present preliminary clinical data from human specimens.
Article
Full-text available
Since its introduction, optical coherence tomography (OCT) technology has advanced from the laboratory bench to the clinic and back again. Arising from the fields of low coherence interferometry and optical time- and frequency-domain reflectometry, OCT was initially demonstrated for retinal imaging and followed a unique path to commercialization fo...
Article
10508 Background: Advances in high-resolution, real-time, optical imaging have enabled optical coherence tomography (OCT) for non-excisional optical biopsies of breast tissue. OCT is the optical analogue to ultrasound imaging, with resolution approaching that of histology. In breast tissue, regions of tumor, tumor margins, abnormal ducts, and foci...
Article
Magnetic iron oxide nanoparticles and near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWNT) form heterostructured complexes that can be utilized as multimodal bioimaging agents. Fe catalyst-grown SWNT were individually dispersed in aqueous solution via encapsulation by oligonucleotides with the sequence d(GT)15, and enriched using a...
Article
Needle-based devices, which are in wide clinical use for needle biopsy procedures, may be augmented by suitable optical techniques for the localization and diagnosis of diseased tissue. Tissue refractive index is one optical contrast mechanism with diagnostic potential. In the case of mammary tissue, for example, recent research indicates that refr...
Article
Breast cancer continues to be one of the most widely diagnosed forms of cancer amongst women and the second leading type of cancer deaths amongst women. The recurrence rate of breast cancer is highly dependent on several factors including the complete removal of the primary tumor and the presence of cancer cells in involved lymph nodes. The metasta...
Article
Full-text available
We present a novel needle-based device for the measurement of refractive index and scattering using low-coherence interferometry. Coupled to the sample arm of an optical coherence tomography system, the device detects the scattering response of, and optical path length through, a sample residing in a fixed-width channel. We report use of the device...
Article
Full-text available
We report the first demonstration of OCT for the three-dimensional visualization of lymph node morphology and microarchitecture from human and carcinogen-induced rat mammary tumor specimens.
Article
Full-text available
Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While...
Article
Full-text available
We present an approach called pulsed multiline excitation (PME) for measurements of multicomponent, fluorescence species and demonstrate its application in capillary electrophoresis for DNA sequencing. To fully demonstrate the advantages of PME, a fluorescent dye set has been developed whose absorption maxima span virtually the entire visible spect...
Article
Full-text available
We have previously proposed molecular circuits designed from polyaniline polymer strands, polyacetylene polymer strands and charge transfer salts acting as transistors. Due to unique properties that are demonstrated in this manuscript, we propose the use of carbon single wall nanotubes and transition metal endohedrally doped single wall carbon nano...
Article
Full-text available
Reflectance and fluorescence spectroscopies have shown great promise for early detection of epithelial dysplasia. We have developed a clinical reflectance spectrofluorimeter for multimodal spectroscopic diagnosis of epithelial dysplasia. This clinical instrument, the FastEEM, collects white light reflectance and fluorescence excitation-emission mat...