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ABSTRACT

This paper presents a new dataset combining 3 modalities
(EEG, facial, and audio) during imagined and vocalized
phonemic and single-word prompts. We pre-process the
EEG data, compute features for all 3 modalities, and per-
form binary classification of phonological categories using a
combination of these modalities. For example, a deep-belief
network obtains accuracies over 90% on identifying conso-
nants, which is significantly more accurate than two baseline
support vector machines. We also classify between the differ-
ent states (resting, stimuli, active thinking) of the recording,
achieving accuracies of 95%. These data may be used to learn
multimodal relationships, and to develop silent-speech and
brain-computer interfaces.

Index Terms— Phonological categories, electroencephalog-
raphy, speech articulation, deep-belief networks

1. INTRODUCTION

Brain-computer interfaces (BCIs) often involve imagining
gross motor movements to move a pointer on-screen. How-
ever, some research has attempted to access language centres
directly. This has involved using ECoG [1, 2] and neu-
rotrophic electrodes beneath the skull [3] to recreate words
or auditory spectra [4] directly. While invasive methods have
high signal-to-noise ratios, they are only used in severe cases,
due to the complex nature of the surgery. We are interested in
discovering solutions that can be applied more generally.

Suppes et al. [5] performed whole-word recognition using
electroencephalographic (EEG) and MEG data, where partic-
ipants either silently pronounced words or thought about their
meaning. Porbadnigk et al. [6] used an HMM to classify
between EEG signals associated with the imagined speech
of five words with limited accuracy. The order in which the
words were presented significantly affected the results, which
were above chance for only one of four modes. Previous
attempts to classify EEG signals associated with the imag-
ined pronunciation of phonemes often focussed on vowels
[7, 8, 9, 10], building on work by Fujimaki et al. [11], who
identified event-related potentials during the imagined pro-
nunciation of /a/. While relevant, these studies did not relate

EEG signals to either articulation or acoustics during actual
speech production.

2. DATA

2.1. Data Collection

Four female and eight male participants (mean age = 27.4,
σ = 5, range = 14) were recruited from the University of
Toronto campus. All participants were right-handed, had at
least some post-secondary education, had no visual, hearing,
or motor impairments, and had no history of neurological con-
ditions or drug abuse. Furthermore, 10 of the 12 participants
identified North American English as their first language and
the remaining 2 spoke North American English at a fluent
level, having learned the language at a mean age of 6.

Each study was conducted in an office environment at the
Toronto Rehabilitation Institute. Each participant was seated
in a chair before a computer monitor. A Microsoft Kinect
(v.1.8) camera was placed next to the screen to record facial
information and the participant’s speech. For each frame of
video, the Kinect extracted six ‘animation units’ (AUs), all on
R[−1..1]: upper lip raiser, jaw lowerer, (lateral) lip stretcher,
brow lowerer, lip corner depressor, outer brow raiser. A re-
search assistant placed an appropriately-sized EEG cap on
the participant’s head and injected a small amount of gel to
improve electrical conductance. We used a 64-channel Neu-
roscan Quick-cap, where the electrode placement follows the
10-20 system [12]. To control for artifacts arising from eye-
movement, we used 4 electrodes placed above and below the
left eye and to the lateral side of each eye. All EEG data were
recorded using the SynAmps RT amplifier and sampled at 1
kHz. Impedance levels were usually maintained below 10 kΩ.

After EEG setup, the participant was instructed to look at
the computer monitor and to move as little as possible. Over
the course of 30 to 40 minutes, individual prompts appeared
on the screen one-at-a-time. We used 7 phonemic/syllabic
prompts (/iy/, /uw/, /piy/, /tiy/, /diy/, /m/, /n/) and
4 words derived from Kent’s list of phonetically-similar pairs
(i.e., pat, pot, knew, and gnaw) [13]. These prompts were
chosen to maintain a relatively even number of nasals, plo-
sives, and vowels, as well as voiced and unvoiced phonemes.



Each trial consisted of 4 successive states:

1. A 5-second rest state, where the participant was in-
structed to relax and clear their mind of any thoughts.

2. A stimulus state, where the prompt text would appear
on the screen and its associated auditory utterance was
played over the computer speakers. This was followed
by a 2-second period in which the participant moved
their articulators into position to begin pronouncing the
prompt.

3. A 5-second imagined speech state, in which the partic-
ipant imagined speaking the prompt without moving.

4. A speaking state, in which the participant spoke the
prompt aloud. The Kinect sensor recorded both the au-
dio and facial features during this stage.

Naturally, given the impact of movement on EEG, we expect
excessive noise in the speaking state EEG. Once the partic-
ipant has finished speaking, one of the investigators would
proceed to the next trial. Each prompt was presented 12 times
for a total of 132 trials. The phonemic/syllabic prompts were
first presented followed by the 4 ‘Kent’ words, and the trials
were randomly permuted within each of those two sections.
After every 40 trials, the participant was given the opportu-
nity to rest. Data from 4 of the 12 participants were discarded
due to unattached ground wires and two participants falling
asleep during recording. Ethical approval was obtained from
both the University of Toronto and the University Health Net-
work, of which Toronto Rehab is a member.

2.2. Pre-processing

EEG was pre-processed with EEGLAB [14], including re-
moval of ocular artifacts using blind source separation [15].
The data were band-pass filtered between 1 Hz and 50 Hz,
and the mean values were subtracted from each channel. We
also applied a small Laplacian filter to the data, using the
neighbourhood of adjacent channels. The EEG data were
segmented into different trials, and each trial was further seg-
mented into the 4 states described above. We discarded 16
trials that did not contain facial features from the Kinect.

2.3. Feature extraction and selection

For each EEG segment and each non-ocular channel, we win-
dow the data to approximately 10% of the segment, with a
50% overlap between consecutive windows. We then com-
pute various features over each window, including the mean,
median, standard deviation, variance, maximum, minimum,
maximum±minimum, sum, spectral entropy, energy, and:
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Here, xi is a sample of the window, x̄ is the mean, and n is
the number of samples in the window. We also compute the
mean, maximum, minimum, and the sum and difference of
the maximum and minimum for the absolute value of the win-
dowed signal. Furthermore, we compute the first and second
derivates of the above features. This results in 1197 features
for each channel of the segment, for a total of 65,835 features
across the 62 channels.

For each audio recording, we measure the same set of fea-
tures as above. For the facial data, we measure a subset of the
above features for each AU, including the mean, maximum,
minimum, median, skewness, and kurtosis. We further com-
pute the first and second derivatives for each AU and measure
the same set of features.

Due to the high dimensionality of the feature space, par-
ticularly for the EEG features, we rank features by their Pear-
son correlations with the given classes for each task indepen-
dently and we select the N features with the highest corre-
lation coefficients, where N ∈ [5..100]. Given the multiple
tasks and our cross-validation scheme (see section 3), we per-
form feature selection on every training set independently.

As an aside, we also compute the Pearson correlations,
r, between all 1197 features in the audio and in each of the
62 EEG channels over all imagined speech segments in our
dataset. This provides an estimate of how well each EEG
channel predicts the resulting audio. The top 10 highest abso-
lute correlations (which all turned out to be moderately pos-
itive) are shown in Table 1. Interestingly, these features are
dominated by central locations, with only two temporal lo-
cations (one left, T7, and one right, FT8), generally around
the auditory cortex (CP3, CP5), superior to the lateral fissure.
That these features are also dominated laterally on the left
(C5, CP3, P3, T7, CP5, C3, CP1) appears to confirm the in-
volvement of these regions during the planning of speech ar-
ticulation [16], which is being investigated.

Sensor FC6 FT8 C5 CP3 P3
Mean r 0.3781 0.3758 0.3728 0.3720 0.3696
Sensor T7 CP5 C3 CP1 C4

Mean r 0.3686 0.3685 0.3659 0.3626 0.3623

Table 1. Top 10 highest mean correlations, r, between EEG
channels and resulting acoustics.

3. EXPERIMENTS

Our experiments use a subject-independent approach with
leave-one-out cross-validation in which each subject’s data
are tested in turn using models trained with all other data
combined. The results therefore may provide more generaliz-
able conclusions than subject-specific models which depend
on individual, non-transferable models. Our experiments
use two types of classifier: a deep-belief network (DBN)



and support vector machine (SVM) baselines. Two variants
of the latter are tested, with different kernels; SVM-quad
uses a quadratic kernel (Kquad(xi,xj) = (x>i xj + C)2)
and SVM-rbf uses the radial basis function (Krbf (xi,xj) =
exp(−γ‖xi − xj‖2), γ > 0), given input vectors xi and xj

and optimized parameters C and γ. For both SVMs, we allow
90% of data to violate the Karush-Kuhn-Tucker conditions, if
necessary.

In the DBN, weights wij between nodes i and j, in differ-
ent layers, are adjusted at iteration t+1 with gradient descent
given weights at time t according to

∆wij(t+ 1) = wij(t) + η
δ log(P (x))

δwij
, (1)

for empirical learning rate η, where P (x) =
∑
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Z
is the alternate formulation of the probability of x andE(v, h)
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where xi is the activation at the ith of X visible units, hj
is the activation at the jth of H hidden units, and bi and aj
are their bias terms. After unsupervised training, we set a
linear mapping of the output and ‘fine tune’ the network in
a supervised fashion using class predictions. In all cases, we
use one hidden layer whose (bottleneck) size is empirically
25% of the size of the input. We use up to 10 iterations (to
avoid overfitting) in the pretraining cycle with a batchsize of
N/4 (given N observation vectors), a learning rate η = 0.1,
a drop-out rate [17] of 0.5 and the ‘cross entropy’ objective
function C = −

∑
j dj log(pj), empirically chosen, where

dj is the target probability for output j and pj is the actual
probability output of j.

3.1. Classification of phonological categories

We first classify between various phonemic and phonologi-
cal classes given different modalities of data. Specifically,
we consider five binary classification tasks: vowel-only vs.
consonant (C/V), presence of nasal (± Nasal), presence of
bilabial (± Bilab.), presence of high-front vowel (±/iy/),
and presence of high-back vowel (±/uw/) using six modal-
ities: EEG-only, facial features (FAC)-only, audio (AUD)-
only, EEG and facial features (EEG+FAC), EEG and audio
features (EEG+AUD), and all modalities.

Figure 1 shows the average accuracy (with std. error
σ/
√
n) of classifying ±/uw/ and C/V, across the three clas-

sifiers and for each test subject (given subject-independent
models trained on all other data) given N = 5 input fea-
tures. For both tasks, the DBN classifiers obtain between
80% and 91% accuracy. Although the SVM-quad classifier
obtains significantly better-than-chance accuracy on ±/uw/,
the SVM classifiers, in general, obtain significantly lower
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Fig. 1. Average accuracies across models for DBN, SVM-
quad, and SVM-rbf classifiers for the ±/uw/ and C/V tasks,
across subjects. Error bars are σ/

√
n.

accuracy than the DBNs. As suggested by the high σ/
√
n for

the SVM classifiers, this may be largely due to the interac-
tion of the classification tasks and the modalities of the data
used. Indeed, Table 2 shows that the average accuracies of the
SVM-quad classifier varies greatly across these two dimen-
sions. This is further confirmed by an analysis of variance
(ANOVA) in Table 3 which not only shows significant linear
effects of each of the classifier, test subject, task, and modal-
ity on the accuracy of phonological category classification,
but also significant interactions between the task and both of
the classifier used and the modality of the data.

Task
C/V ± Nasal ± Bilab. ±/iy/ ±/uw/

EEG 18.08 63.50 56.64 59.60 79.16
FAC 62.54 48.10 63.73 40.25 20.68

AUD 81.05 40.48 39.98 37.63 18.33
EEG+FAC 72.17 48.41 63.73 56.03 19.60

EEG+AUD 61.13 62.72 39.99 49.15 83.75
ALL 75.72 51.87 63.73 46.01 20.20

Table 2. Average accuracies (%) across modalities and
classes given the SVM-quad classifier.



Source Sum Sq. F -statistic p
Classifier 85.44 F2 = 3591.28 < 0.001
Subject 3.34 F6 = 47.53 < 0.001
Task 46.47 F4 = 975.58 < 0.001
Modality 5.77 F5 = 97.00 < 0.001
Classifier×Task 55.38 F8 = 581.92 < 0.01
Task×Modality 7.94 F20 = 33.38 < 0.01

Table 3. ANOVA of classification accuracies according to
main and select interaction effects.
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Fig. 2. Average accuracies (%) across number of features for
DBN, SVM-quad, and SVM-rbf in the ST/SP and ST/I tasks.

3.2. Classification of mental state

We also classify between the different states of each trial,
specifically in three binary tasks: stimulus vs. speaking
(ST/SP), rest vs. imagined (R/I), and stimulus vs. imagined
(ST/I). We again use DBN and SVM systems, as in section
3.1, with the same hyper-parameters. Initial results yielded
average accuracies between 50% to 60%. To improve perfor-
mance, we concatenate the band-pass filtered data from 6 of
the 8 participants and perform independent component analy-
sis (ICA). Due to practical considerations, we do not perform
ICA on the data from all participants. Given observed mul-
tivariate data S, ICA assumes observations in S are linear
mixtures of unknown, statistically independent sources X
and computes W in S = WX , yielding 64 components,
because we include ocular channels.

Using the same feature selection method as in section 2.3,
the DBN obtains accuracies of 69%, 56%, 88% for the ST/SP,
R/SP, and ST/I tasks, respectively, averaged over all subjects
and feature sizes. Figure 2 shows results of two tasks. The
high accuracy obtained from classifying between the imag-
ined and speaking states is not surprising, as artifacts related
to speech production are present in the EEG data. The DBN

clearly outperforms the SVM baselines and scales better with
the number of features, up to 60 to 70 features.

4. DISCUSSION

This paper presents the first classification of phonological
categories combining acoustic, facial, and EEG data. Usually
such multimodality is only possible with expensive mag-
netoencephalography. Instead, we use an affordable (and
portable) Kinect sensor and 64-channel EEG cap, which is
a much more viable setup for BCIs. Furthermore, all our
reported experiments use leave-one-out cross-validation, so
our models are subject-independent and generalizable.

We are continuing to record additional subjects and plan
to release the data publicly. Future work includes methods to
reconstruct acoustic features from EEG, after Pasley et al.’s
work with invasive methods [4], potentially towards mapping
imagined speech to synthetic speech. There is also recent evi-
dence that the types of linguistic statistics derivable from text
corpora are highly indicative of brain activity. For instance,
Mitchell et al. [18] showed that one can predict fMRI patterns
for previously unseen word stimuli given semantic informa-
tion about those words (e.g., whether they refer to animate
objects), demonstrating the relation between neural patterns
and the distributional semantics of words. Murphy et al. [19]
also found that EEG activation patterns encode enough infor-
mation to discriminate broad conceptual categories. Ander-
son et al. [20] showed strong correlations between image and
text-based distributional semantic models and fMRI record-
ings. Our future work will therefore not only encode correla-
tions among EEG, articulatory, and acoustic features and their
phonological categories, but among semantics as well.
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