Francismar Marcelino-GuimaraesBrazilian Agricultural Research Corporation (EMBRAPA) | Embrapa · Embrapa Soybean
Francismar Marcelino-Guimaraes
About
100
Publications
21,133
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,371
Citations
Introduction
Publications
Publications (100)
Phakopsora pachyrhizi , an obligate biotrophic rust fungus, is the causal agent of Asian Soybean Rust (ASR) disease. Here, we utilized whole-genome data to explore the evolutionary patterns and population structure across 45 P. pachyrhizi isolates collected from 1972 to 2017 from diverse geographic regions worldwide. We also characterized in-silico...
Bacterial pustule (BP), caused by Xanthomonas citri pv. glycines, is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and quantitatively against two Brazilia...
Effector proteins in Phakopsora pachyrhizi (Pp), the causative agent of Asian Soybean rust, are involved in the infection process. A previous study identified a rust effector Egh16-like family based expression profile during the interaction with soybean. Herein, we scrutinized available the Pp genomes to validate the predicted Egh16-like family of...
The root-lesion nematode, Pratylenchus brachyurus, is a migratory endoparasite with highly polyphagous behavior, able to parasitize a broad variety of plant species, including economically significant crops such as soybean, wheat, corn, rice and cotton. Due to its wide range of hosts, ability to survive for an extended period of time in the absence...
Key message
The overexpression of the soybean GmEXPA1 gene reduces plant susceptibility to M. incognita by the increase of root lignification.
Abstract
Plant expansins are enzymes that act in a pH-dependent manner in the plant cell wall loosening and are associated with improved tolerance or resistance to abiotic or biotic stresses. Plant-parasiti...
Pratylenchus brachyurus causes serious damage to soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões—BRS) and susceptible TMG115...
Main conclusion
The overexpression of the GmGlb1-1 gene reduces plant susceptibility to Meloidogyne incognita.
Abstract
Non-symbiotic globin class #1 (Glb1) genes are expressed in different plant organs, have a high affinity for oxygen, and are related to nitric oxide (NO) turnover. Previous studies showed that soybean Glb1 genes are upregulated i...
Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi , is the main disease affecting soybean production in Brazil. The plant introduction PI 594756 is a resistance source that has been employed in breeding for resistance to ASR in this country. This study aimed at investigating the resistance of the PI 594756 to a panel of P. pachyr...
Soybean is one of the most valuable agricultural crops in the world. Besides, this legume is constantly attacked by a wide range of pathogens (fungi, bacteria, viruses, and nematodes) compromising yield and increasing production costs. One of the major disease management strategies is the genetic resistance provided by single genes and quantitative...
Fungicide sprays on soybean in Brazil have contributed to the selection of less sensitivity isolates of Corynespora cassiicola. We calculated the EC50 of C. cassiicola using microtiter method to quinone outside inhibitors (QoI) and methyl benzimidazole carbamate (MBC), cross resistance among assets within QoI and MBC groups by mycelial growth assay...
Phakopsora pachyrhizi is a biotrophic fungus, causer of the disease Asian Soybean Rust, a severe crop disease of soybean and one that demands greater investment from producers. Thus, research efforts to control this disease are still needed. We investigated the expression of metabolites in soybean plants presenting a resistant genotype inoculated w...
Key message
A locus on chromosome 13, containing multiple TIR-NB-LRR genes and SNPs associated with M. javanica resistance, was identified using a combination of GWAS, resequencing, genetic mapping and expression profiling.
Abstract
Meloidogyne javanica, a root-knot nematode, is an important problem in soybean-growing areas, leading to severe yiel...
Background
Small heat shock proteins (sHSPs) belong to the class of molecular chaperones that respond to biotic and abiotic stresses in plants. A previous study has showed strong induction of the gene GmHsp22.4 in response to the nematode Meloidogyne javanica in a resistant soybean genotype, while repression in a susceptible one. This study aimed t...
Terpenes produced by plants comprise a diverse range of secondary metabolites, including volatile organic compounds (VOCs). Terpene VOC production may be altered after damage or by biological stimuli such as bacterial, fungal and insects, and subsequent triggering of plant defense responses. These VOCs originate in plants from two independent pathw...
The biotrophic fungus Phakopsora pachyrhizi is currently the major pathogen affecting soybean production worldwide. It has already been suggested for the non-host interaction between P. pachyrhizi and Arabidopsis thaliana that the fungus in early infection induces jasmonic acid (JA) pathway to the detriment of the salicylic acid (SA) pathway as a m...
Meloidogyne javanica causing root-knot nematode in soybean is an important problem in soybean areas, leading to several yield losses. Some accessions have been identified carrying resistance loci to this nematode specie. In this study, a set of 317 soybean accessions were characterized for resistance to M. javanica. Genome-wide association study (G...
The diversity of Phakopsora pachyrhizi populations has often resulted in the selection of virulent pathotypes following the release of rust-resistant cultivars. Thus, knowledge of the pathogenicity and variability of P. pachyrhizi specie, coupled with an understanding of its biology and host-pathogen interactions, is essential for better comprehens...
Background:
Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past. The main strategy for controlling this fungus involves the introgression of resistance genes. Thus far, five main loci have been associated with resistance to SS...
Background Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past. The main strategy for controlling this fungus involves the introgression of resistance genes. Thus far, five main loci have been associated with resistance to SSC....
Background Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous) is an important soybean disease, which has been responsible for severe losses in the past. The main strategy to control this fungus is through the introgression of resistance genes. So far, five main loci have been associated with resistance to Southern...
Nematodes are pathogens of many important crops, including soybean. The main species found in Brazil are root-knot (Meloidogyne spp.), cyst (Heterodera glycines), root lesion (Pratylenchus brachyurus) and reniform (Rotylenculus reniformis) nematodes. Ureases are traditionally known for catalyzing the hydrolysis of urea to ammonia and carbon dioxide...
Asian soybean rust (ASR) is one of the most serious diseases for soybean crops, and it can be responsible for severe yield reduction. Due to the low durability of vertical resistance, studies on horizontal resistance are important for breeding programs. The objective of this study was to identify quantitative trait loci (QTLs) related to ASR horizo...
Asian soybean rust (ASR) is one of the most destructive diseases affecting soybeans. The causative agent of ASR, the fungus Phakopsora pachyrhizi, presents characteristics that make it difficult to study in vitro, limiting our knowledge of plant-pathogen dynamics. Therefore, this work used leaf lesion laser microdissection associated with deep sequ...
Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) causes bacterial tan spot on soybeans (Glycine max), which was detected in Brazilian crops in 2012. The objective of this study was to determine the Cff transmission rate from plant to seeds in soybean cultivars with different levels of resistance to bacterial tan spot. For this, two assays wer...
The complex of Diaporthe (asexual morph) species occurring on soybean constitutes an important pathogenic group associated with diseases such as pod and stem blight, seed decay and stem canker. Stem canker, caused by Diaporthe aspalathi, has been reported as the most aggressive form of canker and its occurrence has limited soybean crop productivity...
The 50 top expressed P. pachyrhizi transcripts at 10 days post soybean infection.
Sequences of RT-qPCR primers, amplicon size, and primer efficiency.
Soybean [Glycine max (L.) Merrill] is one of the most important traded commodities for the world’s economy. However, soybean cultivation is often affected by biotic and abiotic factors that prevent the crop from attaining its full yield potential. With the advent of new tools for next-generation sequencing, the genomic knowledge gained from the stu...
Small heat shock proteins were first identified during heat shock stress, but currently have been often associated to plant biotic stresses. Considered stress defense proteins, HSP20s functions are especially related to interact with unfolded model substrate proteins, in ATP-independent manner, and keep them in a folding-competent state for subsequ...
Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease of the crop and can cause yield losses of up to 90%. The disease was first reported in Brazil in 2001. Epidemics of the disease are common in the country, where the fungus can survive year-round. Regulatory measures to reduce the inoculum between seasons and...
Asian soybean rust (ASR) caused by the obligate biotrophic fungus Phakopsora pachyrhizi can cause losses greater than 80%. Despite its economic importance, there is no soybean cultivar with durable ASR resistance (Goellner et al., 2010). In addition, the P. pachyrhizi genome is not yet available. However, the availability of other rust genomes as w...
Soybean [Glycine max (L.) Merrill] is one of the most important legumes cultivated worldwide, and Brazil is one of the main producers of this crop. Since the sequencing of its reference genome, interest in structural and allelic variations of cultivated and wild soybean germplasm has grown. To investigate the genetics of the Brazilian soybean germp...
Water deficit is the major abiotic factor that limits crop productivity. Climate changes are likely to exacerbate drought stresses in the future. In the present work, we investigated the feasibility of using the Normalized Difference Vegetation Index (NDVI) combined with the canopy temperature and other physiological characteristics, such as chloro...
Drought is one of the major factors limiting crop productivity worldwide. Currently, the techniques of genetic engineering are powerful tools for the development of drought-tolerant plants, once they allow for the modification of expression patterns of genes responsive to drought. Within this context, transcription factors recognize specific DNA se...
Key message:
A 55 % transformation efficiency was obtained by our optimized protocol; and we showed that GmELF1 - β and GmELF1 - α are the most stable reference genes for expression analyses under this specific condition. Gene functional analyses are essential to the validation of results obtained from in silico and/or gene-prospecting studies. Ge...
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness. The identification and characterization of genes related to plant defense responses to fungal infection are essential to develop ASR-resistant plants. In this work, we desc...
Myb genes constitute one of the largest transcription factor families in the plant kingdom. Soybean MYB transcription factors have been related to the plant response to biotic stresses. Their involvement in response to Phakopsora pachyrhizi infection has been reported by several transcriptional studies. Due to their apparently highly diverse functi...
MicroRNAs (miRNAs) are small molecules, noncoding proteins that are involved in many biological processes, especially in plants; among these processes is nodulation in the legume. Biological nitrogen fixation is a key process, with critical importance to the soybean crop. This study aimed to identify the potential of novel miRNAs to act during the...
Background
Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes ag...
Abscisic acid-responsive element binding protein (AREB1) is a basic domain/leucine zipper transcription factor that binds to the abscisic acid (ABA)-responsive element motif in the promoter region of ABA-inducible genes. Because AREB1 is not sufficient to direct the expression of downstream genes under non-stress conditions, an activated form of AR...
isolados monourediniais de Phakopsora pachyrhizi coletados no Brasil Asian soybean rust (ASR) caused by the obligate biotrophic fungus Phakopsora pachyrhizi is a major disease limiting soybean production in many producer areas in the world. Thus, knowledge of the spectrum of virulence in populations of P. pachyrhizi is essential for breeding progra...
It has been well established that MPK6 is a positive regulator of defense responses in model plants such as Arabidopsis and tobacco. However, the functional importance of soybean MPK6 in disease resistance has not been investigated. Here, we showed that silencing of GmMPK6 in soybean using virus-induced gene silencing mediated by Bean pod mottle vi...
Quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful tool used to measure gene expression. However, because of its high sensitivity, the method is strongly influenced by the quality and concentration of the template cDNA and by the amplification efficiency. Relative quantification is an effective strategy for correcting random a...
Passiflora edulis f. flavicarpa is considered the most important species of the genus Passiflora, mainly because of its botanical and commercial importance, as well as for crop breeding and genomic programs. However, its chromosome characterization has been conflicting on what concerns the number and localization of secondary constrictions (SC) and...
Asian soybean rust (ASR), which is incited by the fungus Phakopsora pachyrhizi, is considered one of the most aggressive diseases to the soybean culture. There are no commercial cultivars immune to the pathogen and the control measure currently used is the application of fungicides that harms the environment and increases production costs. For a be...
Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration) for drought-tolerant and sensitive soybean acces...
The loss of soybean yield to Brazilian producers because of a water deficit in the 2011-2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought. The abscisic acid (ABA)-in...
Lactobacillus plantarum has been used in human clinical trials to promote beneficial effects in the immune system, to alleviate intestinal disorders,
and to reduce the risk of cardiovascular disease. It is also involved in many fermentation processes in the food industry.
However, information on the fate of ingested L. plantarum is limited. In this...
Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) causes bacterial wilt on beans (Phaseolus vulgaris) and bacterial tan spot on soybeans (Glycine max). Cff was detected on beans in Brazil in 1995. Plants of commercial and experimental fields of soybean with typical symptoms of the disease were collected in the State of Paraná, Brazil, during t...
The Hsp20 genes are associated with stress caused by HS and other abiotic factors, but have recently been found to be associated with the response to biotic stresses. These genes represent the most abundant class among the HSPs in plants, but little is known about this gene family in soybean. Because of their apparent multifunctionality, these prot...
As proteinas MYB figuram como uma das maiores familias de fatores de transcricao (FT) presentes em plantas, nas quais desempenham a regulacao de importantes processos, incluindo a defesa. A classe R2R3-MYB e a mais numerosa entre as plantas e a analise da conservacao do seu dominio MYB e seus motivos (C-terminal) permite agrupa-los em subgrupos. Es...
Soybean [Glycine max (L.) Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions. Hybrid proline-rich proteins (HyPRPs) constitute a family of cell-wall proteins with a variable N-termi...
The development of drought tolerant plants is a high priority because the area suffering from drought is expected to increase in the future due to global warming. One strategy for the development of drought tolerance is to genetically engineer plants with transcription factors (TFs) that regulate the expression of several genes related to abiotic s...
Natural antisense ranscripts (NAT) are RNA molecules complementary to other endogenous RNAs. They are capable of regulating the expression of target genes at different levels (transcription, mRNA stability, translation, etc.). Such a property makes them ideal for interventions in organisms' metabolism. The present study reviewed plant NAT aspects,...
The Lesion Simulating Disease (LSD) genes encode a family of zinc finger proteins that are reported to play an important role in the hypersensitive response and programmed cell death (PCD) that are caused by biotic and abiotic stresses. In the present study, 117 putative LSD family members were identified in Viridiplantae. Genes with one, two, or t...
Rhizobial surface polysaccharides (SPS) are, together with nodulation (Nod) factors, recognized as key molecules for establishment of rhizobia-legume symbiosis. In Rhizobium tropici, an important nitrogen-fixing symbiont of common bean (Phaseolus vulgaris L.), molecular structures and symbiotic roles of the SPS are poorly understood. In this study,...
Soybean farming has faced several losses in productivity due to drought events in the last few decades. However, plants have molecular mechanisms to prevent and protect against water deficit injuries, and transcription factors play an important role in triggering different defense mechanisms. Understanding the expression patterns of transcription f...