Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1998 Printed in Austria

Hydroacridines XVIII [1]. Synthesis and NMR Spectroscopic Investigation of $(4a\alpha,8a\beta,9a\alpha,10a\beta)$ -Tetradecahydroacridine and Some of its Derivatives

Francisc Potmischil^{1,*}, **Friedrich W. Vierhapper**², and **Hermann Kalchhauser**²

¹ Department of Organic Chemistry, University of Bucharest, RO-70031 Bucharest, Romania

² Institute of Organic Chemistry, University of Vienna, A-1090 Vienna, Austria

Summary. The reductive amination of (R^*, R^*) -2,2'-methylene-*bis*-cyclohexanone (1) with methylamine and potassium borohydride affords a mixture of $(4a\alpha, 8a\beta, 9a\alpha, 10a\beta)$ - and $(4a\alpha, 8a\alpha, 9a\beta, 10a\alpha)$ -tetradecahydro-10-methylacridine (2, 3) in a ratio of approximately 1.3:1 in 57% overall yield. By N-demethylation of 2, via the N-nitrosamine 4 the first synthesis of $(4a\alpha, 8a\beta, 9a\alpha, 10a\beta)$ -tetradecahydroacridine (5) could be performed. The relative configurations and conformations of compounds 2–5 as well as the barrier of conformational inversion of 5 $(\Delta G_{300}^{\#} = 55.5 \pm 0.4 \text{ kJ} \cdot \text{mol}^{-1})$ were determined by NMR spectroscopy.

Keywords. Acridines, tetradecahydro; ¹³C NMR; Conformational analysis; N-Nitrosamines.

Hydroacridine, 18. Mitt. [1]. Synthese und NMR-spektroskopische Untersuchung von $(4a\alpha, 8a\beta, 9a\alpha, 10a\beta)$ -Tetrahydroacridin und einigen seiner Derivate

Zusammenfassung. Die reduktive Aminierung von (R^*, R^*) -2,2'-Methylen-*bis*-cyclohexanon (1) mit Methylamin und Kaliumborhydrid ergibt in einer Gesamtausbeute von 57% ein Gemisch aus $(4a\alpha, 8a\beta, 9a\alpha, 10a\beta)$ - und $(4a\alpha, 8a\alpha, 9a\beta, 10a\alpha)$ -Tetradecahydro-10-methylacridin (2, 3) im Verhältnis von *ca.* 1.3:1. Durch N-Demethylierung von 2 gelang über das Nitrosamin 4 die erste Synthese von $(4a\alpha, 8a\beta, 9a\alpha, 10a\beta)$ -Tetradecahydroacridin (5). Die relativen Konfigurationen und die Konformationen der Verbindungen 2–5 sowie die Aktivierungsenergie der Konformationsumwandlung von 5 $(\Delta G_{300}^{\#} = 55.5 \pm 0.4 \text{ kJ} \cdot \text{mol}^{-1})$ wurden NMR-spektroskopisch bestimmt.

Introduction

The reductive amination of (R^*, R^*) -2,2'-methylene-*bis*-cyclohexanone (1) with MeNH₂ and KBH₄ has been reported to yield an N-methylperhydroacridine by *Vysotskii* [2]; its steric structure could not be specified by the author. As by-products, several stereoisomeric 2,2'-methylene-*bis*-cyclohexanols have been reported.

^{*} Corresponding author

Scheme 1

By repetition of the procedure of *Vysotskii* we were able to demonstrate that the described reaction yields a mixture of two stereoisomeric N-methylperhydroacridines (Scheme 1) which could be identified as $(4a\alpha,8a\beta,9a\alpha,10a\beta)$ -tetrahydro-10-methylacridine (2; the compound referred to in Ref. [2]) and $(4a\alpha,8a\alpha,9a\beta,10a\alpha)$ -tetrahydro-10-methylacridine (3), respectively. As deduced from ¹³C NMR spectroscopy, 2 was also present in the product mixture resulting from catalytic hydroamination of 1 with MeNH₂ and H₂/Ni-Ru [3]; it could not be isolated in this case, though.

We have now been able to isolate and characterize pure **2**. Our data support the assumption that, prior to *Vysotskii*'s work [2], compound **2** has occured at least twice in the literature as a component of reaction mixtures and without distinct proof of its structure. In the first case, mild hydrogenation of *cis*-1,2,3,4,4a,9,9a,10-octahydro-10-methylacridine at platinum afforded presumably **2** (which was referred to as N-methyl- δ -perhydroacridine by the authors) in a mixture with its *cis-cisoid-trans* isomer [4] from which only a small amount of its hydroiodide could be isolated whose melting point (224–226°C [4]) agrees fairly well with that of the authentic hydroiodide prepared in the present work. The second case deals with reductive amination of **1** with MeNH₂ and HCOOH [5, 6] which has been described to yield a mixture of four stereoisomeric N-methylperhydroacridines, three of them being already known to the literature [5–7]. The fourth one, not isolated, was characterized by the proton chemical shift of its N-CH₃ group in the ¹H NMR spectrum of the product mixture only [5, 6] which corresponds to that of the authentic compound **2**.

Scheme 2

In addition to the isolation and characterization of **2**, we were able to obtain $(4a\alpha, 8a\beta, 9a\alpha, 10a\beta)$ -tetradecahydroacridine (**5**) by N-demethylation of **2** via $(4a\alpha, 8a\beta, 9a\alpha, 10a\beta)$ -tetradecahydro-10-nitrosoacridine (**4**, Scheme 2). To our knowledge, this is the first synthesis of compound **5** reported so far.

Results and Discussion

The reductive amination of **1** with MeNH₂ and KBH₄ was performed according to Ref. [2], however, using a modified workup procedure (see Experimental). After removal of the 2,2'-methylene-*bis*-cyclohexanols (referred to as "neutral products" in Scheme 1), the ¹H NMR spectrum of the crude aminic fraction exhibited two sharp N-CH₃ resonances (CCl₄; $\delta = 2.16$ and 2.07 ppm, respectively) demonstrating the presence of two isomeric N-methylperhydroacridines. After separation, the isomer with the N-CH₃ peak at 2.16 ppm turned out to be the compound described by *Vysotskii*; based on its ¹³C NMR spectrum it was assigned structure **2**. Due to its conformational mobility originating from the two *cis* junctions, only two sharp signals are present in the room temperature ¹³C NMR spectrum of **2** (N-CH₃: 39.42 ppm, C-9: 30.86 ppm; Ref. [3]: 39.78 and 31.08 ppm); the remaining signals suffer from considerable line broadening. The second isomer whose ¹H NMR spectrum has been reported repeatedly in the literature (δ (N-CH₃) in CCl₄: 2.07 [5, 6], 2.10 [7] ppm) was identified as compound **3** by comparison of its ¹³C NMR spectrum with that of an authentic sample [7].

During the reductive amination applied in this investigation, the configurations at the tertiary carbon atoms in α positions to the carbonyl groups remain unaffected. Therefore, the configurations of the resulting amines are related to those of the starting diketone in a defined way. Obviously, conformer **1a** leads to amine **2**, and conformer **1b** gives rise to amine **3** (Scheme 1). Thus, only transoid perhydroacridines are to be expected from diketone **1**. Besides **2** and **3**, the

formation of a *trans-transoid-trans*-N-methylperhydroacridine (so far unknown) cannot be excluded. The formation of this compound is, however, defavoured by the fact that its piperidine ring should have a twisted boat form (like the central ring in *trans-transoid-trans*-perhydroanthracene [8]). Based on the present experience with **1**, it might be predicted that the same reaction applied to (R^*,S^*) -2,2'-methylene-*bis*-cyclohexanone would result in a mixture of *trans-cisoid-trans*, *cis-cisoid-trans*, and, possibly, *cis-cisoid-cis* (sterically less favoured) N-methylperhydroacridines.

The possibility to isolate and purify compound 2 prompted us to strive for its parent heterocycle 5 for which no synthesis has been reported so far. It could finally be obtained in very poor overall yield by demethylation of 2 *via* N-nitrosamine 4 (Scheme 2), a strategy already successfully applied to other stereoisomers of N-methylperhydroacridine [5–7]. To reduce losses, no purification of intermediate 4 was carried out prior to denitrosation. For characterization purposes, a pure sample of 4 was synthesized by nitrosation of 5. The structures of both 4 and 5 were confirmed by their ¹H and ¹³C NMR spectra.

^{13}C NMR spectroscopy of compounds 4 and 5

The ¹³C NMR spectrum of compound **5** has been recorded both at room and low temperatures. At room temperature, only C-9 – being the sole carbon atom that, owing to symmetry, preserves its chemical shift during the fast conformational inversion process of **5** (Scheme 2) – gives rise to a sharp resonance ($\delta = 30.48$ ppm). Lowering the temperature causes further broadening of all signals except that of C-9, and at 300 K coalescence is observed. Further temperature decrease results in 13 sharp peaks. The complete assignment, achieved from a 2D INADEQUATE spectrum at 250 K, has been published previously [9]; to facilitate comparison, the shift values are included in Table 1. From the low temperature ¹³C NMR data, a free energy of activation of $\Delta G_{300}^{\#} = 55.5 \pm 0.4 \text{ kJ} \cdot \text{mol}^{-1}$ and a rate constant of $k_{300} \approx 1370 \text{ s}^{-1}$ can be obtained for the chair-chair conformational interchange of **5**. For the carbocyclic analogue of **5** (*cis-transoid-cis*-perhydroanthrancene) in CHCl₃, a value of $\Delta G_{318}^{\#} = 60.5 \pm 0.4 \text{ kJ} \cdot \text{mol}^{-1}$ has been reported [10].

The ¹³C NMR spectrum of N-nitrosamine **4** exhibits 13 sharp signals, indicating conformational homogeneity even at room temperature. This fact can be rationalized taking into account two effects: (*i*) a drastic steric interaction between the N-nitroso oxygen atom and the C-4/C-5 methylene groups in the case of an equatorially oriented linkage with respect to the piperidine ring (termed "A^(1,3) strain" by *Johnson* and *Malhotra* who have for the first time analyzed its conformational implications with respect to cyclohexane derivatives containing exocyclic double bonds [11]), and (*ii*) the high rotational energy barrier of the N-N bond in aliphatic N-nitrosamines ($\Delta G^{\#} \approx 96 \text{ kJ} \cdot \text{mol}^{-1}$, [12] (temperature not given)) which is almost twice as high than that determined above for the ring inversion of **5**. Thus, for the lowest energy conformation of **4** an all-chair conformation with the N-O bond oriented *anti* relative to C-10a (and, at the same time, to the equatorial C-5 methylene group) and *syn* to C-4a is to be expected (cf. Scheme 2). In this arrangement, the axial C-4 methylene group does not interfere with the nitroso oxygen atom. The conformation deduced above is strongly

Hydroacridines

same superscript may be interenanged			
	4	5	$\Delta\delta$
C-1	29.47^{1}	30.87	
C-2	19.67^2	20.07	
C-3	24.91^3	25.89	
C-4	23.00	25.54	-2.54
C-4a	49.72	55.08	-5.36
C-5	27.80	32.06	-4.26
C-6	20.42^{2}	20.02	
C-7	25.88^{3}	26.29	
C-8	25.61^3	25.12	
C-8a	36.91	35.73	1.18
C-9	29.98^{1}	30.06	
C-9a	27.83	29.08	-1.25
C-10a	55.63	46.21	9.42

Table 1. ¹³C chemical shifts (CDCl₃; δ in ppm from internal *TMS*) and selected shift differences (cf. Text; $\Delta \delta = \delta(4) - \delta(5)$) of compounds 4 and 5; data for compound 5 are taken from Ref. [9]; values with the same superscript may be interchanged

supported by a comparison of the ¹³C NMR chemical shifts of **4** (Table 1) with those given in Ref. [13] for the *syn* and *anti* conformers of N-nitroso-*cis*-decahydroquinoline (conformers **B–s** and **B–a**, compound **2**) and N-nitroso- 2β -methyl-*cis*-decahydroquinoline (conformers **B–s** and **A**, compound **6**).

Most relevant for the conformation of **4** are the ¹³C NMR signals of the four tertiary carbons C-4a, C-8a, C-9a, and C-10a which were identified by means of an APT spectrum. A discrimination of δ (C-4a) from δ (C-10a) as well as of δ (C-8a) from δ (C-9a) may well be achieved by a comparison of the chemical shift differences of these carbon atoms when going from amine **5** to N-nitrosamine **4** (cf. Table 1) with the appropriate differences in the system *cis*-decahydroquinoline [14]/*syn*- and *anti*-N-nitroso-*cis*-decahydroquinoline [13]. In each of these N-nitrosamine conformers, the α -carbons *syn* to N-O experience an upfield shift of more than 4 ppm, whereas the corresponding *anti* α -carbons are deshielded by about 7 ppm with respect to the parent amine. This striking contrast in the behaviour of the α -*syn* and α -*anti* carbon atoms leaves no doubt that the signal at 49.72 ppm has to be assigned to C-4a, whereas the resonance at 55.63 ppm must be ascribed to C-10a.

The same effect, although to a much lesser extent, is exerted on the *syn* and *anti* carbon atoms in the β positions of the piperidine ring of decahydroquinolines by N-nitrosation. Therefore, the signals at 36.91 and 27.83 ppm could be unambiguously assigned to C-8a and C-9a, respectively. In addition, the resonances of C-4 and C-5 were assigned by direct comparison with the ¹³C NMR shifts of appropriate conformers of N-nitroso-*cis*-decahydroquinoline [13].

Experimental

General

Melting points were determined using a Boetius hot-plate microscope and are uncorrected. ¹H NMR spectra in CCl₄ were aquired with a Varian EM 360/390 NMR spectrometer (60 MHz, CW mode); all other NMR spectra were measured on a Bruker AM 400 WB NMR spectrometer (¹H: 400.13 MHz, ¹³C: 100.62 MHz) equipped with an Aspect 3000 computer as 0.4-1 M CDCl₃ solutions in 5 mm tubes. All NMR spectra are referenced to internal *TMS*. ¹³C NMR spectra were recorded in the APT mode (attached proton test, [15, 16]) employing a relaxation delay of 3 s. Data processing was performed on a work station (Bruker X 32) running the UXNMR software.

Syntheses

 (R^*,R^*) -2,2'-Methylene-bis-cyclohexanone (1, m.p.: 58°C) was synthesized, separated, and purified as described earlier [17].

$(4\alpha\alpha, 8\alpha\beta, 9\alpha\alpha, 10\alpha\beta)$ -Tetradecahydro-10-methylacridine (**2**) and $(4\alpha\alpha, 8\alpha\alpha, 9\alpha\beta, 10\alpha\alpha)$ -Tetradecahydro-10-methylacridine (**3**)

10.4 g (50 mmol) of **1** were subjected to reductive amination with 36 ml of 30% aqueous MeNH₂ and 5.4 g (100 mmol) of KBH₄ according to Ref. [2].

The reaction mixture was then acidified with concentrated HCl (pH=2). The precipitated inorganic chlorides were removed by filtration and washed with MeOH; the volatile components of the combined filtrates were removed on a steam bath applying vacuum towards the end of the evaporation procedure. To the residue, 200 ml H₂O were added, and the mixture was shaken on a steam bath for 15 min. Then, the aqueous extract was separated from a viscous, water insoluble phase (termed "neutral products"; cf. Scheme 1). The viscous product was washed with additional 40 ml of H_2O , and the combined aqueous solutions were alkalized with 40% aqueous NaOH to pH 12. The resulting oily organic layer which crystallized partly upon cooling was extracted twice with diethyl ether (50+30 ml); the etheral solution was dried over K_2CO_3 , and an aliquot was taken for ¹H NMR spectroscopy. Two sharp singlets (N-CH₃) at 2.16 and 2.07 ppm, respectively (CCl₄, internal TMS) were observed in the spectrum. After removal of the diethyl ether, the remainder of the etheral solution afforded 5.9 g of an oily residue (57% overall yield of N-methylperhydroacridines) which crystallized in part. After filtration, 2.7 g (26%) of crude solid and 3.2 g of oil were obtained. Trituration with acetone resulted in a melting point of $58-64^{\circ}$ C for the crude solid, and its ¹³C NMR spectrum was identical with that of 2 as reported previously [3]. In the 13 C NMR spectrum of the oily fraction, the two characteristic signals of 2 (C-9 and N-CH₃) were present in addition to the fourteen signals of an authentic sample of 3 [7]. From the relative intensities of the N-CH₃ signals (39.41 ppm for 2, 36.45 ppm for 3; CDCl₃), an approximate product distribution of 2:3 = 20:80 could be estimated. Thus, the total yield of 2 amounts to about 32% and that of 3 to about 25%.

Compound **2** was purified *via* its hydroiodide. Crude **2** obtained as described above (m.p.: $58-64^{\circ}$ C) was dissolved in warm acetone. The solution was acidified with 67% HI until a *pH* value of 3 was reached, and formation of hydroiodide crystals could soon be observed. After 24 h the hydroiodide was filtered, washed with acetone, and recrystallized from EtOH. The purified hydroiodide was mixed with an excess of 40% aqueous NaOH, and the mixture was subjected to steam distillation. Towards the end of the distillation, cooling had to be interrupted to allow melting of **2** which had solidified in the condenser.

M.p.: 65–66°C (Ref. [2]: m.p.: 63–64°C); ¹H NMR (298 K, CDCl₃): δ = 2.25 ppm (s, N-CH₃), all other signals broadened; ¹³C NMR (298 K, CDCl₃): δ = 39.42 (N-CH₃), 30.86 (C-9) ppm, all other signals broadened; picrate: m.p.: 194–196°C (MeOH; Ref. [2]: m.p.: 191–192°C); hydroiodide: m.p.:

Hydroacridines

227–229°C (EtOH); methiodide (prepared at room temperature in acetone): m.p.: 278–279°C (not recrystallized).

Compound **3** was not isolated in pure form from the oily fraction. ¹³C NMR (298 K, CDCl₃): $\delta = 70.33$ (C-4a), 63.61 (C-10a), 39.45, 37.72, 37.06, 36.45 (N-CH₃), 33.79, 30.92, 30.67, 27.46, 27.01, 26.15, 25.83, 19.79 ppm; a complete signal assignment will be presented in one of the forthcoming papers of this series.

The neutral products were not worked up further.

$(4a\alpha, 8a\beta, 9a\alpha, 10a\beta)$ -Tetrahydroacridine (5)

To a solution of 5.6 g (27 mmol) of **2** in 70 ml AcOH and 120 ml H₂O, a solution of 40 g (580 mmol) of NaNO₂ in 50 ml H₂O was added dropwise during 0.5 h on the steam bath. After the addition was complete, heating was continued for one more hour. Subsequently, another batch of 70 ml AcOH and 120 ml H₂O was added, and a solution of 80 g (1.6 mol) NaNO₂ in 100 ml H₂O was dropped to the mixture over 0.5 h, followed by heating for 1 h. After cooling, the oily product formed was extracted three times with 250 ml diethyl ether each. The etheral extracts were washed with 5×150 ml 10% aqueous NaOH and dried over Na₂SO₄. The ether was removed, and the residue (crude **4**) was refluxed for 2 h with 50 ml of 36% HCl. The excess of HCl was then removed under reduced pressure, and the residue was rendered strongly alkaline by addition of 40% aqueous NaOH. Steam distillation afforded pure **5** which crystallized completely in the condenser. It was recovered by dissolution in a small amount of diethyl ether and subsequent evaporation of the solvent.

Yield: 0.35 g (6.7%); long colourless prisms; m.p.: 116–117°C; ¹H NMR (250 K, CDCl₃): $\delta = 3.03$ (m, $\nu_{1/2} = 5.2$ Hz, 1H, H-10a), 2.88 (dt, J = 12.4, 4.4 Hz, 1H, H-4a) ppm; C₁₃H₂₃N (193.3); calcd.: N 7.24; found: N 7.11; picrate (prepared in MeOH, crystallized after complete evaporation of the solvent): m.p.: 163–165°C.

$(4a\alpha, 8a\beta, 9a\alpha, 10a\beta)$ -Tetradecahydro-10-nitrosoacridine (4)

To a solution of 145 mg (0.75 mmol) of **5** in 1 ml AcOH and 2 ml H₂O, a solution of 150 mg (2 mmol) of NaNO₂ in 2 ml H₂O was added dropwise on the steam bath, and heating was continued for 10 min. A yellow oil was formed which quickly crystallized upon cooling, affording an almost white solid. The latter was separated by filtration, washed with H₂O, dissolved in a minimal amount of acetone at room temperature, and reprecipitated by addition of an excess of a diluted aqueous KHCO₃ solution (pH = 8.5). After filtration and washing to neutral pH with H₂O, pure **4** was obtained.

Yield: 158 mg (94%); m.p.: 100°C; ¹H NMR (298 K, CDCl₃): $\delta = 5.10$ (dt, J = 12.5, 4.4 Hz, 1H, H-4a), 4.07 (m, $\nu_{1/2} = 8.4$ Hz, 1H, H-10a) ppm; C₁₃H₂₂N₂O (222.3); calcd.: N 12.60; found: N 12.53.

Acknowledgements

Financial support of the NMR measurements by the *Fonds zur Förderung der wissenschaftlichen Forschung in Österreich* (Project P 6537 C) is gratefully acknowledged.

References

- [1] For part 17, see Potmischil F, Herzog H, Buddrus J (1998) Magn Reson Chem 36 (in press)
- [2] Vysotskii VI (1970) Khim Geterosikl Soedin 1970: 1236
- [3] Kriven'ko AP, Nikolaeva TG, Yudovich LM, Komyagin NT, Yanovskii AI, Struchkov YT, Kharchenko VG (1987) Khim Geterosikl Soedin 1987: 1645
- [4] Masamune T, Ohno M, Takemura K, Ohuchi S (1968) Bull Chem Soc Japan 41: 2558

- [5] Barbulescu N, Potmischil F (1969) Tetrahedron Lett 60: 5275
- [6] Barbulescu N, Potmischil F (1970) Rev Roum Chim 15: 1601
- [7] Barbulescu N, Potmischil F (1970) Liebigs Ann Chem 735: 132
- [8] Johnson WS (1953) J Am Chem Soc 75: 1498
- [9] Potmischil F, Kalchhauser H (1994) Magn Reson Chem 32: 563
- [10] Vanhee P, De Pessemier F, Anteunis M, Tavernier D (1979) Rec Trav Chim Pays-Bas **98**: 294 and references cited therein
- [11] Johnson F, Malhotra SK (1965) J Am Chem Soc 87: 5492; Malhotra SK, Johnson F (1965) J Am Chem Soc 87: 5493
- [12] Cerioni G, Giumanini AG, Verardo G, Dahn H (1994) Magn Reson Chem 32: 46 and references cited therein
- [13] Vierhapper FW (1980) Monatsh Chem 111: 551
- [14] Vierhapper FW, Eliel EL (1977) J Org Chem 42: 51
- [15] Brown DW, Nakashima TT, Rabenstein DL (1981) J Magn Reson 45: 302
- [16] Pratt SL, Shoolery JN (1982) J Magn Reson 46: 535
- [17] Barbulescu N, Potmischil F (1969) Rev Roum Chim 14: 1427

Received December 12, 1997. Accepted December 22, 1997