
Determining Frequent Patterns of Copy Number
Alterations in Cancer
Franck Rapaport, Christina Leslie*

Computational Biology Program, Sloan-Kettering Institute, New York, New York, United States of America

Abstract

Cancer progression is often driven by an accumulation of genetic changes but also accompanied by increasing genomic
instability. These processes lead to a complicated landscape of copy number alterations (CNAs) within individual tumors and
great diversity across tumor samples. High resolution array-based comparative genomic hybridization (aCGH) is being used
to profile CNAs of ever larger tumor collections, and better computational methods for processing these data sets and
identifying potential driver CNAs are needed. Typical studies of aCGH data sets take a pipeline approach, starting with
segmentation of profiles, calls of gains and losses, and finally determination of frequent CNAs across samples. A drawback of
pipelines is that choices at each step may produce different results, and biases are propagated forward. We present a
mathematically robust new method that exploits probe-level correlations in aCGH data to discover subsets of samples that
display common CNAs. Our algorithm is related to recent work on maximum-margin clustering. It does not require pre-
segmentation of the data and also provides grouping of recurrent CNAs into clusters. We tested our approach on a large
cohort of glioblastoma aCGH samples from The Cancer Genome Atlas and recovered almost all CNAs reported in the initial
study. We also found additional significant CNAs missed by the original analysis but supported by earlier studies, and we
identified significant correlations between CNAs.
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Introduction

Cancers are a complex set of proliferative diseases whose

progression, in most cases, is driven in part by an accumulation of

genetic changes, including copy number aberrations (CNAs) of

large or small genomic regions [1,2,3] which may for example lead

to amplification of oncogenes or loss of tumor suppressor genes.

However, cancer progression is also often characterized by

increasing genomic instability, potentially generating many

‘‘passenger’’ CNAs that do not confer clonal growth advantage.

These processes give rise to a complicated landscape of genomic

alterations within an individual tumor and great diversity of these

CNAs across tumor samples, making it difficult to identify driver

mutations associated with cancer progression.

In recent years, array-based comparative genomic hybridiza-

tion (aCGH) [4,5] and single nucleotide polymorphism (SNP)

arrays [6] have been used to analyze the CNAs of tumor samples

at a genomic scale and at progressively higher resolutions.

Moreover, numerous large-scale tumor profiling studies have

generated copy number data sets for large cohorts of tumors

[7,8]. These large and complex ‘‘cancer genome’’ data sets

present difficult statistical challenges [9]. Individual CNAs may

be as small as a few adjacent probes or as large as a whole

chromosomes and may be difficult to detect above probe-level

noise; moreover, it is unclear how to make sense out of diverse

CNAs from hundreds of tumors.

Typically, two kinds of analyses have been carried out on copy

number data sets:

1. clustering of samples by their CNAs, to determine possible

tumor subtypes characterized by a common pattern of

amplifications and deletions;

2. determining significant genetic aberrations, either gains or

losses, that occur frequently in the data set, since these may

represent driver mutations important for tumor progression.

Almost always, these problems are tackled with a pipeline

approach, where aCGH profiles of chromosomes for individual

samples are first processed by a segmentation algorithm; individual

segments (genomic regions) are ‘‘called’’ as gains or losses, based

on their amplitude, using a choice of statistical procedure and

significance threshold; and finally the called segments are used as

input to a clustering algorithm [1,10,11] or score-based method

for determining significant common aberrations [12,13,14]. The

disadvantage of pipeline approaches, however, is that algorithmic

choices and tuning parameters at each step may produce very

different results, and mistakes or biases are propagated forward.

For the first step, there are numerous segmentation algorithms

[15,16,17,18] that yield significantly different segment boundaries

[19], leading to different calls of gains and losses. The final step of

analyzing CNAs across samples depends critically on choices made

earlier. As an example, the widely-used GISTIC method for

determining frequent aberrations [12] uses as its test statistic, at

each locus, the number of samples in which a gain (or loss) is

present multiplied by the mean amplitude of the gain (loss).

However, both the count and the mean amplitude depend on

earlier choices in the pipeline.
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In this study, we propose a novel and mathematically robust

method for finding significant patterns of CNAs in a large copy

number data set directly from the probe-level data. By avoiding a

pipeline approach involving a segmentation step, our algorithm

exploits probe-level correlations in aCGH data to discover subsets

of samples that display common CNAs. By applying the approach

in a hierarchical fashion to iteratively partition the data set, we

discover both large- and small-scale events and can detect

statistically significant CNAs occurring on *5% of the samples.

In this way, the algorithm addresses both the clustering problem

and the frequent aberration problem at the same time.

Algorithmically, our approach is related to recent work on

maximum-margin clustering [20,21,22,23], which extends support

vector machine-like optimization approaches to the problem of

unsupervised clustering. That is, each partition of the data set is

achieved by learning a linear classifier of the probe-level aCGH

profiles that assigns samples to one group or the other. We also

build on ideas developed for supervised classification of aCGH

samples [24,25,26,27], in particular, the use of piece-wise constant

and lasso [17,26,28] regularization terms in the optimization

problem, which encourages the classifier to make decisions using

only a small number of probes in informative contiguous regions.

We tested our approach on a large cohort of glioblastoma

aCGH samples recently generated by The Cancer Genome Atlas

Project (TCGA) [7]. We found that the major CNAs detected by

our algorithm are largely consistent with the original TCGA study,

in that almost all CNAs previously reported were also in our

results. However, we found additional significant CNAs missed by

the TCGA analysis but supported by earlier studies and/or

expression analyses. Moreover, the hierarchical partitioning

approach summarizes the set relationships and dependencies

between different CNAs, which may be helpful for generating

hypotheses about the sequence of CNAs in tumor progression.

Results

Algorithm overview
Our algorithm iteratively partitions a data set of tumor aCGH

profiles for a given chromosome to discover subsets of tumors with

similar CNAs. Instead of using standard preprocessing techniques

like segmentation algorithms, we directly use probe-level data and

incorporate prior knowledge about the nature of this data, namely:

(1) successive probes are correlated, i.e. are likely to represent the

same copy numbers; and (2) a chromosome typically (though not

always) harbors few CNAs. At each partitioning step, we learn a

linear separator fw,b(x)~w:xzb that assigns aCGH profiles x to

one of two classes, represented geometrically by the two half-

spaces (i.e. fw,b(x)w0 and fw,b(x)v0) on either side of the

hyperplane defined by the normal vector w and bias term b
(Figure 1). Here, chromosome profiles x and the weight vector w
are real-valued vectors with dimension equal to the number of

probes for the chromosome, and w is determined by solving an

optimization problem (see Methods) where it is constrained to be

piecewise constant (successive probes tend to have the same

weights) and sparse (few probes have non-zero weights). Our

approach builds on a recently proposed maximum margin

clustering algorithm [21,22], which brings ideas from large-

margin supervised learning techniques like support vector machine

classification and support vector regression to the unsupervised

clustering problem; the choice of constraints was motivated by

recent work on fused lasso regression [28] (see Methods).

Since each linear separator results in a binary partition of

samples, we apply our procedure iteratively to separate each group

of samples into two new groups in such a way that the new linear

separator is orthogonal to the previously determined ones.

Therefore, each step will find a new direction of variation in the

aCGH data (similar to principal component analysis [29]), and the

overall procedure results in a hierarchical partitioning of the data

set (see Methods).

Large-margin partitioning reveals hierarchy of copy
number changes

We collected our data set from the Cancer Genome Atlas

(TCGA) data portal [7]. It contains 345 glioblastoma tumor

samples with copy number changes profiled on Agilent 244K

arrays (*228K probes). This data set has previously been

analyzed to determine major amplification and deletion events

using the RAE [13] and GISTIC [12] algorithms [7].

We used the Level 2 data already produced by the previous

analysis [7]. This data has already been normalized through the

application of a lowess algorithm on the log2 ratio data, and

probes flagged as low-quality (saturated, non-uniform or faint) are

excluded. Quality of the arrays was also measured through the

proportion of excluded probes and the consistency of values

associated with successive probes, and low-quality arrays were

removed from the data set.

We ran our algorithm separately on every chromosome, with a

sparseness coefficient l~20 and a piecewise-constantness coeffi-

cient m~2 (see Methods). Empirically, we found the following

dependence on the choice of these coefficients: if the coefficients

were chosen to be too small, it would result in a trivial clustering,

with all samples assigned to the same group; if the parameters were

too permissive, the clustering obtained would be the same as

standard k-means (k~2). However, between these two extremes,

clustering results were not overly sensitive to parameter choice. We

expect the suitable range of parameters to depend on the array

platform as well as statistical properties of the array profiles in a

given data set. We therefore suggest performing a grid search on a

subset of the samples and selecting the smallest possible

parameters that give a non-trivial clustering on every chromo-

some.

In order to assess the significance of our results, we used a

random model where we shuffled the probes of our dataset and

compared the distance between the median samples of our two

groups to the distribution of 1000 distances of median samples of

two random sample groups separated with the same classifier. We

verified that the randomized distance distribution follows a normal

distribution, and we computed the p-value for the distance

between the median samples corresponding to the tail of this

normal distribution.

For each chromosome, we constructed a ‘‘clustering tree’’ by

iteratively splitting each group into two if it respected three

criteria. The first criterion was that it must contain more than five

samples (*1.5% of the data set), since it would be difficult to

achieve a statistically significant partition of very small subsets.

The second criterion was that splitting this group would not make

the depth of our tree bigger than 3. The maximal depth was

chosen heuristically: after three iterations, we empirically found

that the groups were too small or the separation was not significant

anymore. The last criterion was that the partition generating this

group must satisfy a significance threshold of pv0:05. While this

p-value may seem overly permissive, it is important to understand

that our estimator (the centroid distance) is not directly optimized

by the algorithm; therefore, the empirical p-values generated are

fairly conservative.

Figure 2 gives an example of a ‘‘clustering tree’’ produced by

our algorithm for chromosome 19. The first iteration separates the

samples into two clusters, one with 17 samples that presents a
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deletion of a region of the q arm and one of 326 samples, with

pv0:04. The centroid of each cluster is shown in green (Figure 2,

leftmost column); in addition, a segmentation of each cluster

centroid using a standard tool (circular binary segmentation [30])

is shown to aid visualization of the copy number differences

between the two groups. As pv0:05 for this separation and each

cluster is bigger than 5 samples, we split each of these subsets into

two new groups. The splitting of the group of 17 samples is is not

associated with a significant enough median separation (pv0:7)

and therefore is not split again. On the other hand, the partition of

the group of 326 samples produces one group of 250 samples

without any apparent significant CNA and a group of 76 samples

whose centroid shows an amplification of the whole chromosome.

This split has strong significance (pv3|10{11), and therefore

both of these groups are split again. The partition of the group of

250 samples does not achieve significance (pv0:2), and neither of

the resulting clusters show any significant CNAs. The group of 76

samples is divided into two new groups of 37 and 39 samples

(pv7|10{3). Each of these groups shows an amplification of the

whole chromosome, but the group with 39 samples seems to have

a lower amplification of the q arm than of the p arm while the

other does not. As we limit ourselves to trees of depth 3, we do not

partition either of these groups any further.

Analysis of glioblastoma aCGH data recovers known
CNAs without segmenting samples

We applied the iterative procedure to each chromosome

independently, as described in the previous section. To call

Figure 1. Toy representation of a linear partition of aCGH samples using large-margin techniques. The algorithm finds a linear function
f (x)~w:xzb that is able to partition the aCGH samples into two groups. By solving an optimization problem, the algorithm determines the vector w,
which geometrically represents the normal vector of a hyperplane (shown in red) separating the samples, along with the bias term b, and the
assignment of samples to groups. In the toy example shown, the hyperplane separates the samples that present a deletion on the q arm (above the
hyperplane) from the ones that do not (below the hyperplane).
doi:10.1371/journal.pone.0012028.g001
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characteristic CNAs of each cluster, we applied circular binary

segmentation [30] using default parameters on its centroid, i.e. the

median profile of the cluster, and associated the characteristic

CNA(s) of this centroid to the cluster. One should understand that

the aberrations of the centroid profile may not be shared by every

one of the cluster samples, but that it gives a good estimate of these

events. We also caution that the size of the partition gives a good

idea of the penetrance but is not entirely equivalent.

The first iteration of our algorithm found an amplification of the

whole chromosome 1, of the whole chromosome 7 and of the

whole chromosome 20. It also identified the deletion of the whole

9p arm, as well as a big part of 19q, the whole chromosome 10, the

whole chromosome 13, the whole chromosome 14 and the whole

chromosome 22. The second iteration of the algorithm found the

loss of 6q arm, deletion of the whole chromosome 15, of the whole

chromosome 16 and an amplification of the whole chromosome

19. It also demonstrated that some samples that present an

amplification of chromosome 7 also contain a focal and very

strong amplification event on the 7p arm. The third iteration of

the algorithm identified focal amplification events on chromosome

3 and on chromosome 4. It also showed a loss of the whole

chromosomes 9 and 21. These results are summarized in Table 1,

along with the size of the partition in which each CNA was

identified in terms of number of samples and percentage of the full

data set.

An analysis of the same data set using both RAE [13] and

GISTIC [12] algorithms has already been published [7]. Both

methods agreed on significant large-scale amplification events for

the whole chromosomes 7, 19 and 20 and focal amplification

events on chromosome 1 and 12; significant large-scale deletion

events on chromosomal arms 6q, 9p, 15q, on whole chromosomes

10, 13, 14 and 22; and focal deletion events on chromosome 1. In

addition, RAE found significant focal amplification events on

chromosome 14, as well as significant focal deletion events on

chromosome 11. By contrast, GISTIC found different additional

focal amplification events on chromosomes 3 and 4. Figure 3

includes a summary of our results as well as a comparison with the

amplification and deletion events found by both of these analysis.

As shown in Figure 3, most of the events found in both RAE

and GISTIC analyses are found by the first two iterations of our

Figure 2. Clustering tree for chromosome 19. At each iteration of the algorithm, each previously identified group of samples are partitioned
into two new clusters used a maximum-margin clustering technique that exploits the correlations in aCGH profiles (see Methods). The partitioning
process stops when (i) a group has fewer than 5 samples; (ii) the partition generating the group fails to achieve a statistical significance threshold of
pv0:05; or (iii) the tree is already at the maximum depth of 3. In the picture above, each group is represented by its centroid, i.e. its median profile, in
green. For visualization purposes, the segmentation of the centroid, produced by circular binary segmentation [30], is shown in red.
doi:10.1371/journal.pone.0012028.g002

Patterns of CNAs in Cancer

PLoS ONE | www.plosone.org 4 August 2010 | Volume 5 | Issue 8 | e12028



method, including every large-scale event identified by these

methods. Exceptions include a small amplification event on

chromosome 12, the events on chromosome 1 (where our method

disagrees with the finding of RAE and GISTIC) and an

amplification event on chromosome 4, which is found on our

third iteration.

Iterative partitioning reveals novel CNAs supported by
independent glioblastoma studies

Beyond recovering almost all the CNAs identified by methods

like RAE and GISTIC, our iterative partitioning algorithm found

a number of significant events that were not discovered by

previous analyses of this dataset. These events include an

amplification of the whole chromosome 1, a deletion event on

the whole chromosomes 9, 15, 16 and 21, as well as a deletion of

the 19q arm.

Some of these events have been documented in studies of

independent copy number data sets, such as the deletion on the

19q arm [31,32] and of chromosome 16 [33]. The deletion of

chromosome 21 has been previously associated with glioblastoma

[34], and it has been proposed that the low incidence of

glioblastoma in Down’s syndrome patients is linked to the

chromosome 21 trisomy that characterizes this genetic condition

Table 1. Summary of significant events in glioblastoma data set.

Event Iter. # of samples % of samples Size of event Correlated genes Examples of candidate genes

(a) Chr. 1 1 26 7.5% 247 Mbp 170=2101 LCK, PAX7, RPL22

(a) 3q26.1 3 6 1.7% 25 Kbp 2=11

(a) 4q12 3 7 2.0% 236 Kbp 19=40 CHIC2, FIP1L1, KIT, PDGFRA

(d) 6q 2 31 9% 110 Mbp 239=470 FOXO3A

(a) Chr. 7 1 169 49% 158 Mbp 493=984 BRAF, CDK6, EGFR, ELN, HIP1, PMS2,
SMO, TIF1

(a) 7p11.2 2 76 22% 37 Kbp 11=22 EGFR

(d) 9p 1 99 29% 47 Mbp 111=221 CDKN2A- p14ARF, CDKN2A -
p16(INK4a),FANCG, JAK2, MLLT3, PSIP2

(d) Chr. 9 3 7 2% 140 Mbp 0=785

(d) Chr. 10 1 154 45% 135Mbp 397=785 BMPR1A, D10S70, MYST4, NCOA4, PTEN,
SSH3BP1

(d) Chr. 13 1 61 18% 114Mbp 187=371 ERCC5, FOXO1A, LHFP, RB1, ZNF198

(d) Chr. 14 1 165 48% 106Mbp 333=658 AKT1, BCL11B, DICER1, GPHN, KTN1,
TCL1A, TCL6, TSHR

(d) Chr. 15 2 21 6.1% 100 Mbp 298=592 BLM, CRTC3, NTRK3, PML

(d) Chr. 16 2 15 4.3% 88.8 Mbp 408=802 CBFB, CDH1, CREBBP, CYLD, HERPUD1,
IL21R, CDH11, MAF, MHC2TA, MYH11,
TNFRSF17

(d) 19q13.2–
19q13.43

1 17 4.9% 25.2 Mbp 230=452 BCL3, ERCC2, TFPT, ZNF331

(a) Chr. 19 2 76 22% 63.8 Mbp 621=1249 AKT2, BCL3, BRD4, CIC, ELL, ERCC2,
KLK2, SH3GL1, STK11, TCF3, TFPT, TPM4,
ZNF331

(a) Chr. 20 1 74 21% 62.4 Mbp 285=570 ASXL1, GNAS, SS18L1, TOP1

(d) Chr. 21 3 6 1.7% 46.9 Mbp 117=231 ERG, RUNX1, DSCR1

(d) Chr. 22 1 300 87% 49.7 Mbp 40=525 CTCL1, EWSR1, MKL1, SMRCB1, ZNF278

We indicated the iteration in which the event was found as well as the number of samples that were assigned to this cluster and the percentage of the total number of
samples this represented. Deletions are denoted by the symbol (d) and amplifications by the symbol (a). Region names in boldface denote novel CNAs that were not
found by previous analyses while underlined regions represent short events. Candidate genes denote significantly differentially overexpressed genes in this region if the
CNA is an amplification and significantly differentially underepxressed genes in this region if the CNA is a deletion, according to a SAM analysis and out of the total
number of genes in the region.
doi:10.1371/journal.pone.0012028.t001

Figure 3. Comparison of the gains and losses found by iterative partitioning versus previous analyses. The horizontal tracks show the
CNAs identified by first three iterations of our method, compared to the ones found by GISTIC and RAE. The middle track depicts the chromosomes,
with even chromosome numbers annotated. Gains are denoted in red and losses in blue.
doi:10.1371/journal.pone.0012028.g003
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[35]. Here, we find the chromosome deletion associated with a

very small cluster (6 samples), and the low frequency presumably

explains why this aberration was missed by previous analyses. The

deletion of chromosome 15 actually includes the deletion on the

15q arm found in the previous analyses. The shape of the centroid

for this partition shows that the amplitude of the deletion is smaller

on the rest of the q arm and on the p arm, and it is possible that

full chromosome deletion was not found by RAE or GISTIC due

to the smaller amplitude.

To identify genes that are well correlated with the CNAs, we

performed a significance analysis of microarray (SAM) using the

SAMR package. For each cluster, we labeled each sample

according to its label (inside or outside the cluster of interest)

and looked at the number of genes of the region of the CNA that

were significantly differentially underexpressed in the case of a

deletion, or significantly overexpressed in the case of an

amplification. Calculations were done using the t-statistic, 100

permutations and the Tusher method [36].

Our results, summarized in Table 1, show that in most cases a

large number of genes had expression levels that are significantly

correlated with the assignment of samples to the cluster harboring

the CNA. It should be noted that the relationship between

expression and copy number is complex, and that the absence of

significant correlations does not exclude the presence of the CNA,

especially in cases where the low count of genes or samples makes

this correlation statistically difficult to prove.

The novel CNAs discovered by our analysis are correlated with

several important genes. For example, the deletion of the

chromosome 16, the 19q13.2–19q13.43 regions, and the chromo-

some 21 are significantly correlated with underexpression of

candidate cancer-suppressor genes, respectively CBFB [37,38] or

CDH11 [39], TFPT [40] and DSCR1 [35], giving additional

evidence in support of these events.

Several sets of frequent chromosomal aberrations show
high correlation

One advantage of our method compared to score-based

approaches such as RAE and GISTIC is that it gives an

assignment of samples to groups – or, more precisely, identifies

CNAs by simultaneously finding the groups of samples that harbor

them – which makes it easier to identify which samples are affected

by which frequent CNAs. We associated each sample to a set of

frequent CNAs based on its cluster assignments in the chromo-

some-based iterative partitioning procedure. We found that co-

occurrences of frequent CNAs within a sample were common;

indeed, a majority of samples (249 out of 345) contained 2 or more

of the frequent CNAs listed in Table 1.

We further examined co-occurrences of pairs of frequent CNAs,

and we found that 31 pairs can be considered correlated (i.e. with

an intersection of sample assignment better than expected by

background frequencies) with pv10{10 by Fisher’s exact test (see

Supplementary Figure S1).

A simple analysis of these significant pairs revealed that these

correlated CNAs can actually be seen as three groups of co-

occurences:

1. The amplification of chromosome 7 and its associated focal

amplification event, the deletion on 9p, the deletion of

chromosomes 10, 13 and 14 as well as the amplifications on

chromosomes 19 and 20 are all highly correlated.

2. The deletion of 6q is well correlated with the focal

amplification event on chromosome 7 as well as with the

deletion on 9p.

3. The deletion on chromosome 22 is well correlated with the

amplification of chromosome 7 (but not with the associated

focal event), the deletion of chromosome 10 and the deletion of

chromosome 14.

Discussion

Recovery of CNAs missed by summary statistics
Some of the novel glioblastoma CNAs that we found are good

examples of how our method improves on summary statistic

approaches, such as RAE and GISTIC. For instance, the deletion

of chromosome 15 has only been spotted on the q arm by RAE

and GISTIC. When we examined the profile of the centroid of a

cluster identified by our method, we saw a lower amplitude

deletion on the p arm as well. Because of this low amplitude, each

probe on its own would not have a significant mean deletion across

the data set and would hence be missed by a summary statistic.

However, because all of the probes for the chromosome are

affected, the deletion should be considered a significant CNA and

is readily identified by approach.

As a second example, the deletion of the region 19q2–19q13.3

has not been found by other methods applied to the TCGA data

set, even though it has been confirmed as a deletion event by

previous studies. Here, the problem seems to be the fact that the

same region is also present as an amplification event on a larger

number of samples, which confounds the detection of this deletion

by a summary test statistic. Finally, the deletion of the whole

chromosome 21 is presumably missed by other methods because it

is presents on only a small number of samples (6 samples or *2%).

However, since this event is a deletion of the whole chromosome

and therefore supported on many probes, intuitively it should be

much more statistically significant that a smaller but similarly

infrequent event. Indeed, the importance of this CNA is confirmed

by previous studies linking trisomy 21 in Down’s syndrome to

lower prevalence of glioblastoma as well as by the correlation with

the under-expression of a candidate tumor-supressor gene present

in this region.

Recovery of focal events
Figure 3 shows that even though the first iteration of our

algorithm seems to focus on large aberrations, the following

iterations are able to find focal events such as the ones on

chromosomes 3 and 4, and that our algorithm is therefore able to

find focal events as well as large ones. The only focal event whose

presence is agreed on by both RAE and GISTIC and that our

method is not able to find is the one on chromosome 12. Looking

at the raw data shows us that this event is shared by roughly 40

samples but only affects 2 probes, which makes it a difficult signal

to find when looking a multiple probes. However, by restricting

our analysis to a small interval centered on the event (*300kbp or

40 probes), we were able to identify the common event using our

maximum-margin clustering algorithm (see Supplementary Figure

S2), suggesting that our method could perhaps be used in

conjunction with a sliding window to improve detection of very

small events.

Analysis of samples with high noise and genomic
instability

The glioblastoma copy number profiles that we analyzed here

have relatively few CNA events and therefore provide a favorable

test case for computational analysis. Copy number data sets for

other cancers have proven far more problematic. For example, a

recent copy number study of lung adenocarcinoma [8] compiled a

Patterns of CNAs in Cancer
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very large (*400 samples) but challenging data set, where the

signal to noise varied considerably over samples – potentially due

to stromal contamination – and a sizable fraction of samples

displayed numerous events. The authors curated the samples into

three tiers based on signal quality and restricted analysis to the best

tier. Despite the large average number of events per samples, the

study identified only a few regions altered in a significant number

of samples, with the most common CNA (amplification of

chromosome 14q13.3) only present in *12% of the best third

(top tier) of their samples. We applied our method to this lung

adenocarcinoma data set to see how it would perform in a high

noise setting. Since the original assignment of samples to tiers was

not readily available, we did a first pass analysis of the entire data

set – without attempting to reduce to the cleanest samples – using

the same parameters as we used on the TCGA data set.

Interestingly, the first iteration of the algorithm partitioned each

chromosome into two clusters containing exactly the same samples

(with pv10{5), with one group consisting of samples with a strong

but very noisy signal and the other containing samples with a weak

signal. This result suggests that our method may be able to

automatically distinguish signal quality.

The initial choice of parameters did not find any significant

aberrations at a p-value cutoff of 0.05, possibly due to the different

array platform as well as the different statistical properties of the

copy number profiles (see Supplementary Figure S3 and

Supplementary Table S1). However, using our algorithm with a

different set of parameters (l~1 and m~0:1) on chromosome 14

allowed us find the amplification of 14q13.3, albeit only in 6

samples (2% of the total count of samples) and with a weak p-value

(pv0:1). Here, the presence of a large group of very noisy samples

in the data set may be responsible for degrading the p-value. While

we were not able to directly compare to the original analysis on the

top tier samples, this quick analysis on the full data set is fairly

encouraging, in that we were able to retrieve the main result

without an ad hoc curation of samples.

Possible algorithmic extensions
The above analysis also underscores the impact of the choice of

the two constraint parameters, l and m (see Methods), which

determine the degree of sparseness and piecewise-constantness,

respectively, of our linear classifiers. We chose the parameters for

the glioblastoma study through heuristics and recovered most

known events as well as several novel and plausible CNAs.

However, full exploration of this parameter space could yield

additional results; for example, to predispose the algorithm to find

focal events, one might try to make the sparsity constraint more

stringent. Various strategies might be used to optimize the choice

of parameters, including use of a cross-validation loop. To

implement this approach, one would have to choose an

appropriate method for estimating the quality of the clusters:

standard estimators are closely tied to the objective functions

optimized by traditional clustering algorithms (such as K-means),

which do not take into account the properties of copy number

profiles (i.e. spatial correlations, sparsity of deletion/amplication

events). However, such a cross-validation loop would also entail

lengthier computational times. This cost could be greatly

reduced if we were able to compute the entire regularization

path of the fused lasso in a single pass, as others were able to

do with the original lasso [41] and SVM [42] optimization

problems.

An interesting direction for future research would be to extend

this method to incorporate gene expression data in the analysis of

copy number profiles. The candidate gene results of Table 1 show

that even a simple analysis is able to find significant correlations

between the two types of data. Presumably, CNAs that result in

deregulated expression are more likely to be driver mutations. A

framework that integrates paired copy number and mRNA

expression may yield greater insight into functional gains and

losses in cancer.

Conclusions
We have introduced a new mathematically sound method for

the identification of frequent alterations in a large cohort of tumor

copy number profiles. This method builds on the concept of

maximum-margin clustering by extending to more than two

groups and incorporating specific properties of copy number data,

i.e. the piecewise-constantness and the sparsity of CNAs.

We applied this method to a large publicly available

glioblastama data set from The Cancer Genome Atlas initiative.

Our results include most CNAs already found by previous studies

as well as novel CNAs confirmed by other data sets or expression

analyses. We showed that we were able to identify large

aberrations as well as focal events and found significant

correlations between these different CNAs.

Methods

Below, we briefly develop the technical background related to

our approach and describe the details of our algorithm. We first

present the fused lasso classification algorithm and then show how

to extend it to an unsupervised setting based on the maximum

margin clustering algorithms. Finally, we introduce our iterative

partitioning procedure for determining hierarchical clusters

characterized by common CNAs.

Supervised classification
We first consider the supervised learning problems for aCGH

profiles. Here we are given a training set of aCGH samples

fxigi[1...n of dimension p, where p is the number of probes; each

example xi has an associated label or an explanatory variable

yi [Y , where the labels can be discrete (classification) or real-

valued (regression).

Given our labeled set of samples, the goal of linear supervised

classification or regression is to build a linear function

fw,b(x)~w:xzb that will be able to predict the correct

explanatory variable y [Y for a new sample x [Rp. We use a

general formulation of supervised learning as an optimization

problem:

argmin
w,b

Xn

i~1

L(fw,b(xi),yi)

under the constraint V(w)ƒl

ð1Þ

where L is a loss function that penalizes the error between the

predictions fw,b(xi) and the real explanatory variables yi, V is a

regularization function, and l [R the value of the constraint, to be

adjusted to find a suitable compromise between minimizing of the

error term and regularizing (avoiding overfitting) the model.

Problem (1) describes a whole family of algorithms that includes (i)

the support vector machine (SVM), when Y~f{1,1g is the set of

binary labels, L is the hinge loss L(fw,b(x),y)~ max (0,1{yfw,b(x)),
and V is the Euclidean norm; (ii) the L1-SVM, when Y is the set

of binary labels, L is the hinge loss, and V the L1-norm; or (iii)

lasso regression, when Y~R, L is the squared error

L(fw,b(x),y)~(y{fw,b(x))2, and V is the L1-norm; among many

others.
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Maximum margin clustering
Recently Xu et al. proposed to generalize this optimization

framework to the unsupervised clustering problem, i.e. trying to

find the best linear separator between (latent) classes of samples

when the labels are not known [21]. The general optimization

problem described in (1) then becomes

argmin
w,b,yi

Xn

i~1

L(fw,b(xi),yi)

under the constraint V(w)ƒl

ð2Þ

However, in the case of binary classification, i.e. Y~f{1,1g,
Problem (2) becomes a mixed integer problem (MIP), which is not

easily solvable using standard optimization techniques. Instead,

Zhang et al. proposed an algorithm similar to conjugate descent to

solve this problem [22], alternating between (a) training the linear

separator given current label assignments and (b) updating the

label assignment based on the linear separator. They found that a

standard support vector machine (SVM) converges quickly in this

alternating procedure to a fixed set of labels without finding more

favorable cluster assignments. Therefore, they proposed using

support vector regression (SVR) for the linear separator. SVR is

more often used in the case of regression, i.e. Y~R, than in

binary classification but performs well for the clustering problem.

Incorporating prior knowledge
In choosing the regularization function V to use in training a

linear separator, we want to take into account two different

properties of copy number profiles:

1. Successive probes on the same chromosomes are likely to

represent the same copy number and should therefore tend to

be attributed similar weights in the linear function.

2. There are usually only a small number of CNAs in a given

sample, often (but not always) occupying relatively small

genomic regions, and therefore only a small number of probes

should have non-zero weights in the linear function.

Tibshirani and Saunders introduced a fused lasso method for

regression and classification that gives a sparse and piecewise-

constant linear function by imposing two separate constraints [28];

the regression formulation takes the form:

argmin
w,b

L(fw,b(xi),yi)

such that
Xp

k~1

Dwk Dƒl

Xp{1

k~1

Dwk{wkz1Dƒm

ð3Þ

where L is the least squares loss function. Here, the first constraint

is the lasso regularizer, which induces sparsity, i.e. few components

wk in the solution vector w are non-zero; the second constraint

enforces piecewise constantness, i.e. adjacent probes tend to be

assigned the same weight.

In the case of high-density copy number profiles, another issue is

the non-uniform distribution of the distances between successive

probes [43]. Older low resolution aCGH technologies used probe

sets designed to have relatively uniform inter-probe distances, or at

least, these distances varied within an order of magnitude. New

higher resolution technologies have higher disparities in inter-

probe distances. To take these into account, we modify the

constraints to include a coefficient that normalizes for inter-probe

distances:

argmin
w,b

Xn

i~1

Eyi{fw,b(xi)E2

s:t:
Xp

k~1

Dwk Dƒl

X

k*l

akl Dwk{wl Dƒm

ð4Þ

where k*l if k and l refer to succesive positions on the same

chromosomal arm and akl is the weight of the corresponding

relation.

In the case of aCGH profiles, we define akl as

akl~log(
dkl

minq,rdqr
) ð5Þ

where dkl is the genomic distance between probes k and l.

Incorporating these modifications, we obtain the following

quadratic problem under linear constraints:

argmin
w,b

Xn

i~1

a2
i , satisfying :

Vi~1,:::,n : ai§yi{wTxi{b

Vi~1,:::,n : ai§{yizwTxizb

Xp

k~1

bk
ƒl

Vk~1,:::,p : bk
§wk

Vk~1,:::,p : bk
§{wk

X

k*l

ckl
ƒm

Vk, l such that k*l : ckl
§akl(wk{wl)

Vk, l such that k*l : ckl
§akl({wkzwl)

ð6Þ

Using this quadratic problem, we propose an algorithm similar

to the maximum margin clustering algorithm [22]:

Algorithm 1. Iterative fused lasso.

1. Initialize the labels fyig, for example with standard K-means

(K~2).

2. Calculate the linear separator w obtained by solving Problem

(4).

3. Assign the labels using the linear separator: yi~sign(wTxizb).

4. Repeat steps 2–3 until convergence.

Iterative partitioning
One limitation of the method proposed in Problem (4) is that it

only achieves a binary partition of the data, while in fact there may
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be more than two distinct subgroups defined by common CNAs.

In order to overcome this limitation, we use the following iterative

partitioning algorithm:

Algorithm 2. Iterative partitioning.

1. Initialize the partition of the data with Algorithm 1.

2. Partition each of the groups of the partition into two new

groups.

3. Repeat steps 2 until the size of a new group or the significance

of the partition falls below threshold.

In order to guarantee that the newly discovered groups at each

step will explore different directions of variation, we make each

classifier orthogonal to the preceding ones. This can be done by

the following equation, assuming that we know the classifiers

fw0,:::,wjg, we can then learn a new classifier (and associated

partitioning) wjz1, written as w to simplify notation:

argmin
w,b

Xn

i~1

Eyi{(wTxizb)E2

s:t:
Xp

k~1

Dwk Dƒl

X

k*l

akl Dwk{wl Dƒm

Vt [ 0 . . . j : wT
t w~0

ð7Þ

where n is the number of samples that we want to separate.

Using the same method as in the last section, Problem (7) can be

transformed into a quadratic problem under linear constraints.

Implementation
The method has been implemented under Matlab using the

commercial Tomlab/CPLEX [44] package. Both this implemen-

tation and another one using the free SeDuMi [45] package are

freely available.

Supporting Information

Figure S1 Correlation matrix of frequent CNAs. The heatmap

shows the significance of the correlation between pairs of CNAs in

the TCGA glioblastoma data by displaying the p-value (Fisher’s

exact test) on a logarithmic scale. Every pair with p,1e-10 is given

the same color. The size of each square is proportional to the size

of the corresponding CNA (on a logarithmic scale).

Found at: doi:10.1371/journal.pone.0012028.s001 (2.08 MB TIF)

Figure S2 Analysis around the short event on chromosome 11 in

the TCGA glioblastoma data set. We performed our clustering

algorithm on a small region of ,300kbp (or 38 probes) centered

around the small deletion event found by RAE and GISTIC on

chromosome 11. The heatmap shows the value of the probes of

the samples on this region, with green indicating negative values

and red indicating positive values. The vertical axis represents the

sequence of probes along the genome, while the different samples

are shown on the horizontal axis. The blue and yellow color bars

correspond to the labels of each sample as determined by the first

iteration of our algorithm. These labels are perfectly correlated

with the presence of the bright green deletion event.

Found at: doi:10.1371/journal.pone.0012028.s002 (1.85 MB TIF)

Figure S3 Centroids of chromosome 14 clusters on the lung

adenocarcinoma dataset. The figure shows the two centroids of the

clusters found with the first iteration of our method on

chromosome 14 in the lung adenocarcinoma data set. The larger

probe signal amplitude and variance of the blue centroid

(corresponding to the smaller group) show that this cluster’s

samples have stronger signal than the other cluster (see also

Supplementary Table S1).

Found at: doi:10.1371/journal.pone.0012028.s003 (0.71 MB TIF)

Table S1 Variance of the lung aCGH profiles. We present the

mean probe signal variance of the samples of each cluster found at

the first iteration on the lung adenocarcinoma data set, compared

to the corresponding mean variance of clusters for the TCGA data

set. As described in the main text, the lung clusters for different

chromosomes always contain the same samples. The table shows

that the cluster variance is also surprisingly regular, and that the

the smaller group variance is especially big.

Found at: doi:10.1371/journal.pone.0012028.s004 (0.04 MB

PDF)
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