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Abstract: A snow slab avalanche release usually results from the unstable expansion of a basal crack at the
interface between an upper layer (slab) and an underlying substrate, followed by crown crack nucleation and
propagation. Despite the fact that many models proposed so far to predict this kind of rupture were only based
on continuum mechanics, the use of fracture mechanics seems to be more appropriate to deal with the possible
unstable propagation of such defects. For this purpose, a precise knowledge of snow fracture toughnesses in
both tensile and shear modes is needed. In the present work, we developed an experimental set similar to
Kirchner and Michot's, in order to measure mode I toughness. The experimental campaign carried out in the
Alps during the 2000-2001 and 2001-2002 winters on homogeneous sintered snow with different densities gave
toughness results of the same order of magnitude as Michot’s. However, an unexpected and reproducible
dependence of toughness on cantilever length was evidenced. Discrete element simulations of the toughness
experiment, considering snow as a cohesive granular material, showed that the elastic energy was stored along a
branching pattern. These findings suggest that the classical toughness should be replaced by a generalised

toughness defined on the basis of the fractal dimension of this force line pattern.
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1. Introduction

Most human triggered snow slab
avalanches are observed to start from a
considerable distance above the skier or the
explosive impact locations. There is a general
agreement that these triggerings result from a rapid
expansion of a so-called basal crack along the slab-
substrate interface, that yields a crown crack
opening when the tensile load in the slab exceeds
its rupture stress. It is therefore of interest to study
the stability of a unique basal crack loaded in shear,
using the classical concepts of fracture mechanics.
According to this scheme, a single crack is being
gradually expanded during the skier's motion, and
may further expand in a rapid and unstable way as
soon as its critical Griffith's size (Griffith, 1920) is
reached. The physical parameter involved in this
approach is obviously the snow shear toughness,
that determines the critical size for basal crack fast
expansion. Despite of its interest, snow toughness
is very poorly documented in the literature. This is
why we performed a series of original field
measurements of both tensile and shear
toughnesses of this material.
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2. Linear elastic fracture mechanics

The aim of fracture mechanics is to define
a scalar measure that characterizes stress
concentration at the crack tip. The critical value of
such a parameter can be used as a size-independent
crack instability (i.e. fracture) criterion.

2.1 Griffith’s approach

The first theoretical estimation of the
influence of the crack was made by Inglis in 1913.
The problem with these estimation was that it
predicted an infinite stress at the crack tip if the
crack was infinitely sharp.

Griffith (1920) proposed an energy based
approach. This approach is only valid for ideally
brittle continuum materials. Let us suppose, for
example, a circular crack of size a in an infinite
continuum material loaded in tension (Fig. 1).

If the energy needed to open the crack is smaller
than the elastic energy relaxed in the sphere, then
the crack starts to propagate in an unstable way
leading to global failure. This could be written in a
first approximation:

2\ d (4
(o—)—(—na3 da) = 2y 2mada (D)
2E) da \3
which gives:
oVma = m/2Ey = K, 2)

where © is the applied stress, E the Young's
modulus, 2a the crack length, v the surface energy
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of the material, i.e. the work per unit area of
created crack surface, and K. the so-called mode 1
tensile toughness, i.e. the critical value of the stress
intensity factor 0\/:% that leads to unstable crack
propagation. K. is an intrinsic material parameter
that only depends on elastic properties of the
material (namely the Young's modulus and the
surface energy) but is independent of the size and
the geometry of the material.

J— Elastic energy relaxed in «

when crack increases of d

Circular crack

of radius a

Figure 1: Stability of a circular crack under tensile
loading.

As three modes of rupture do exist, three
different fracture toughnesses have to be defined:
in tension, in shear and in shear out of plane,
respectively called mode I, mode II and mode II1.

Figure 2: Different rupture modes: mode I or
tensile (left), mode II and III or shear modes (center
and right).

2.2 Application to snow

If the loading time is short as compared to
the time required for significant snow creep (which
is the case at least for artificial triggerings), snow
can be considered as a brittle material. The
condition for basal crack instability is easily shown
to l})le (Louchet 2000):

% sin2ama, = Ky 3)
where p is the snow density, /4 the slab depth

measured vertically, o the slope angle, Kiyc is the
snow shear toughness, and a; the critical basal
crack size for unstable propagation, which is
expected to be of the same order of magnitude as
the path travelled by the skier when the avalanche
is released.

The mode II shear toughness Kj. may be
estimated either from failure stress of bulk ice

using the mechanics of porous media (Gibson &
Ashby 1988), or from experimental measurements
of mode I tensile toughness K. assuming snow
behaves as a classical dense material (Gibson &
Ashby 1988). Both estimates differ by about a
factor 20, which leads to a factor of about 400 in
basal crack critical sizes (Louchet et al. 2001). This
is the reason why we performed in situ toughness
measurements.

3. In situ measurements
3.1 Mode I toughness measurements

We based our experimental set up on that
of Kirchner et al. (2000). A metallic profile was
designed (fig. 3) and introduced horizontally in a
snow layer in order to isolate a snow beam from the
snow pack. In order to minimise snow-metal
adherence, the internal parts of the box were coated
with a plastic material classically used for ski soles.
The snow beam can be transported conveniently is
its container, and is then gently pushed forward to
obtain a cantilevered snow beam with a
predetermined cantilevered length D. The beam
experiences its own weight (fig. 3), no external
load being applied. The beam is then cut with a saw
along the box edge until the cantilevered portion
breaks off. The broken part is collected in a bag in
order to determine its weight. The fracture surface
(rough) can be clearly distinguished from the cut
(smooth), which allows a measurement of the
critical crack size a at failure.

!

Figure 3: Experimental set-up for snow toughness
measurements.

In this particular case, the fracture
toughness in mode I is given by (Kirchner et al.
2000):

K. = 3x F(a./b) [WDa!?] /b (4)
where K is the tensile fracture toughness, F a
geometrical factor depending on both a. and b but
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of the order of unity, W the weight of the
cantilevered part of the snow beam, D the
cantilevered length, a. the critical crack length, and
b the beam height.

3.2 Experimental results:

The experimental campaign was carried
out in the French Alps during the 2000-2001 and
2001-2002 winters on homogeneous sintered snow
with different densities from 200 to 350 kg.m3, and
for different cantilevered lengths. The results are
shown in figs. 4 and 5. Measurements performed
on the same layer lead to an incertainty of about
20%.

Fracture toughness is found around 1000
Pa.\/m, i.e. of the same order than Michot and
Kirchner's results, taking the same cantilevered
length (25 cm). Snow is thus three order of
magnitudes more brittle than concrete and six
orders more than steel. confirming that snow is the
most brittle material known in nature.

Experimental fracture toughness
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Figure 4: Measured tensile fracture toughnesses for
different cantilevered lengths.
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Figure 5: Measured tensile fracture toughnesses for
different snow densities, compared with literature
(open squares).

A surprising result however is that fracture
toughness, which should be an intrinsic parameter,

appears to depend on the cantilevered length. This
point will be discussed in § 4.

For practical reasons, variations of
toughness with density was measured on 3 different
densities only. For too low densities indeed, the
beam breaks off before attaining an acceptable
cantilevered length (i.e. to be in mode I conditions),
whereas for too high snow densities, the
experimental box cannot be introduced in the snow
pack. In the investigated density range, snow
toughness is found to increase with density, in
agreement with results from Kirchner et al. (2000)

(fig. 5).
3.3 Mode II toughness measurements

Mode II shear fracture toughness (at the
interface between the slab and the substrate) is
directly involved in the stability criterion of the
basal crack (eq. 1). Owing to the layered structure
of the snow cover, mode II toughness may
significantly differ from mode I tensile toughness
measured perpendicular to the layer plane.

Using theoretical results from fracture mechanics,
it is theoretically possible to deduce shear fracture
toughness values from mode I fracture toughness
ones, using the elastic constants of the material.
However, snow is an heterogeneous and
anisotropic granular material in which this
calculation is not valid, making direct
measurements necessary. A specific set-up
dedicated to mode II shear toughness
measurements is under construction.

4. Discussion
4.1 Discrete Element modelling

Though our mode I toughness
measurements gave results in agreement with
literature, an unexpected and reproducible
dependence of toughness on cantilever length was
evidenced (fig. 4). In order to better understand this
point, we decided to model our snow toughness
experiment using a discrete element method. Snow
is considered as a cohesive granular material. The
results are shown in fig. 6.

The crack morphology is reasonably well
reproduced. This model is also able to show string
forces between grains. We see in particular that the
stored elastic energy is not distributed
homogeneously in space (unlike assumed in
continuum mechanics), but along a branching
pattern.

4.2 Why does fracture toughness in tension
depends on cantilevered length?

Owing to the relatively large cantilever
length used here, the shear component of the stress
intensity factor Ky is negligible as compared to the
tensile component Kj, as discussed by Kirchner et
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al. (2002), and cannot account for an apparent
variation of Ky, with the cantilever length.

On the other hand, as shown by the
discrete element simulations reported above,
continuum media assumptions on which the
definition of a geometry-independent fracture
toughness is based (e.g. eq. 2) are no more valid
here.
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Figure 6: Discrete element simulations of the snow
toughness experiment. The crack propagation
morphology (top) can be compared with the real
experiment (bottom left). The force line pattern is
also obtained (bottom right).

Fig. 7: Schematic fractal string force pattern
starting from the tip of an infinitely long crack
perpendicular to the figure plane.

A possible explanation for the observed
dependence of Ky on cantilever length may
therefore be that the elastic energy is stored along a
fractal force pattern instead of being stored
homogeneously in the material. Using the same
argument as in § 2.1, the stability criterion for the
crack schematised in fig. 7 can be written as a
balance between the variations per unit length of
the elastic energy (stored along a fractal pattern)
and the increase of surface energy:

d [o® nad®
da(ZE 2 ) = )
where & is the fractal dimension of the force
pattern. A generalised "fractal" toughness may thus
be defined as:
K, = od ™ = 2L ©)

773
The fractal dimension & can be obtained by fitting
the equivalent of eq. (4) on experimental data in
order to obtain a K. value independent of the
cantilever length, and results to be different from 2.
Further work is required to relate & to the fractal
dimension of the material itself.

5. Conclusion

Our in situ snow toughness measurements
give promising results, of the same order of
magnitude than those by Kirchner et al. (2000).
However, these results are shown to depend on the
cantilevered length. We propose a possible
explanation of this surprising result, based on the
fact that the elastic energy in snow is not stored in
an homogeneous way as it is in a compact solid,
but along a branching pattern, as evidenced by
discrete element simulations. A generalised
toughness can be defined if this pattern is assumed
to have a fractal dimension. Further work is
required to relate this generalised toughness to the
fractal dimension of snow.
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