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Abstract-In this paper we present the research activity 

carried out in the integration of 2D and 3D vision systems 
into robot cells, to improve their performance in typical 
pick and place operations.  Two projects have been 
developed: the former is the combination of a 2D vision 
system based on two cameras with a two-robot cell. The 
latter consists of the integration of a laser slit - based 
optical head in a robot arm, for the 3D recognition of pose 
and orientation of objects, in view of bin picking 
applications. 

Both projects were committed by DENSO EUROPE B. 
V. with the aim of improving the robots performances in 
terms of flexibility and robustness of operation. 

 
Index Terms-2D vision, 3D vision, robotics, calibration 

I. INTRODUCTION 
The ability to perform complex tasks in semi-structured or 

even unstructured environments is strategic in industrial robot-
based applications. In pick and place operations, for example, 
the possibility of recognizing and manipulating unorganized 
objects increases the efficiency of the production line, since 
both the time and the investments to adapt the line to the 
production of new series can be dramatically reduced. On the 
other hand, a robot arm is blind by nature, and inherently 
unable to adapt to varying scenarios. One of the strategies that 
can be successfully implemented to cope with these 
limitations is to combine vision to robot motion. 

Vision sensors and image processing techniques have been 
consistently developed in recent years, for visual inspection 
and measurement applications. Typical fields are automatic 
manufacturing, product inspection, [[1][3]], non-destructive 
testing [4], and welding applications [5]. In the last decade, 
vision inspection systems have been considered as a valuable 
aid to add to robots the ability to detect the scene and to follow 
and adapt to scene variations.  

Our Laboratory has been active for years in the study of 
both 2D and 3D vision systems [6][7][8]. Since 2008 we have 
been given the opportunity of applying our knowledge in the 
realms of robot applications. Two projects started in 
collaboration with DENSO EUROPE B.V. 

The first project dealt with the integration of a 2D vision 
system in a DENSO robot cell for drink serving operations. 
The cell is called ‘Barman’. Two anthropomorphic robots 
were used to pick-up beer bottles from a conveyor, uncork 
them, and place them on a rotating table. The robots were 
programmed to perform a very limited set of actions, in a 

static, highly controlled environment; for example, the bottle 
shape was pre-defined, and the position on the table of each 
bottle should correspond with the position of suitable bottle 
racks, rigidly embedded at the border of the table. 

We were required to upgrade the system toward a ‘Smart 
Barman’ version, characterized by improved flexibility with 
respect to the original system. For example, the system should 
be able to serve beer of multiple brands, serve beer in glasses, 
and detect mis-positioned glasses. The underlying idea was to 
show the Barman functionalities at exhibitions, to demonstrate 
to potential costumers the advantages of using 2D vision in 
combination with robots, especially in terms of flexibility and 
robustness. 

The second project focused on the integration of a 3D 
vision system for flexible bin picking applications. The 
ultimate goal was to estimate both position and orientation of 
unorganized objects in the working area, for optimized robot 
gripping. In this case, a single DENSO robot has been 
equipped with a laser slit, and by means of a novel 
combination of 2D and 3D vision algorithms, it has been 
possible to recognize the scene, and to segment the acquired 
3D point cloud into the sub-parts corresponding to each 
object.  

In this paper, the main characteristics of both systems are 
presented, especially with reference to the developed vision 
procedures and to their performances. 

II. THE BARMAN SYSTEM 
Fig. 1 shows the system layout. Two anthropomorphic, 6-

DOF robots (DENSO VP-6242G), named Robot_1 and 
Robot_2, are the left and the right arm of the Barman 
respectively. 

 
Fig. 1. The Barman layout. 



The end-effector of Robot_1 is a pneumatic gripper, for 
bottle picking and glass filling; the end-effector of Robot_2 is 
a plastic hand equipped with a bottle-opener. The robots are 
partially embedded into a ‘thorax-shaped’ case, on which the 
monitor is placed. Each robot is cabled to its own controller 
(model RC7M). The supervisor PC controls both robots 
through TCP/IP ports. The communication between SPC and 
robot controllers is implemented in the Orin2 platform [9]. 
The procedures developed to control the whole system are 
integrated into the VB.NET environment. 

The vision system is composed of two CMOS digital USB 
2.0 cameras (µEye 1540-M 1280x1024 pixel), both equipped 
with a 12mm focal length objective. They are called S_CAM 
and M_CAM respectively. As shown in Fig. 1, the former is 
mounted on the section above the monitor, at about 870 mm 
from the table. The latter is rigidly mounted at the end-effector 
of Robot_2. The whole vision software has been developed 
using the Halcon suite of programs (MVtech GmbH, 
Germany) [10]. 

The Auxiliary Subsystem includes the conveyor and the 
round table shown in Fig. 1. The conveyor delivers bottles to 
the Barman. The round table has a diameter of 1m, and can 
rotate around its center. In Fig. 1, a tray of dimension 220 mm 
by 180 mm is shown. The surface of the tray is black, and the 
inner surface of the glasses is white, for high contrast against 
the tray. Two table positions are allowed. The former, shown 
in Fig. 1, is called Front position, the latter is 180° rotated 
(Back position). When the table is in Front position, customers 
are expected to place glasses on the tray. When the table is in 
Back position, the Barman is expected to fill the glasses. 

Fig. 2 shows a schematic diagram of the system workflow. 
It is based on the following tasks: 

Calibration: the aim of this task is to define a Global 
Reference System (GRS) common to both Robot_1 and 
S_CAM, in order to allow Robot_1 to correctly fill empty 
glasses viewed by S_CAM. A calibration master is used in 
both cases: when calibrating Robot_1, the positions of suitable 
points on the master are learned by using the teach pendant: 
the corresponding positions define axes X, Y, and Z of GRS 
reference.  

Calibration of S_CAM is aimed at estimating the extrinsic 
parameters (pose and orientation of the camera with respect to 
GRS) as well as the intrinsic parameters (focal length and lens 
distortion) [11]. Camera calibration is accomplished by 
acquiring the calibration plate at five different positions in the 
FOV. The markers are segmented with respect to the 
background, and the coordinates of the center of each marker 
are detected (marker centroids). A specially designed Halcon 
operator calculates both the extrinsic and the intrinsic 
parameters of the camera, using a-priori knowledge of the 
geometry of the calibration plate and the measured values of 
the coordinates of the centroids [12]. 

Waiting for glasses: in this task, the table is in the Front 
position, and M_CAM is positioned as in Fig. 3. The 
‘Tray_Monitor’ vision procedure detects if there are glasses 
on the tray. Customers can place and remove them from the 
tray; they can even orient them in incorrect positions (for 

example, glasses very close to each other, or glasses turned 
upside down). 

 

 
Fig. 2. The Barman system workflow. 

 
The Tray_Monitor procedure is able to detect all these 

situations, and to discriminate among glasses that can be filled 
and glasses that must not be considered for subsequent 
operations. 

 

 
Fig. 3. Position of M_CAM when waiting for glasses. 

When a predefined number K of glasses is detected, the 
table is rotated toward the Back position. Here, the position of 



each glass is estimated in GRS coordinates: the 
‘Locate_Glasses’ vision procedure carries out this task. 

Waiting for bottles: In this task, the system waits for beer 
bottles on the conveyor. M_CAM is positioned as shown in 
Fig. 4: either different beer brands, or bottles with other 
drinks, or else unknown objects (i.e., objects that are not 
bottles) can be placed on the conveyor. Customers can 
position a single object, or arrange a row of objects. 

All these situations are recognized by the 
‘Object_Detection’ vision procedure. Whenever a beer bottle 
is detected, its coordinates are computed for subsequent 
picking; in case the object on the conveyor is not a beer bottle, 
the Object_Detection procedure estimates its dimension, for 
subsequent disposal. 

Serving beer: the aim of this task is to uncork the bottle 
and to fill the beer into the glasses.  The information on the 
position of the glasses is given by the ‘Locate_Glasses’ 
procedure. The system is able to manage a number of different 
situations. For example, it recognizes if the bottle has been 
used to fill glasses before, and in this case it does not uncork 
it. It also keeps track of how many glasses can be filled, 
depending on the quantity of the beer still in the bottle; when 
the bottle is empty, it places it on the table, turns it, and serves 
beers. Object_Picking, Bottle_Uncorking, and Glass_Filling 
procedures carry out the above mentioned tasks. 

 

 
Fig. 4.  Position of M_CAM while waiting for bottles. 

A. Vision procedures 
The core of the system is represented by the vision 

procedures presented in this section. 
 

Tray_Monitor_Procedure 
In order to perform the Tray Monitor procedure, Robot_1 

is positioned as shown in Fig. 1. M_CAM continuously 
acquires the FOV and calculates the number N of glasses that 
are placed on the tray, inside the indicated area. A threshold 
value K is predefined for the minimum number of glasses that 
can be placed on the tray; when the condition “N equal to or 
greater than K” is detected, the acquisition stops. A Region of 
Interest (ROI) is superimposed to the image. This operation is 
performed to define the area of the image corresponding to the 

FOV; all subsequent operations are performed exclusively in 
the ROI. The procedure is based on the following steps: 
• Image binarization: this step is carried out to detect the 

‘candidate’ regions corresponding to the glasses.  
• Erosion: this operation is very useful to detect the glasses 

even when they are very close to each other. It erodes the 
input region with a structuring element in a way that its 
boundary gets smoothed and connected regions may be 
split [13]. 

• Image segmentation: those regions defined by the erosion 
are segmented, so as each glass is assigned to a blob. 

• Area filtering: this procedure calculates the area of each 
blob and thresholds it, to detect the presence of glasses 
oriented in an uncorrected way (for example, glasses 
turned upside down). 
An example of the elaboration above described is shown in 

Fig. 5. The performance of this procedure is well evidenced in 
Fig. 6. 

 

 
Fig. 5. Schematic representation of the sub-operations carried out by the 

Tray_Monitor procedure. 
 

 
Fig. 6. Example of the Tray_Monitor performance in the presence of glasses 

positioned in uncorrected ways. 
 

Locate_Glasses procedure 
This procedure estimates the coordinates of the centers of 

mass of the elliptic areas corresponding to the glasses viewed 
by S_CAM, and maps them into real world coordinates, using 
the calibration parameters. The process is very similar to the 
one already developed in “Tray_Monitor” procedure, and is 
aimed at the recognition of the blobs that identify the glasses. 



In addition to this, the estimation of the center of gravity of 
each blob is performed, to detect the position of each glass. 
Fig. 7.a shows the steps of the elaboration, while Fig. 7.b 
presents the resulting detection. 

 

 
(a) 

 

 
(b) 

 
Fig. 7.  Locate_Glasses procedure. (a): schematic representation of the image 
elaboration steps; (b): result of the detection.: glasses are numbered and the 

coordinated of their centers of gravity coordinates are visualized. 
 
An example of the robustness of this procedure is 

presented in Fig. 8: in both images it is easy to observe that 
the procedure can recognize situations where glasses are mis-
positioned. 

 

 
Fig. 8. Robustness examples of the Locate_Glasses procedure. Neither glasses 

turned up side down, nor those positioned outside the tray are detected. 
 

Object_Detection Procedure 
This procedure recognizes and classifies the objects 

detected at the end of the conveyor. Template Matching is 
used: it is based on the correlation between a template and the 
image [15]. Suitable templates are defined in such a way that 
it is possible to recognize which brand of beer is on the 
conveyor, and to detect beer bottles with respect to other, 
unknown objects. An example of the performance of this 
procedure is presented in Fig. 9. The image in Fig. 9.a shows 
the definition of a template: only the silhouette of the bottle is 
taken, in order to make the detection independent from its 
orientation, as shown in Fig. 9.b. 

 

 
(a) 

 

 
 (b ) 

 
Fig. 9. The Object_Detection procedure. (a): definition of one template; (b) 

detection of the bottle. 
 
Another interesting characteristic of this procedure is the 

ability to estimate, in case the object on the conveyor is 
unknown, if the robot itself is able to pick it up and dispose of 
it, depending on its dimension. This task is accomplished by 
measuring the dimension of the object  within a suitable ROI 
at the bottom of the image, and to check if it is compatible 
with the gripper dimension. Fig. 10 gives an idea of this task. 
In  Fig. 10.a an unknown object is detected, and the system 
recognizes that it can be removed automatically (i.e. by means 
of the gripper). Note that the presence of an adjacent bottle 
does not prevent it from detecting this situation correctly. In 



contrast, in Fig. 10.b, the situation where the operator 
intervention is mandatory is presented.  

 

        
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 10. Examples of the detection of unknown objects. (a): detection of an 

unknown object whose dimension are compatible with the gripper; (b) and (c): 
detection of unknown objects that must be removed by the operator. 

 

B. Whole system operation 
The whole system operation is based on a suitable 

combination of vision with motion. Object_Picking,  
Bottle_Uncorking, and Glass_Filling procedures pick bottles 
up, uncork them (if necessary) and pour beer into the glasses. 
Motion is also necessary (i) to rotate the table, (ii) to place 
bottles on the conveyor (if all the glasses are full of beer and 

the bottle is not empty), and (iii) to place empty bottles on the 
table for subsequent disposal. 

The Barman operation is shown in a video at the 
laboratory website (www.optolab-bs.it). The system shows 
remarkable flexibility of operation and high robustness against 
variations of the scene under a number of aspects. In fact, it 
works well (i) independently from how the glasses are placed 
on the tray, (ii) the bottles are arranged on the conveyor, (iii) 
in the presence of blurred and noisy images, and (iv) under 
variations of the environmental illumination levels. The 
Barman system was used at the Automatica 2010 exhibit, as 
presented in Fig. 11. 

 

 
Fig. 11. The Barman demonstrator at Automatica 2010. 

III. THE ROBOSCAN SYSTEM 
The Roboscan system has been developed as a robot-guide 

application that integrates 2D/3D vision sensors into a robot 
arm. The goal of the project was to obtain a system able to 
recognize the orientation of unknown objects in the working 
area, and to pick them up: to this aim, both vision and motion 
procedures are suitably combined to perform this task. 

Fig. 12 shows the system layout. A DENSO robot model 
VS6556 is used as the manipulator; the vision system is based 
on a video camera (IDS UI-1540SE), and on a laser projector 
(Lasiris 660nm, 10mW). The camera and the laser are denoted 
by M_CAM and LSR_1 in the figure. The laser projects onto 
the scene a laser slit, which is viewed at an angle by M_CAM. 
The camera-projector pair (denoted by TO_1) forms an optical 
3D head based on laser triangulation. In addition, the camera 
is used per se, to acquire the 2D image of the field of view 
(FOV). With respect to other bin picking devices, the 
Roboscan system is able to recognize objects of different 
geometries and, for each of them, to compute their orientation. 
This behavior requires a high level of flexibility, and has been 
achieved by combining 2D vision with 3D vision. 

To develop this application we worked in the LabView 
environment, and used the IMAQ libraries for vision (NI Inc., 
USA), together with the Robot Libraries (ImagingLab srl, 
Italy) to move the robot arm.  

Fig. 13 shows the Roboscan workflow. It based on the 
following tasks:  



Calibration: The aim of this task is to calibrate the robot, 
the camera and optical head TO_1, in order to allow all these 
subsystems to share the same global reference system (GRS). 

 
Fig. 12. The Roboscan system layout. 

 

 
Fig. 13. The Roboscan system workflow. 

 
The calibration master shown in Fig. 14 is used to perform 

all these operations. Specialized functions in the LabView 
environment allow us to acquire the master at different heights 
and to calculate the pose and the orientation of both M_CAM 
and TO_1 within GRS. In addition, they compensate for lens 
distortion [16]. As a result, the object points are estimated in 
the reference system of the robot. 

2D elaboration: The aim of this task is to acquire the 2D 
scene and to recognize the types of the objects in it. 

 

 
Fig. 14. The master used to calibrate the system. 

 
These operations are accomplished by means of blob 

analysis, image preprocessing and suitable geometrical pattern 
matching. A typical example of the elaboration is presented in 
Fig. 15. The acquired scene, shown in Fig. 15.a, is elaborated 
by means of blob analysis, which binarizes the image and 
determines the sub-area where objects are imaged. In Fig. 
15.b, this sub-area is the one between the left and the right 
columns. Its knowledge greatly simplifies the subsequent 3D 
scanning, since it prevents the robot from scanning sub-areas 
where objects are absent. 

 

 
(a) 

 
(b) 

 

 
(c) 

Fig. 15. Steps of the elaboration during 2D acquisition. (a): image of the 
working area: (b): effect of blob analysis; (c): detection of the objects by 

means of geometric template matching. 



Object classification is carried out by means of geometric 
template matching. The technique is well known: it is based 
on the convolution between a template and the image: 
whenever the correlation score is higher than a predefined 
threshold, a positive matching is detected. Correspondingly, a 
number of parameters are calculated. Among them, we are 
interested into the position P(X,Y) of the center of the 
rectangle that frames each detected object, the corresponding 
area value, and the scale factor.  

In order to obtain a template matching as effective as 
possible, suitable image preprocessing is performed before. It 
consists of brightness and contrast adjustment, gaussian 
blurring and laplacian edge detection. An example of the 
effect of both pre-processing and template matching is shown 
in Fig. 15.c, where each object is recognized and framed by a 
rectangle. It is worth noting that by defining a template for 
each object typology, it is possible to recognize the presence 
of different objects, and to estimate their position and 
orientation. This information is used in the 3D scanning task. 

3d scanning:  this task is naturally performed by optical 
head TO_1. It scans the working area and outputs the 
corresponding point cloud. Since the system is calibrated, the 
point cloud is defined in the GRS system. An example of this 
process is presented in Fig. 16. The zoomed area in Fig. 16.a 
well highlights the detection of the image coordinates at each 
illuminated point. The plot in Fig. 16.b presents the 
corresponding 3D point cloud. 

 

 
(a)  

 
(b) 

 
Fig. 16. 3D scanning task. (a): elaboration of the laser slit at the image plane; 

(b): corresponding 3D point cloud. 
 

3D segmentation: this task is aimed at segmenting each 
object of the whole 3D point cloud. 

To efficiently perform this operation, the information 
coming from 2D template matching is used. In particular, the 
position of each rectangle yields the coordinates P(X,Y) of the 
framed object in the cloud, and the scale factor yields its 
position along the z coordinate (i.e. if it is above, at the same 
level of under other objects). 

3D object fitting: each sub-cloud is elaborated to estimate 
the orientation in GRS of the corresponding object. A surface 
fitting algorithm is used [17]. The algorithm fits the data 
points to a second-order polynomial, that fits planar, spherical, 
cylindrical and pyramidal surfaces. Object orientation is found 
by estimating the director cosines of the plane tangent to the 
fitted surface, in correspondence with position P(X,Y). 
Director cosines values are used to determine the orientation 
of the robot gripper. 

Object Picking: object picking is straightforward: both the 
position and the orientation of each object are known, and by 
means of simple motion commands, the robot can move the 
gripper accordingly to them, and picks objects up. 

An example of the performance of this system is shown in 
Fig. 17, where a rather complex scene is considered. 

 

  
(a) 

 

 
(b) 

 
(c) 

Fig. 17. Example of 2D and 3D elaboration.  (a): image of the objects in the 
work space; (b): detection of the position of each item by means of template 

matching; (c): segmented 3D point cloud. 
 



The objects in Fig. 17.a are of the same type, but they are 
quite a few, and randomly placed in the scene. In addition, 
some of them presents a very high reflectance, while some 
others are matted. The image in Fig. 17.b shows the effect of 
the 2D elaboration: the rectangles on the image frame all the 
objects that are viewed by M_CAM; each one has the 
coordinate P(X,Y) of its center assigned. It is worth noting 
that the template matching works quite well, since almost all 
the objects are detected. The two objects that are not framed 
are almost completely hidden by other items on them. They 
will be scanned in a subsequent step.  

The performance of the 3D elaboration procedure is visible 
in Fig. 17.c: here, the white lines represent the whole 3D point 
cloud captured during the 3D acquisition step. A different 
solid color is assigned to each object, indicating that it 
corresponds to a segmented 3D sub-cloud. 

An example of how 3D object fitting works is presented in 
Fig. 18.  

 

  
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 18. Detection of objects of different shapes. (a): image of the scene in the 
working area; (b): estimation of the plane tangent to the ball in the upper-left 

corner; (c): estimation of the tangent plane to the  upper rectangle, in the 
center of the image.  

In this experiment, the scene is characterized by different 
objects, partially overlapped, and with different reflectance 
and texture (Fig. 18.a). 

The image in Fig. 18.b shows the segmented 3D point 
cloud, where the plane tangent to the ball in the upper right 
corner (plane A). Its orientation clearly shows that both the 
position of the ball, and the gripping direction (red arrow) has 
been correctly estimated.  

In a similar way, the plane tangent to the rectangular object 
in the central part of the point cloud is shown in Fig. 18.c 
(plane B): it is inclined with respect to the orientation of the 
object beneath, as expected from the fact that in Fig. 18.a it is 
partially overlapped to the object at right (the one with circular 
shape). 

IV. CONCLUSION 
In this paper, the main features of two robotic cells that 

have been enhanced by integrating both 2D and 3D vision 
systems have been presented. The aim in both cases was to 
add flexibility and robustness to the robots, in picking 
applications. Both systems have been widely tested, and show 
significant improvements with respect to their performances 
before integrating the vision devices. Further developments 
deal with the integration of a 3D vision head based on fringe 
projection, to parallelize 3D acquisition and to speed up the 
robot operations. 
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