François Wasels

François Wasels
IFP Energies nouvelles · Applied Chemistry and Physical Chemistry Division

About

25
Publications
1,994
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
295
Citations

Publications

Publications (25)
Article
Full-text available
Clostridium acetobutylicum is a solventogenic, anaerobic, gram-positive bacterium that is commonly considered the model organism for studying acetone-butanol-ethanol fermentation. The need to produce these chemicals sustainably and with a minimal impact on the environment has revived the interest in research on this bacterium. The recent developmen...
Article
Full-text available
Efficient bioconversion processes of lignocellulose-derived carbohydrates into chemicals have received increasing interest in the last decades since they represent a promising alternative to petro-based processes. Despite efforts to adapt microorganisms to the use of such substrates, one of their major limitations remains their inability to consume...
Article
Full-text available
Solventogenic clostridia have been employed in industry for more than a century, initially being used in the acetone-butanol-ethanol (ABE) fermentation process for acetone and butanol production. Interest in these bacteria has recently increased in the context of green chemistry and sustainable development.
Article
Full-text available
Although Clostridium acetobutylicum is the model organism for the study of acetone-butanol-ethanol (ABE) fermentation, its characterization has long been impeded by the lack of efficient genome editing tools. In particular, the contribution of alcohol dehydrogenases to solventogenesis in this bacterium has mostly been studied with the generation of...
Article
Full-text available
p>Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol...
Article
Full-text available
The solventogenic C. beijerinckii DSM 6423, a microorganism that naturally produces isopropanol and butanol, was previously modified by random mutagenesis. In this work, one of the resulting mutants was characterized. This strain, selected with allyl alcohol and designated as the AA mutant, shows a dominant production of acids, a severely diminishe...
Preprint
Full-text available
Microbial production of butanol and isopropanol, two high value-added chemicals, is naturally occurring in the solventogenic Clostridium beijerinckii DSM 6423. Despite its ancient discovery, the precise mechanisms controlling alcohol synthesis in this microorganism are poorly understood. In this work, an allyl alcohol tolerant strain obtained by ra...
Article
Full-text available
Following the publication of this article [1], the authors noticed that Figs. 2, 3 and 4 were in the incorrect order and thus had incorrect captions.
Article
Full-text available
Background: There is a worldwide interest for sustainable and environmentally-friendly ways to produce fuels and chemicals from renewable resources. Among them, the production of acetone, butanol and ethanol (ABE) or Isopropanol, Butanol and Ethanol (IBE) by anaerobic fermentation has already a long industrial history. Isopropanol has recently rec...
Article
Full-text available
CRISPR/Cas-based genetic engineering has revolutionised molecular biology in both eukaryotes and prokaryotes. Several tools dedicated to the genomic transformation of the Clostridium genus of Gram-positive bacteria have been described in the literature; however, the integration of large DNA fragments still remains relatively limited. In this study,...
Patent
The invention relates to a genetic tool comprising at least two different nucleic acids allowing the transformation, by homologous recombination, of a bacterium of the genus Clostridium, typically of a solventogenic bacterium.
Chapter
Molecular analysis is an important tool to investigate Clostridium difficile resistance to macrolide–lincosamide–streptogramin B (MLSB). In particular, the protocols described in this chapter have been designed to investigate the genetic organization of erm(B)-containing elements and to evaluate the capability of these elements to transfer in C. di...
Article
Full-text available
Clostridium difficile PCR ribotype 018 has emerged in Italy, South Korea, and Japan, causing severe infections and outbreaks. In this study, we sequenced the genome of IT1118, an Italian clinical isolate, to clarify the molecular features contributing to the success of this epidemic type.
Article
Full-text available
Here, we report the draft genome sequence of Clostridium tyrobutyricum CIP I-776 (IFP923), an efficient producer of butyric acid. The genome consists of a single chromosome of 3.19 Mb and provides useful data concerning the metabolic capacities of the strain.
Article
Full-text available
Point mutations conferring resistance to fluoroquinolones were introduced in the gyr genes of the reference strain Clostridium difficile 630. Only mutants with the substitution Thr-82→Ile in GyrA, which characterises the hypervirulent epidemic clone III/027/NAP1, were resistant to all fluoroquinolones tested. The absence of a fitness cost in vitro...
Article
Full-text available
In Clostridium difficile, erm(B) genes are located on mobile elements like Tn5398 and Tn6215. In previous studies, some of these elements were transferred by conjugation-like mechanisms, mobilized in trans by helper conjugative systems. In this study, we analyzed the genomes of several recipient strains that acquired either Tn5398 or Tn6215-like el...
Article
Full-text available
Resistance to the macrolide-lincosamide-streptogramin B group of antibiotics in Clostridium difficile is generally due to erm(B) genes. Tn6194, a conjugative transposon initially detected in PCR-ribotype 027 isolates, is an erm(B)-containing element also detected in other relevant C. difficile PCR-ribotypes. In this study, the genome of a C. diffic...
Article
In Clostridium difficile, resistance to the macrolide-lincosamide-streptogramin B group of antibiotics generally relies on erm(B) genes. In this study, we investigated elements with a genetic organisation different from Tn5398, the mobilizable non-conjugative element identified in C. difficile strain 630. Our results suggested that the elements mos...

Network

Cited By