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Abstract—Community detection is an important task in social
network analysis. Existing methods typically use the topological
information alone, and ignore the rich information available in
the content data. Recently, some researchers have noticed that
user profiles can also benefit to community detection, and hence
the combination of topology and node contents has become a new
hot topic. Some methods using both topology and content have
been proposed. However, they often suffer from two drawbacks:
1) they cannot extract a potential deep representation of the
network; 2) they cannot automatically weight different infor-
mation sources with adequate balance parameters. To overcome
these issues, we propose a deep integration representation (DIR)
algorithm via deep joint reconstruction, which is motivated
by the similarity between deep feedforward auto-encoders and
spectral clustering in terms of matrix reconstruction. Thanks to
spectral clustering which is one of the best community detection
methods, the proposed new method is also good at community
discovery task. In addition, DIR has further benefit because
it not only provides a nonlinear and deep representation of
the network, but also learns the most suitable balance between
different components automatically. We compare the proposed
new approach with nine state-of-the-art community detection
methods on eight real relatively large networks. The experimental
results show the definite superiority of this new approach.

Keywords—community detection, deep learning, stacked auto-
encoder, spectral clustering, social networks.

I. INTRODUCTION

With the emergence of social media networks, social net-
work analysis research has recently become more and more
important. Graph is a popular data structure for describing
social networks, in which nodes represent the users and edges
reflect the relationships between users. Community detection is
a significant research topic for characterizing and understand-
ing complex social networks. It aims at finding a partition of
the network into potential communities such that members of
each community are mostly connected to members within that
same community.

In the conventional scheme, most community detection
algorithms [1]–[3] only use the topological information, and
often ignore the rich information available in the content data.
Recently, many researchers [4]–[10] have noticed that users
profiles can be used to measure the similarity between different
users, and that the more similar profiles are, the more likely
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the corresponding users should belong to the same group.
Therefore, combining topology and node contents has become
a new hot topic in the current community detection research.

Recently, many methods using both topology and content
have been proposed. There are several different ways to
measure the incorporation of different components in network:
1) Linear incorporation, which connects different components
through additional parameters. Such methods follow the as-
sumption that all components can be linearly combined. For
instance, CODICIL [4] linearly combines network topology
and similarities of node contents into a new network model,
and then computes clusters by standard graph clustering algo-
rithms. NMTF [11] is a unified clustering framework based on
nonnegative matrix tri-factorization with three types of graph
regularization, to integrate different social information, such as
users profiles and social relations. SCI [12] integrates network
topology and semantic information on nodes using community
membership for community detection. 2) Probabilistic incor-
poration generates one information from the other. Such meth-
ods introduce the subjective preference, not fully achieving
the purpose of effective integration of different information
sources. For example, NEMBP [13] assumes the topological
information as the basis to generate the text information.
CESNA [5] is a probabilistic generative model, to obtain the
relationship between node attributes and communities, where
the sub-models using network topology and node attributes are
connected by a sparse constraint. Moreover, a block coordinate
ascent approach is adopted to update the model parameters.
Yang [14] introduces an alternative discriminative probabilis-
tic method to detect communities, different from generative
models. In this model, the nodes’ popularities are used to
decide the link probability between two nodes and are then
combined with content information in the condition of link
model to estimate the community memberships. 3) Heuristic
incorporation. For example, a heuristic framework aiming
at finding communities and their corresponding descriptions
by means of alternating between community generation and
description induction was proposed in DCM [6]. An algorithm
based on matrix decomposition was presented in [15], which
constructs a latent representation of nodes and edges based
on their mutual structural dependency, and incorporates edge
content by two methods for community detection. A novel
transformation framework is proposed in NEIWalk [16], based



on the idea of transforming the content-based network into a
new network where structure, node content and edge content
are all embedded based on the relationship among them.

However, the above combinatorial methods still suffer from
two drawbacks requiring more work to improve them: 1) they
cannot extract a potential deep representation of the network.
2) they cannot automatically weight different information
sources with adequate balance parameters. Therefore, we
choose to put our focus on these two drawbacks of community
detection.

To overcome the above-mentioned drawbacks of existing
combinatorial methods, we notice that deep learning [17] is
a powerful representation-learning framework, which has had
great success in many applications such as speech recognition,
image classification and natural language processing. It can
easily explore deep non-linear relationships. Moreover, our
proposal is motivated by the similarity between deep feed-
forward auto-encoders [18] and spectral clustering [19] in
terms of matrix reconstruction [3], [20]. Specifically, due
to its solid theoretical foundation and global optimal solu-
tion, spectral clustering has come to the foreground in the
past decades. For instance, the spectral method based on
modularity considers topological information for community
detection, and the content-based normalized-cut model for
content clustering. It aims at finding a low-dimensional matrix
to reconstruct the spectral matrix. Similarly, an autoencoder
also encodes a low-rank embedding to reconstruct its original
input.

Based on these above discussions, we propose a deep
integration representation (DIR) algorithm via deep joint re-
construction. First, we use the modularity and the normalized-
cut model to combine network topology and the node content
because of their superior performance for topology/content in
spectral clustering. Second, deep auto-encoders are adopted
to combine different views of each node, to jointly generate
a deep node representation for community detection. To the
best of our knowledge, this may be the first work promoting
deep auto-encoders for community detection to automatically
weight the different information sources.

II. PRELIMINARY

Given an undirected and attributed network G = (A,O),
with n nodes, where A = [aij ] ∈ Rn×n is the adjacency
matrix, whose elements aij = 1 if there is an edge joining
nodes i and j, and 0 otherwise. Here ξi =

∑
j aij is the

degree of node i and m = 1
2

∑
i ξi is the total number of

edges in the network. O = [oij ] ∈ Rn×n is the similarity
matrix, in which the similarity oij between nodes i and j
is the cosine similarity between their corresponding content
vectors. To avoid the problem caused by the manifold structure
of node contents, an η-nearest neigbors method [21] was used
to sparsify the similarity matrix O. We keep the η closest
points for each node in O and set other similarity values to
zero, and then obtain the sparse similarity matrix S = [sij ] ∈
Rn×n, in which the (weighted) degree of node i is defined
as di =

∑
j sij . As said in [21], a suitable η can help to

retain the local invariance of the original data, and hence can
better respect the structure of the underlying manifold of node
contents. According to the experiments and other literatures,
we often set η at a small fixed integer, such as 6. Now our
goal is to separate the n nodes into k communities, denoted
as C1, C2, ..., Ck.

A. Modularity Model

Newman-Girvan’s modularity function Q was introduced in
[22]. It is by far the most used and best known quality function
for community detection. Thus, optimization of modularity Q
has become one of the major community detection methods.
This function can be defined as follows, in the case of
bisections (two communities only):

Q =
1

4m

∑
ij

(aij −
ξiξj
2m

)(ψiψj) (1)

where ψi equals 1 (or -1) if node i belongs to the first
community (or second one).

Modularity can conveniently be optimized using eigen-
vectors and eigenvalues by defining the modularity matrix
B = [bij ] ∈ Rn×n, with elements bij = aij − ξiξj

2m . Thus,
modularity Q can be rewritten as

Q =
1

4m
ψTBψ (2)

where ψ = [ψi] ∈ {−1, 1}n is the nodes’ community
membership indicator. However, modularity maximization is
a NP-hard problem. By relaxing the problem and allowing
variables ψi to take any real value, this problem can be easily
translated as:

maxQ = max
Ψ∈Rn×k

Tr(ΨTBΨ) (3)

where Ψ = [ψij ] ∈ Rn×k is the community membership
indicator matrix and Tr(·) is the trace function. It can be
shown that the solution to this problem is to get the k largest
eigenvectors of modularity matrix B. Besides, solution space
Ψ allows reconstructing the network topology in terms of
community structure, and hence each row of matrix Ψ can be
regarded as a good representation of the corresponding node
in latent space for community detection.

B. Normalized-cut Model

Normalized-cut [23] is one of the most commonly used
methods for content-based graph clustering. It computes the
cut cost as a ratio between the total edge connections in one
cluster to nodes outside and the total inner connections, i.e. the
ratio of outer connection to inner connections. The objective
function can be written as:

NCut(C1, C2, ..., Ck) =

k∑
t=1

link(Ct, Ct)

vol(Ct)
(4)

where link(Ct, Ct) = 1
2

∑
i∈Ct,j∈Ct

sij is the total connec-
tions (content similarities) from nodes in Ct to all the nodes
in Ct (not in Ct), vol(Ct) =

∑
i∈Ct

di is the total inner
connections in Ct.
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Fig. 1. (a) Q and Ncut are solved by spectral clustering (SP) to obtain corresponding embeddings. (b) An ideal idea of linear combination of Q and Ncut
by spectral clustering, but it does not work. (c) We use B and M as the input feature matrix for the auto-encoder (AE) to separately optimize Q and Ncut.
The process is similar to (a). (d) Q and Ncut can be easily combined through deep learning to jointly reconstruct B and M using auto-encoder (AE).

To achieve the goal of minimizing the objective function, it
is convenient to convert to the following optimization problem
if node i is denoted as vi:

min
Φ∈Rn×k

Tr(ΦTLΦ)

s.t. L = D− S,
D = diag(d1, d2, ..., dn),

φij =

{
1/
√
vol(Cj), if vi ∈ Cj ;

0, otherwise.

(5)

Here, L is the Laplacian matrix of the similarity graph and
its normalized form is D−1L = D−1(D − S) = I − D−1S
where the identity matrix is denoted as I. Then M = D−1S
is called the Markov matrix. For this problem, the solution
matrix Φ consists in the eigenvectors corresponding to the k
smallest non-zero eigenvalues of the normalized Laplacian ma-
trix D−1L. In other words, the k largest eigenvalues of D−1S
exactly span the solution representation in latent space. More
important is that the solution matrix Φ is an extremely good
representation to obtain (text or image) content clustering.

III. MODEL DESCRIPTION

In this section, we will introduce our deep integration repre-
sentation (or DIR) model for community detection, including
our motivation, the basic model, the deep structured model, as
well as the time complexity.

A. Motivation

As mentioned in the preliminary section, the modular-
ity model (Q) is exceptional for topology-based clustering,
designed for representing network structure. On the other
hand, the normalized-cut model (Ncut) is very effective for
clustering content-based graphs, and best representing and
reconstructing node contents. Each of these can be solved
by spectral clustering (SP), which aims at finding a low-rank
embedding to reconstruct the spectral matrix as shown in Fig. 1
(a). Therefore, as illustrated in Fig. 1 (b), an ideal solution may
be to integrate these two models and combine their advantages.
But it is difficult to optimize this new problem using spectral
method. This is because the spectral method requires specific

objectives, such as modularity function or normalized-cut
separately. But when combining these two objectives, spectral
clustering does not work due to its lack of flexibility. Besides,
spectral clustering has a high time complexity, and it is very
hard to incorporate additional regularization constraints which
may also be needed to meet the requirements of real nonlinear
networked data. Thus, in this paper we mainly focus on this
difficulty and try to solve it.

However, we noted that Q and Ncut can be regarded as
aiming at reconstructing modularity matrix B and Markov ma-
trix M respectively, using a low-rank approximation as shown
in Theorem 1 below [20]. On the other hand, in theory, the
non-linear auto-encoder (AE) [18] also seeks for a low-rank
representation to reconstruct the network, and is, in practice,
more flexible and efficient than spectral clustering. If we use
B or M as the input feature matrix for the auto-encoder as
shown in Fig. 1 (c), the process actually also best reconstructs
the original input matrix, similarly to spectral clustering.
Meanwhile, as illustrated in Fig. 1 (d), deep feed-forward auto-
encoders are more flexible, and can easily jointly optimize Q
and Ncut through deep joint reconstruction of B and M as
the input feature matrix. Moreover, deep feed-forward auto-
encoders can further stack multiple layers to achieve additional
representation accuracy from deep structures.

In addition, conventional models often integrate network
topology and node contents through a linear combination
strategy, which requires to tune the combination coefficient,
i.e. the balance between topology and contents. In contrast,
a non-linear auto-encoder can automatically learn the balance
to seamlessly combine different data sources in a non-linear
fashion, hence avoiding one of the disadvantages of linear
combination methods. Thus, the above discussions motivate
us to adopt deep learning auto-encoders to combine network
topology and node contents for better community detection.

Theorem 1: (Eckart-Young-Mirsky). For a rank-r matrix
D ∈ Rm×n(m ≥ n), there exists a singular value decom-
position D = UΣV T , where σ1 ≥ σ2 ≥ · · · ≥ σm are
the eigenvalues of D, Σ = diag(σ1, σ2, · · · , σm) ∈ Rm×n,



U ∈ Rm×m, and V ∈ Rn×n are defined as follows:

U =
[
U1 U2

]
,Σ =

[
Σ1 0
0 Σ2

]
, V =

[
V1 V2

]
where U1 is m × r, Σ1 is r × r, and V1 is r × n. Then the
low-rank approximation problem can be regarded as a process
of minimizing the cost function between the given matrix D
and an approximating matrix D̃, with Frobenius cost function
as follows:

arg min
D̃:rank(D̃)=k,k≤r

‖D − D̃‖F =
√
σ2
r+1 + σ2

r+2 + · · ·+ σ2
m.

Thus, the reconstructed matrix results from the singular vectors
corresponding to the k largest singular values and then can be
written as:

D̃∗ = U1Σ1V
T
1

B. Reconstruction based on Auto-Encoder

The auto-encoder is the key building block of our DIR
model. The original input data representation is the same as
the output representation in the auto-encoder. To be specific,
we first construct modularity matrix B based on the network
topology A. Next, the nearest neighbors algorithm is used to
select, for each node, its η closest nodes in O, thus resulting
into a matrix S sparser than the original similarity matrix O.
We then construct the Markov matrix M using S and the mixed
spectral matrix X = [B,M] which is fed to the auto-encoder:
the collection of rows in X is the set of examples successively
presented as inputs to the network. Later in the experiments
Section IV, we will explain why the mixed spectral matrix X
does not need a specified balance between B and M.

The auto-encoder always consists of two stages, the encoder
and the decoder. The encoder maps a row in the mixed spectral
matrix X to a low-dimensional (hidden layer) representation
h and h can be regarded as a new representation of the
corresponding row in latent space. Hence, in matrix form, X
is mapped into a representation H with rows h, computed as:

H = f(X) = Γ(W(H)X + b(H)) (6)

where W(H),b(H) are the parameters of the encoder, Γ(·) is
an encoder non-linear function such as tanh(x) = 1/(1 +
exp(−x)) or ReLU(x) = max(0, x) [17]. The decoder layer
maps the latent representation H back into the original data
space X, and the process can be represented as follows:

Y = g(H) = Γ(W(Y)H + b(Y)) (7)

where W(Y),b(Y) are the parameters to be learned in the
decoder, Γ(·) is a decoder mapping function, which can be
the same as the encoder function. The auto-encoder aims at
learning a latent representation of the input data by minimizing
the reconstruction loss between the original data and the data
reconstructed from the representation. Then the optimization
goal is formally represented as follows:

θ̂ = arg min
θ

Lθ(X,Y) = arg min
θ

n∑
i=1

‖xi − yi‖2. (8)
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Fig. 2. The proposed deep integration representation (DIR) model which
combines network topology and node contents to obtain the deep represen-
tations (embedding) for community detection. Given an attribute network
G = (A,O), we construct a sparse similarity graph S from the original
similarity graph O. Next, the modularity matrix B and the Markov matrix
M can be constructed from A and S respectively, and concatenated into a
mixed spetral matrix X = [B,M]. Finally, we feed each row of the mixed
spetral matrix into deep auto-encoders to obtain final deep reppresentations
(embedding) for community detection.

where θ =
{

W(H),b(H),W(Y),b(Y)
}

is the parameters vector
of the auto-encoder and Lθ is a loss function which measures
the reconstruction error. Here we adopt the Euclidean distance
function as loss function and we do not use classical regular-
izers, such as L1 regularization to enforce sparsity, and L2

regularization to get robustness.
After training the auto-encoder, the parameters have been

learned and can be used to generate the latent representations
of the network with content. To date we have combined the
best of modularity model and normalized-cut model, achieving
to combine topology and node contents in a seamless way.
After that, many traditional clustering methods can be used
on the latent representations to find the communities. Here we
use the k-means algorithm as many previous works did.

C. Optimization

Our goal is to minimize the objective function J(θ) =∑n
i=1 ‖xi − yi‖2. To solve this problem, we initialize each

parameter randomly, and then apply the back-propagation



algorithm with stochastic gradient descent [24]. Each it-
eration of gradient descent updates the parameters θ ={

W(H),b(H),W(Y),b(Y)
}

after presentation of one example
(a row in the matrix) as follows:

W ∗ji = W ∗ji − α
∂

∂W ∗ji
J(θ),

b∗j = b∗j − α
∂

∂b∗j
J(θ),

(9)

where α is the learning rate, ∗ is a wildcard (here ∗ =
{(H,Y)}). By defining z∗ = W∗x + b∗, we have

∂

∂W ∗ji
J(θ) =

n∑
i=1

∂J(θ)

∂z∗j
·
∂z∗j
W ∗ji

=

n∑
i=1

δ∗j xTi ,

∂

∂b∗j
J(θ) =

n∑
i=1

∂J(θ)

∂z∗j
·
∂z∗j
b∗j

=

n∑
i=1

δ∗j ,

(10)

where δ∗j = ∂J(θ)/∂z∗j is an error term that measures the
reconstruction error between the activation and the true target
value. The error terms are defined as follows:

δ
(Y)
j = −

n∑
i=1

(yij − hij) · s′(z(Y)
j ),

δ
(H)
j = (

n∑
i=1

W
(H)
ji δ

(Y)
i ) · s′(z(H)

j ),

(11)

D. Stacked Auto-Encoders

Deep learning [17] is a layer-wise training architecture,
meaning the original data can be presented through multiple
layers, a large number of layers allows for better performance.
To take advantage of deep architectures, we stacked a series of
auto-encoders to construct the DIR model (Fig. 2). Recall that
many community detection algorithms only involve one layer
of representation. This may not be enough for the analysis
of complex social networks in the real world. We aim to
overcome this disadvantage by stacked auto-encoders. We
trained the first auto-encoder to reconstruct the mixed spectral
matrix X = [B,M], and obtained the latent representation
H(1) as well as the reconstructed data Y(1). After that, we
train the model layer by layer, training the ith auto-encoder
to reconstruct the hidden layer representation of the (i− 1)th

auto-encoder, and then obtaining the new latent representation
H(i). That is, the objective function of the ith layer is

θ̂(i) = arg min
θ(i)

Lθ(i)(H
(i−1),Y(i)). (12)

After this initialization stage, all the layers are stacked
together and a few training passes are executed on this
stacked architecture to fine-tune parameters. We summarize
our layer-wise deep representation learning procedure in
Algorithm 1. Based on the deep structure, the topology and
node contents can thus be combined seamlessly, and their
balance can be determined automatically. As a result, we
obtain a deep and non-linear representation which can be
further used for better community detection.

Algorithm 1: DIR Algorithm
input : adjacency matrix A, original similarity matrix O,

number of layers L, number of communities k, num-
ber of nearest neighbors η.

output: Final community structure C1, · · · , Ck.
1 Compute modularity matrix B based on network

topology via bij = aij − ξiξj/ (2m) (see Sec II).
2 Compute sparse similarity matrix S by η nearest

neighbors algorithm. Compute degree matrix D via
di =

∑
j sij , and compute Markov matrix M using

node contents via M = D−1S (see Sec II).
3 Set mixed spectral matrix X = [B,M].
4 Set X(1) = X

for l = 1 to L do
5 Build single hidden layer auto-encoder with

input data the rows in X(l).
6 Apply Eq.(9) - (11) to optimize parameters,

and obtain the latent representation H(l).
7 Set X(l+1) = H(l).

end
8 Fine tune.
9 Run k-means on the rows of H(L) to find the

communities.

E. Time Complexity

To simplify the analysis, we denote by L the number of
layers, n the number of nodes in the graph, m the number of
edges. Thus 2m/n is the average degree of the graph. Let γ
be the maximum number of hidden layer nodes in the stacked
auto-encoders, tp and tq be the number of iterations for each
auto-encoder in the stack and number of parameters random
draws. It is not difficult to see that the complexity of the
DIR model is O(tptqγL(m + nk)) where η is the number
of top-η nearest neighbors in the similarity network. Usually
the values of parameter m, L, tp, tq are bounded. Besides,
parameter γ can be regarded as a fixed value, which is related
to a predefined representation dimension, but not related to
n. Therefore, the overall complexity is nearly linear in the
number of nodes and links of the network.

IV. EXPERIMENTS

We report the experimental results in this section. First,
we introduce the experimental setup, including the data sets
and the benchmark algorithms, and then analyze the experi-
ments settings. After that, we present the experimental results
to compare our proposed method with nine state-of-the-art
benchmark approaches.

A. Datasets

We used seven publicly available datasets1 with varying
sizes and characteristics. Their domains cover social networks
and document networks. The details of each dataset are as
follows:
• WebKB includes 4 sub-datasets. It is a web page dataset

gathered from four different universities, namely Cornell,

1http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html
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Texas, Washington and Wisconsin, corresponding to 4
sub-datasets. Every university is portioned into 5 groups.

• Citeseer is a citation network, consisting of 3,312 scien-
tific publications with 4,732 citation relationships classi-
fied into 6 sub-fields.

• Cora is a collection of 2,708 papers with 5,429 citation
links. These papers are classified into seven classes.

• UAI2010 is the articles information dumped from
Wikipedia pages (October 2009) classified into 19 cate-
gories. The data contains 3,067 articles and 45,006 links.

• Pubmed consists of 19,717 scientific publications with
three classes from Pubmed database and the citation
network consists of 44,338 links.

B. Parameter Analysis

In this subsection, we first introduce the input data format.
In our experiments, we constructed content-based edges by
calculating the cosine similarity of nodes’ content vectors
and selected the top-η edges using the η nearest neighbors
algorithm. To ensure that topology and content information of
each node are in the same space, we normalized matrices B
and M rows with z-norm(·) [4], which centers and normalizes
the values to zero mean and unit variance:

z-norm(x) =
xi − µ
σ

, µ =

∑|x|
i=1 xi
|x|

, σ2 =

∑|x|
i=1(xi − µ)2

|x| − 1
.

First, we wanted to study the effect of a mixture balance
parameter between network topology and node contents. We
thus fed a combined matrix X = [λB, (1− λ)M] which
horizontally stacks modularity matrix B and Markov ma-
trix M with a balance coefficient λ into the auto-encoder,
row by row, and trained the auto-encoder to minimize the
reconstruction error. For each network, we trained it with
10 random initializations of the networks’ parameters and
obtained the latent representations for each row. Then, we used
k-means algorithm for clustering the representations obtained
and produced our final result as the average performance of
our 10 experimental results.

Here we show this analysis on two datasets in the WebKB
collection (Washington and Texas), since the results on other
datasets are also similar. We can then easily observe the
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changes in the balance of the two information sources in the
experiment. The results are shown in Fig. 3, where perfor-
mance is measured by NMI (normalized mutual information
[25], described in next section). We found that there is very
little influence on the final performance when the balance
weight changed. For example, we calculated that the overall
variances are 0.00026 on Washington and 0.00087 on Texas,
where the variances are all less than 5%; the error between
maximum and minimum is less than 5%. That is, the balance
coefficient can be set at any value from 0.1 to 0.9, such as
λ = 0.5 in all of the experiments as we did. The input data
rows can thus be merged at 1:1 mixing ratio, thus stacking
modularity matrix B and Markov matrix M horizontally, which
we denoted as X = [B,M].

TABLE I
DEEP LEARNING NETWORK SETTING

Datasets Nodes Links Attributes Layer configuration

Texas 183 328 1,498 366-256-128-64-32-16
Cornell 195 304 1,588 390-256-128-64-32-16
Washington 217 446 1,578 434-256-128-64-32-16
Wisconsin 262 530 1,623 524-256-128-64-32-16
Citeseer 2,559 4,732 3,698 5,118-1,024-512-256-128-64
Cora 2,708 5,429 1,432 5,416-1,024-512-256-128-64
UAI2010 3,067 45,006 4,973 6,134-1,024-512-256-128-64
Pubmed 19,717 44,338 500 39,434-1,024-512-256-128-64

In our experiments, the number of nodes in each hidden
layer tested is shown in Table I. The neural networks for all
datasets are stacked auto-encoders with 4+1 hidden layers for
encoding and 4 hidden layers for decoding, and the dimension
of each hidden layer is set to a power of two less than input
and output spaces. In practice, all auto-encoders were trained
separately and the learned representation of every layer could
thus be obtained. The final layers configuration of the network
is decided by the result of each layer. For example, the layer
configurations for Washington and Texas are 434-256-128-64-
32-16 and 366-256-128-64-32-16 respectively, and the final
experiment results in Fig. 4 show that the result of the third
layer on Washington is best, and for Texas the third layer is
second-best. So we set the final layer configuration as the third
layer because a good result often appears in (or near) the third
layer representation in all the datasets in our experiments.



In practice, we use Theano2 deep learning tools to construct
stacked auto-encoders, and set the learning rate as 0.1. Specif-
ically, we use the tanh(·) as the activation function, set the
training batch to the size of the network (i.e. the number of
rows n), and ran at most 50,000 iterations. For each network,
we train with 10 random initializations of the parameters.
Finally, we obtain the latent representations of the n rows (i.e.
nodes) for clustering. Here, we adopted the k-means algorithm
for community detection and returned the performance results
as the mean of the 10 experimental performances. The source
code of the DIR is available online3.

C. Evaluation Metrics

To assess the performance of community detection algo-
rithms, we use the standard community comparison metrics:
normalized mutual information (NMI) [25], accuracy (AC)
[25], F-score [5], Jaccard [5] and generalized normalized
mutual information (GNMI) [26].

Given the detected communities C and the ground-truth
communities C∗, accuracy AC is defined as:

AC (C,C∗) =

∑n
i=1 δ (map (C∗i ) ,map (Ci))

n

where δ (a, b) is the delta function that equals 1 if a = b and
0 otherwise, and map(C∗i ), resp. map(Ci), is the function
that maps each community C∗i , resp. Ci to the index of the
community i belongs to in C∗, resp. C. The normalized mutual
information (NMI) is defined as:

NMI (C,C∗) =
M̂I (C,C∗)

max (H (C) , H (C∗))

where H (C) =
∑
Ci

|Ci|
|C| log( |Ci|

|C| ) is the entropy of the set of

communities C, and

M̂I (C,C∗) =
∑
Ci,Cj

p
(
Ci, C

∗
j

)
log

p
(
Ci, C

∗
j

)
p (Ci) p (Cj)

is the mutual information between C and C∗. The F-score is
defined as:

F (C,C∗) =
∑
Ci∈C

|Ci|∑
Cj∈C |Cj |

max
C∗

j ∈C∗
F
(
Ci, C

∗
j

)
where F

(
Ci, C

∗
j

)
evaluates the F-score between Ci and C∗j .

The Jaccard metric is defined as:

JS (C,C∗) =
∑

C∗
j ∈C∗

max
Ci∈C

JS
(
Ci, C

∗
j

)
2 |C∗|

+
∑
Ci∈C

max
C∗

i ∈C∗
JS
(
Ci, C

∗
j

)
2 |C|

2http://deeplearning.net/software/theano/
3http://git.oschina.net/dmai/dir

where JS
(
Ci, C

∗
j

)
is the Jaccard similarity between Ci and

C∗j . The generalized normalized mutual information (GNMI)
is defined as:

GNMI (C,C∗) = 1− 1

2
[H (C|C∗)norm +H (C∗|C)norm]

where H (C|C∗)norm is the normalized version of conditional
entropy between C and C∗. For all metrics, largest is best.

D. Experimental Evaluation

To assess the effectiveness of our method DIR, we compared
it with nine state-of-the-art methods for community detection,
which are divided into three groups based on the data sources
they used, for non-overlapping (Table II) and overlapping (Ta-
ble III) community detection. Specifically, we compare DIR
against two topology-based methods: SBM [1] and BigCLAM
[2], two node contents-based methods: CAN [9] and SMR
[10] and five methods that combine both topology and node
contents: PCL-DC [14], Block-LDA [27], SCI [12], CESNA
[5] and DCM [6].

TABLE II
PERFORMANCE (%) OF ALGORITHMS WITH DISJOINT COMMUNITIES.

BOLD REPRESENTS BEST RESULT. N/A MEANS OUT OF MEMORY

Metrics(%) Methods Cornell Texas Washington Wisconsin Citeseer Cora UAI2010 Pubmed

NMI

SBM 9.69 16.65 9.87 3.14 4.13 17.07 31.22 12.28
CAN 6.14 8.15 12.82 7.00 1.21 1.32 6.12 5.67e-4
SMR 8.45 3.55 0.73 7.21 0.71 1.18 1.70 3.57e-4

PCL-DC 7.23 10.37 5.66 5.01 2.99 17.54 26.92 26.84
BLOCK-LDA 6.81 4.21 3.69 10.09 2.42 1.41 1.41 6.58

SCI 11.44 17.84 12.37 17.04 4.88 19.26 24.79 N/A
DIR 27.50 26.89 31.79 29.65 27.42 40.30 31.86 22.44(2)

AC

SBM 37.95 48.09 31.80 32.82 26.57 38.48 26.02 53.64
CAN 41.54 49.73 51.61 46.56 23.21 30.21 17.87 39.96
SMR 31.79 47.54 49.77 40.84 22.55 30.28 15.68 39.95

PCL-DC 30.26 38.80 29.95 30.15 24.85 34.08 28.82 63.55
BLOCK-LDA 46.15 54.10 39.17 49.62 24.35 25.52 16.04 16.04

SCI 45.64 62.30 51.15 50.38 27.98 40.62 30.94 N/A
DIR 45.79(2) 64.03 60.51 46.79(3) 41.85 60.71 31.07 59.60(2)

TABLE III
PERFORMANCE (%) OF ALGORITHMS WITH OVERLAPPING COMMUNITIES.

BOLD REPRESENTS BEST RESULT.

Metrics(%) Methods Cornell Texas Washington Wisconsin Citeseer Cora UAI2010 Pubmed

F-score

BIGCLAM 13.23 20.64 13.35 12.84 9.30 18.89 16.99 7.72
CESNA 23.48 23.54 21.91 23.17 3.38 31.05 32.32 27.97
DCM 14.38 11.15 12.45 10.45 2.50 3.43 9.65 0.38
DIR 46.22 44.42 43.75 44.90 43.20 28.37(2) 33.76 61.18

Jaccard

BIGCLAM 7.18 12.18 7.25 7.01 5.01 10.89 9.87 4.04
CESNA 13.47 13.57 12.40 13.14 1.73 1.91 21.26 16.26
DCM 7.95 6.03 6.72 5.54 1.27 1.76 5.77 0.19
DIR 31.23 31.74 31.66 30.66 28.37 43.94 22.36 44.82

GNMI

BIGCLAM 0.59 0.75 0.77 0.44 0 0 11.94 0.57
CESNA 2.22e-14 0.67 0.32 2.22e-14 2.22e-14 2.64 7.60 0
DCM 0 1.17 0.17 0.51 0 1.11e-14 2.80 2.00e-14
DIR 11.50 13.74 13.94 13.66 11.16 29.36 10.43 16.82

We compare our method DIR to the algorithms with disjoint
or overlapping communities, respectively, shown in Table II
and Table III. The metrics AC and NMI are for disjoint
communities, and F-score, Jaccard and GNMI are for over-
lapping communities. For all the metrics, high value stands
for better performance and the bold digits represent the best
performance. For each result, we repeat 10 times and report
the average result.

As shown in Table II, DIR outperforms other methods on
all networks, except Pubmed, for NMI, and on all networks
for AC, except Cornell, Wisconsin and Pubmed, where it



is ranked 2 or 3. As shown in Table III, the performance
of our method neatly achieves the best performance on all
networks and metrics, except on Cora for F-score. In total,
when measured in terms of metrics Jaccard and GNMI, our
algorithm always achieved the best performance. Specifically,
for dataset Citeseer for example, we increase the performance
by around 22% in NMI, 13% in AC, 34% in F-score, 23%
in Jaccard and 10% in GNMI. On average, we improve
performances by more than 20%.

There are three possible reasons for these improvements.
One is that both document networks and social networks
have multi-level modalities, i.e., document, topic, vocabulary,
words, etc. Besides, real-world networks have various nonlin-
ear features, i.e., a relationship among users is not necessarily
linear. The existing community detection methods typically
involve one layer of representation, but our method can learn
deep multi-levels representations for community detection.
Another is that our method combines network topology and
node contents without parameter-tuning, automatically learn-
ing the balance parameters to integrate the two different data
sources for improved performance. More importantly, our
method combines the advantages of modularity model and
normalized-cut model, which are promising for community
detection and content graph clustering respectively, and a
nonlinear representation so that performance can improve a lot.
However, for some networks, the performance improvement
of our algorithm is less than for others: this is the case, for
example, for Texas and Citeseer. A possible explanation for
this may be that small networks have relatively less informa-
tion; although deep structures can improve performance, the
original information will be reduced if the structure is too
deep. On the contrary, large-scale networks may have deeper
representations. Then the deep integration representations will
be better, and the performance will be improved more.

V. CONCLUSION

We proposed a deep nonlinear approach to combine topo-
logical information and node content information of networks,
and effectively solve the seamless integration of two commu-
nity detection models or objectives, i.e., network modularity
and normalized-cut. In addition, our method can automatically
learn the balance mixture weight between the different views
of the original networked data, and obtain deep representations
which allow improved community detection performances.
Experimental results on real-world networks show that our
method provides better performance in most networks, com-
paring with the existing state-of-the-art approaches.
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